Mansoura Engineering Journal

Volume 3 | Issue 2 Article 2

12-1-1978

Electromagnetic Unbalance in Untransposed Overhead Transmission Lines.

Sayed Hassan

Head of Electrical Engineering Department., Faculty of Engineering and Technology., El-Monofia University., Monofia., Egypt.

Mohamed Tantawy

Assistant Professor., Electrical Engineering Department., Faculty of Engineering., El-Mansoura University., Mansoura., Egypt., mtantawi@mans.edu.eg

Follow this and additional works at: https://mej.researchcommons.org/home

Recommended Citation

Hassan, Sayed and Tantawy, Mohamed (1978) "Electromagnetic Unbalance in Untransposed Overhead Transmission Lines.," *Mansoura Engineering Journal*: Vol. 3: Iss. 2, Article 2. Available at: https://doi.org/10.21608/bfemu.2021.183413

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. For more information, please contact mej@mans.edu.eg.

ELECTROMAGNETIC UNBALANCE

IN

UNTRANSPOSED OVERHEAD TRANSMISSION LINES

BY

Sayed Ahmed Hassan and Mohamed Abd-El-Moneim Tantawy

ABSTRACT:

This paper presents a complete analysis for the unbalance problem in O.H.T.L. which arises due to T.L untransposition.

Derivations for the electromgnetic unbalance factors by the application of symmetical component analysis are introduced.

The main factors affecting electro_magnetic unblance factors are discussed with special regard to double ci cuit T.L.

Numerical application is made to clearify the degree of effectiveness for each factor.

1. INTRODUCTION:

For untransposed transmission lines, the electromagnetic effects may be so large that affecting the balance of T.L. phase impedances which when become so-out-of balance, create unbalanced voltages, unbalanced currents at the receiving-end leading to additional heating in terminal equipments. For synchronous machines, and induction motors, the negative sequence stator currents cause a field of double frequency and opposite direction to be set up w.r.t. the rotor. This field causes circulating rotor currents which produces additional rotor heating. The degree of this heating is greatest for synchronous machines and least for induction motors. So, The study of the electromagnetic unbalance in untransposed lines and factors affecting it, is so important.

2 . ANALYSIS:

In untransposed multi-circuit lines with common buses, the induced voltages cause unblanced current that are not be in phase with each others. The in-phase portions lead to the overall net through current unbalance causing additional heating in terminal equipments. The out-of-phase portions lead to circulating currents flowing down one circuit and returning through the others causing additional transmission losses and may cause false tripping in a line circuit-breakers.

^{*} Head of Electrical Engineering depart. Faculty of Engineering and Technology El-Monofia University.

^{**} Assistant Professor at Electrical Engineering Depart., Faculty of Engineering, El-Mnaosura University.

Mansoura Bulletin, December 1978.

E.14. S.A. Hassan & M. Tantawy

2.1. Definitions:

For untransposed overhead transmission lines, we have two electromagnetic unbalance factors:-

a) Negative sequence unbalance factor (m2):-

It is the ratio between negative, and positive - sequence components of the unbalance current

$$m_2 = \frac{I_2}{I_1} = \frac{-Z_{21}}{Z_{22}} = \frac{-Z_{21}}{Z_{11}}$$
(1)

b) Zero sequence unbalance factor (m_):-

It is the ratio between zero-, and positive - sequence components of the unbalance current.

$$m_0 = \frac{I_0}{I_1} = \frac{-Z_{01}}{Z_{00}}$$
(2)

where:- I_0 , I_2 , I_1 are the symmetrical components of current I_0

2.2. Transmission line impedance matrix:-

The inductive characteristics of a multi-conductor T.L. can be defined by its serice impedance matrix Z per unit

The voltage-current relation in matrix form for the series impedance of T.L. is:

$$\begin{bmatrix} \Delta \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I} \end{bmatrix}$$
(4)

- [V] is the series voltage drop along the line.
- [I] is the line current.
- [Z] is the T.1. impedance including the earth effect.

$$\begin{bmatrix} \mathbf{Z} \end{bmatrix} = \begin{bmatrix} \mathbf{r} \end{bmatrix} + \begin{bmatrix} \Delta \mathbf{r} \end{bmatrix} + J \left\{ \begin{bmatrix} \mathbf{x} \end{bmatrix} + \begin{bmatrix} \Delta \mathbf{x} \end{bmatrix} \right\} \dots (5)$$

$$\begin{bmatrix} \mathbf{r} \end{bmatrix} = \text{diagonal matrix of conductor resistance}.$$

x] = square matrix of conductor reactance.

