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Mansoura Bulletin, June 1979.

OK THE THEORY OF FIELD PATTERN SYNTHESIS
BY

I.Mandour®, H.A.E1-Mikati®™ and A.Bl1-8oh1y**®

ABSTRACT

Uniform array synthesis is treated as a problem of approxi-
mation in a Hilbert space. Approximations in the mean square
sense and in the Sobolev sense are considered. Following Ticho=
nov's regularization technique for solving inverse problems,
the array excitation current is subjected to a certain constraint
in order to make the design less-sensitive t0 construction errors.
A variational formulation of the problem using Lagrange multiplier
method is presented. The equation determining the excitation
current is obtained in a general operator form and is then put in
a form amenable to numerical computation. Existence and unique-
ness of solution are proved. Some example problems are presented.

I- INTRODUCTION

Severa]l techniques have been developed for the synthesis of
uniform linear arrays that will produce a prescribed field pat=~
tern within specified error limits. These involve: Fourier ser-
ies methods, Dolf = Chebyshev arrays and related minimax techni-
ques, methods based on interpolation theory or eigenfynction
expansions, and iterative sampling techniques |1 = |11 . A
review of the deVelo ent of synthesis theory has been given by
Feld and Bakh and is also presented in many books of
which T are typical.

The usefulness of any of the above methods ultimately relies
on the question of realization. Realization will be possible if
the required complexity and accuracy in the excitation current is
kept lowe In practice, there is always unavodiable inaccuracy and
errors in the antenna current and the actual pattern will differ
from the theoretical. These errors may be either predictable
(determiniatic) or random., The effect of the first type on the
radiation pattern can be calculated by classical methods and may
be taken into account in the design procedure, Some sources of
random errors are: accidental deviation of the amplitudes or
phases of the element currents from their design values, trans-
lationa]l errors in element locations and missing elements.
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Although these errors may be small, they are ever present and
may cause pronounced deviation of the synthesized pattern from
the desired one. This deviation depends on, how much the radia-
tion pattern is "Sensitive" to smallerrors in the excitation
currents or element locations. Some theoretical solutiomns to
the synthesis problem may be completely worthless because of
excessive sensitivity: they are unrealizable. in a practical
sense.,

The sensitivity and stability of solutions to the pattern
synthesis problem have been discussed by Deschamps and Cabayen
[{6 s They charaeteriged the synthesis problem as an example