 $[\triangle r]$, $[\triangle x]$ = square matrices calculated from Carson's earth correction formulae.

The elements of the impedance matrix [Z] for conductors arrangement shown in Fig. (1).

$$Z_{ii} = r_{ii} + \Delta r_{ii} + j(x_{ii} + \Delta x_{ii})$$
(6)

r; = resistance of conductor at system frequency.

$$x_{ii} = 0.7411 \cdot 10^{-3} \cdot w \cdot \log_{10} \frac{1}{GMR_{i}}$$

$$x_{ik} = 0.7411 \cdot 10^{-3} \cdot w \cdot \log_{10} \frac{1}{D_{ik}}$$

$$r_{ii} = 0.2628 \cdot 10^{-3} \cdot w \cdot + 2.599 \cdot 10^{-7} \cdot w \cdot h_{i} \cdot \sqrt{f/p}$$

$$x_{ii} = 0.7411 \cdot 10^{-3} \cdot w \cdot \log_{10} 2162 \sqrt{\frac{9}{f}} + 2.599 \cdot 10^{-7}$$

 $w \cdot h_{i} \sqrt{\frac{f}{g}}$ (8)

$$r_{ik} = 0.2528 \cdot 10^{-3} \cdot w + 2.599 \cdot 10^{-7}$$
.

$$\frac{D_{ik}}{2} \cos \theta_{ik} \cdot \sqrt{f/P} \cdot w. \qquad (9)$$

$$x_{ik} = 0.7411 \cdot 10^{-3} \cdot w \cdot \log_{10} 2162\sqrt{P/f} + 2.599 \cdot 10^{-7}$$

$$\frac{D_{ik}}{2}\cos \theta_{ik}\sqrt{f/\rho} \cdot w. \qquad \dots (10)$$

Equation (4) may be written as:-

$$[I] = [Y] . [\Delta V](11)$$

 $\begin{bmatrix} Y \end{bmatrix}$ is the series admittance matrix $= \begin{bmatrix} Z \end{bmatrix}^{-1}$

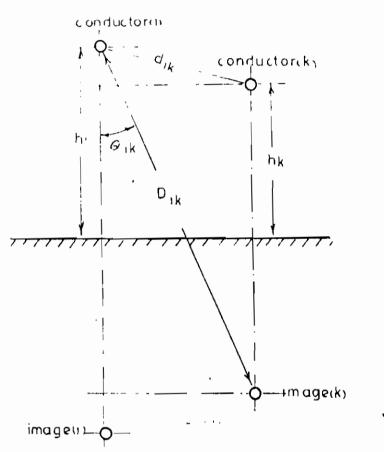


Fig. (1) SCHEMATIC ARRANGEMENT CONDUCTORS

2.3- Elimination of earthwires:-

For single-circuit O.H.T.L. with three conductors a,b,c and ground wire W, the voltage equations are:-

$$V_{a} = I_{a} Z_{aa} + I_{b} Z_{ab} + I_{c} Z_{ac} + I_{w} Z_{aw}$$

$$V_{b} = I_{a} Z_{ba} + I_{b} Z_{bb} + I_{c} Z_{bc} + I_{w} Z_{bw}$$

$$V_{c} = I_{a} Z_{ca} + I_{b} Z_{cb} + I_{c} Z_{cc} + I_{w} Z_{cw}$$

$$0 = I_{a} Z_{wa} + I_{b} Z_{wb} + I_{c} Z_{wc} + I_{w} Z_{ww}$$
.....(12)

from the last equation,

...
$$I_{w} = -\frac{1}{Z_{ww}}$$
 $\sum_{i=a,b,c}$ $I_{i} \cdot Z_{wi}$ (13)

Substituting for I in the lst three eqns of (12) and rearranging, we have:-

$$Z_{ij}$$
 (new) = $Z_{ij} - Z_{iw} \cdot Z_{jw}/Z_{ww}$ (14)

For T.L. with multi-earthwires, $eq^{\frac{h}{2}}$ (14) can be applied for many times as the number of earthwires.

2.4- Symmetrical component analysis:-

Equation (12) can be written in matrix form after eliminating the earthwire as:-

Applying symmetrical component analysis. So:-

$$\begin{bmatrix} c_1 \\ \end{bmatrix} \cdot \begin{bmatrix} I_s \\ \end{bmatrix} = \begin{bmatrix} Y_{\emptyset} \\ \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ \end{bmatrix} \cdot \begin{bmatrix} \Delta V_s \\ \end{bmatrix}$$

$$\cdot \cdot \begin{bmatrix} I_s \\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} c \\ \end{bmatrix} \cdot \begin{bmatrix} Y_{\emptyset} \\ \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ \end{bmatrix} \cdot \begin{bmatrix} \Delta V_s \\ \end{bmatrix} \cdot \dots (17)$$

$$= \begin{bmatrix} Y_s \\ \end{bmatrix} \cdot \begin{bmatrix} \Delta V_s \\ \end{bmatrix} \cdot \begin{bmatrix} \Delta V_s \\ \end{bmatrix} \cdot \dots (18)$$

$$\& \begin{bmatrix} Y_s \\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} c \\ \end{bmatrix} \cdot \begin{bmatrix} C \\ \end{bmatrix} \cdot \begin{bmatrix} Y_{\emptyset} \\ \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ \end{bmatrix} \cdot \dots (19)$$

E.18. S.A. Hassan & M. Tantawy

where: -

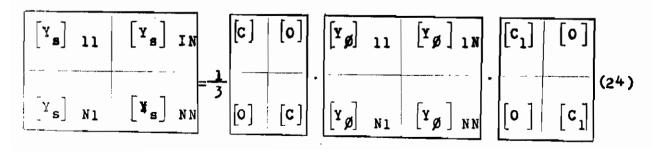
Y is the phase series admittance matrix

Ys is the sequence admittance matrix.

C is the spinor transform =
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \dots (21)$$

$$\begin{bmatrix} c_1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} c \end{bmatrix}$$

$$a = -1/2 + j \frac{\sqrt{3}}{2} ; \quad a^2 = -1/2 - j \frac{\sqrt{3}}{2}$$
.....(23)


the suffix (S) indicate the symmetrical component values.

$$\begin{bmatrix} \triangle V_{s} \\ \triangle V_{s} \end{bmatrix} = \begin{bmatrix} \triangle V_{o} \\ \triangle V_{1} \\ \triangle V_{2} \end{bmatrix} & & & \begin{bmatrix} I_{s} \\ I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} I_{o} \\ I_{1} \\ I_{2} \end{bmatrix}$$

and suffix (\emptyset) indicates the phase values.

Substituting for (C), $(Y_{\not g})$, and (C_1) in eq. (19) then solving for (Y_g) in expanded form,

For a multicircuit line(with parallel circuits) as

For a double-circuit line, the sequence admittance matrix will be:-

$$\begin{bmatrix} \mathbf{Y}_{\mathbf{g}} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} \mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{\mathbf{g}} \end{bmatrix}_{11} \begin{bmatrix} \mathbf{Y}_{\mathbf{g}} \end{bmatrix}_{12} \begin{bmatrix} \mathbf{c}_{\mathbf{1}} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{\mathbf{1}} \end{bmatrix} \begin{bmatrix} \mathbf{0} \end{bmatrix} \\ \mathbf{Y}_{\mathbf{g}} \end{bmatrix}_{21} \begin{bmatrix} \mathbf{Y}_{\mathbf{g}} \end{bmatrix}_{22} \begin{bmatrix} \mathbf{c}_{\mathbf{1}} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{\mathbf{1}} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{\mathbf{1}} \end{bmatrix}$$
(25)

So, eq $\frac{n}{2}$ (18) in expanded form (considering balanced voltage drops) will be:-

N.B. dash refered to the second circuit

Theref ore,

$$I_{0} = (Y_{01} + Y_{01}') \cdot \Delta V_{1}$$

$$I_{1} = (Y_{11} + Y_{11}') \cdot \Delta V_{1}$$

$$I_{2} = (Y_{21} + Y_{21}') \cdot \Delta V_{1}$$

$$I_{0}' = (Y_{01} + Y_{01}') \cdot \Delta V_{1}$$

$$I_{1}' = (Y_{11}' + Y_{11}') \cdot \Delta V_{1}$$

$$I_{1}' = (Y_{11}' + Y_{11}') \cdot \Delta V_{1}$$

$$A = (Y_{21}' + Y_{21}') \cdot \Delta V_{1}$$

$$A = (Y_{21}' + Y_{21}') \cdot \Delta V_{1}$$

& The net-through symmetrical component currents are:-

$$\begin{aligned} & (\mathbf{I}_{0} + \mathbf{I}_{0}) = (\mathbf{Y}_{01} + \mathbf{Y}_{01} + \mathbf{Y}_{01} + \mathbf{Y}_{01}) \cdot \Delta \mathbf{V}_{1} \\ & (\mathbf{I}_{1} + \mathbf{I}_{1}') = (\mathbf{Y}_{11} + \mathbf{Y}_{11}' + \mathbf{Y}_{11}' + \mathbf{Y}_{11}') \cdot \Delta \mathbf{V}_{1}^{13} \cdot$$

3.20. S.A. Hassan & M. Tantawy

50, The circulating symmetrical component current are:-

$$(I_{0} - I_{0'}) = (Y_{01} + Y_{01}' - Y_{01}' - Y_{01}') \cdot \Delta V_{1}$$

$$(I_{1} + I_{1'}) = (Y_{11} + Y_{11}' + Y_{11}' + Y_{11}') \cdot \Delta V_{1} \qquad \dots (29)$$

$$(I_{2} - I_{2'}) = (Y_{21} + Y_{21}' - Y_{21}' - Y_{21}') \cdot \Delta V_{1}$$

3- Numerical application:-

For the double circuit O.H.T.L. with admittance matrix given in Table (1), it is required to have:-

- 1) The individual circuit unbalance, The net through unbalance, The circulating current unbalance.
- 2) The effect of terminal impedances on the unbalance.
- 3) The effect of series capacitor compensation on the unbalance.
- 4) The effect of T.L. phase arrangements on the unbalance.

Results:-

3.1- Unbalance factors

Applying equations (26, 27, 28, 29) and by the use of computer programming the individual circuit unbalance, the net through unbalance, and the circulating current unbalance are computed and tabulated in Table (2).

3.2- Effect of terminal impedances:-

Consider a terminal impedance of.

$$z_{OOT} = z_{11T} = J 0.5 \text{ ohm}$$
:

In series with the double circuit O.H.T.L., recomputing the zero-, and negative-sequence unbalance factors, it is found that the net through unbalance factors variation is: percent m_0 is reduced from 1.3019 to 0.9531. percent m_2 is reduced from 4.6676 to 1.7926.

Whilest the terminal impedances has no effect on the circulating current unbalance factors.

New Action of the Control of the Con	0	Tircuit 1	5	0	Circui 1	t II
Algebrase Company of the second	(0.0972) -0.7372	0.0706	-0.0674 0.0293	0.0481	0.019L 0.1001	-0.0344 0.0949
Committee of the committee of the committee of	0.0706	0.1059 0.0863	0.0844	-0.0720 -0.0732	-0.0491 -0 303 75	-0.0361 -0.0498
er alle (Mar e production and and a state of the state of	-0.0674 0.0295	0.0844	-0.1173 0.1091	0.0842	0.0413	0.0529 -0.0308
O TO THE STATE OF	0.0481	-0.0720 -0.0732	0.0842	0.0975 -0.7372	0.0233	-0.0209 -0.0742
Maria Maria e independentales	0.0191	-0.0491 -0.0375	0.0413 -0.0433	0.0233 -0.0690	0.1160 0.0731	0.0844
TO COLUMN THE STREET OF THE STREET	0.1891	-0.0361 -0.0498	0.0529 -0.0308	-0.0209 -0.0742	0.0844 -1.5552	-0.1237 0.0555

Symmetrical commonent admittance matrix (mho-miles)
for untransposed double circuit T.L.

Table 1

12

E.22. S.A. Hassan & M. Tantavy

	Cicuit I	Circuit 11					
Y _{Cl}	0.0706 + J0.0341	Yoʻl	-0.0725 + J0.0732				
Yci	0.0191 + J0.1001	YOI	0.0233 + J0.0690				
I _O / ΔE ₁	0.0897 + J0.1342	Ió/ V E	-0.0487 - J0.1422				
¹ 21	0.1059 + J0.0863	Yź1	-0.0491 - J0.0375				
Yai	-0.0491 - J0.0375	Yźĺ	0.1160 + J0.0731				
1 ₂ / ΔE ₁	0.0568 + J0.0488	Ι ₂ / Δ Ε ₁	0.0669 + J0.0356				
Y ₁₁	0.0844 + J1.5552	Yíı	-0.0361 - J0.0498				
Y ₁₁	0.0413 - J0.0433	Yııı	0.0844 - Jl.5552				
1 ₁ / △ E ₁	0.1257 - J1.5985	I ₁ ΔE_1	0.0483 - J1.6050				
rercent mo	10.0658	percent mo	9.3609				
rrecent m2	4.6703	percent m2	4.7195				
I _o +I _o)/ΔE ₁ I ₂ +I ₂)/ΔE ₁ I ₁ +I ₁)ΔE ₁ ercent m _o reent m ₂ I _o -I _o)/ΔE ₁ I ₂ -I ₂)/ΔE ₁ I ₁ +I ₂)/ΔE ₁	Net through unbalance 0.0410 - J0.008 0.1237 + J0.0844 0.1740 - J3.2035 1.3019 + 76.66 4.6676 121.6 Curculating current unbalances 0.1384 + J 0.2764 -0.0101 + J 0.0132						
$+\mathbb{I}_1+\mathbb{I}_1^{\prime})/\Delta\mathbb{E}_1$	0.1740 - J 3.2035						
percent mo	9.6346 150.3 0.5180 - 145.67						

Table (3) Ratios of circuit current components to 4E1

ATING CURRENTS	[(12-1	၀ု၀		00	• •	• •	00	• • 1	• •	• • •	• •	• • !	• • 1
	11(11-11)7AE	0.1257	0.02	.497	100	.006	300	.592	0Н	0.141 1.579	0.077	-0.0413 -0.0017	000
OUGH CURRENTS CIRC	(IO-IO)IAE	0.1384 0.2764	291,026	000	12	.034	002	15	191	900	65	0.0015 0.0191	29
	(12+12/7/4E)	0.1237	.272	.098	0.0373	25	99.	95	424	-0.0786 0.0868	64 78	16-15-	-0.1170 0.1705
	$(1_1+1_1)7 \triangle E_1$	07 1257 1.5982	. 026	101.	44	172	0.1612		04	0.14	,174	191.	0.1711
	(i ₀ +i ₀)/ DE	0.0410	0.0043	0.01	-0.0568	0.044,2	0.0084	0.0592	0.0225	-0.0313			0.0266
PHASE	ARRANGEMENT	abc - abc	abc - bca	abc - cab	abc - bac	abo - bac	abc - cba	acb - abc	acb - bcs	acb - cab	acb - acb	a t b - bac	acb - oba

E.24. S.A. Hassan & M. Tantawy

Table (4) Net through, and sirculating current unslance factors for different phase arrangements of double ircuit untransposed T.L.

PHASE	THROUGH	CURRENTS	CIRCULATING	CULATING CURRENTS		
.ERANGEMENT	M _o	M ₂	Мо	M ₂		
abo - י'פ	0.025]	0.0936	0.1928	0.0106		
abc - bca	0.0583	0.1747	0.1862	0.1457		
abs - cab	0.0351	v.1635	0.0128	0.1629		
abo - aob	0.0188	0.0249	0.0958	0.0249		
abc - bac	0.0140	0.0516	0.0939	0.0516		
abc - cba	0.0327	0.0616	0.0038	0.0616		
acb - abc	0.0372	0.0739	0,1909	0.1483		
aco - bca	0.0589	0.2560	0.0077	0, 0302		
acb - cab	0.0211	0.0738	0.1867	0.1734		
dos – cice	0.0126	0.0315	0.0963	0.0315		
acb - bac	0.0209	0.0626	0.0064	0.0626		
acb - cba	0.0303	0.5112	0.0929	0.0659		

3.3- Effect of series capacitor compensation:-

For 0.75 compensation, the compensation can be considered as an impedance in series with each circuit equal to:-

$$Z_{\text{ooc}} = Z_{11c} = -J (0.75) (Z_{11}).2 = 0.4674 - 90$$

The through current unbalance of the compensated line is:-

percent
$$m_0 = \frac{-z_{01}.100}{z_{00}+z_{000}} = 1.326$$

percent
$$\underline{m}_2 = \frac{-z_{21} \cdot 100}{z_{11} + z_{11c}} = 9.2424$$
(30)

So, the effect of series compensation is as:-

percent m_0 is increased from 1.3019 to 1.9172 percent m_0 is increased from 4.6676 to 9.2541

3.4- Effect of T.L. phase arrangements:-

For a double circuit O.H.T.L., the electromagnetic unbalance factors are calculated for all possible different phase arragements.

Table (3) indicates the computer results of through-, and circulating-currents for different T.L. arrangements.

Table (4) indicates the electromagnetic unbalance factors within and at the terminals of the double circuit line.

4. CONCLUSIONS:

The circulating currents in double circuit untransposed O.H.T.L. increase the line current in one circuit and decrease it in the other. The in-phase portion causes the net through unbalance at the terminals which leads to additional heating in terminal equipments. The out-of-phase portion creates additional transmission losses.

Series capacitor compensation greatly magnifies the net through unbalance.

Whilest the terminal impedances reduce the net through unbalance, it has no effect in the circulating current unbalance.

The optimum phase arrangement for minimizing through current unbalance will lead to maximum circulating current unbalance.

So, from the ecomomical point of view, optimum phase arrangement should be carried out to minimize circulating current unbalance, Since the net through will decrease by terminal equipment impedances.

5. REFERENCES:

- 1. GROSS, S.W.NELSON: "Electromagnetic unbalance of untransposed transmission lines, ll-single circuit lines with horizontal conductor orrangement".AIEE Trans.(PAS), Vol.74, Oct.1955 pp.887-893.

 2. HESSE: "Electromagnetic and electrostatic transmiss-
- 2. HESSE: "Electromagnetic and electrostatic transmission line parameters by digital computer" IEEE Trans. (PAS), Vol. 85, July 1966, PP. 802 - 811.
- 3. HESSE: "Circulating currents in paralleled untransposed multi-circuit lines, I-numerical evaluation" IEEE Trans. (PAS), Vol. 85, July 1966, PP. 802-811.
- 4. HESSE: "Circulating currents in parplieled untransposed multi-circuit lines, ll-methods for estimating current unbalance" IEEE Trans. (PAS), Vol. 85, July 1966, PP. 812-820.
- 5. ZABORSZKY, J.W. RITTENHOUSE: "Electric power transmiss-ion" (Book). Rolla, Missouri, March, 1954.
- 6. GROSS, M.H. HESSE: "Electromagnetic unbalance of untransposed transmission lines". AIEE Trans; Vol. 72, pt. III, December 1953, PP. 1323-1336.
- 7. HOLLEY: "Untransposed EHV line computations" IEEE Trans. (PAS), Vol. 83, March 1964, PP. 291-296.
- 8. COLEMAN, H.HOLLEY, R.B.SHPLEY: "Power circuit representation for digital studies". Proceedings of the power industry computer applications conderence, 1963, PP. 127-134.
- 9. GROSS, J.H. DRINNAN, E. JOCHUM: "Electromagnetic unbalance of untransposed transmission lines". 111-double circuit lines, AIEE Trans. (PAS), Vol. 78, December 1959, PP. 1362-1371.
- 10. CARSON, I.R.: "Wave propagation in overhead wires with ground return" Bell syst. Tech. Journal 1926.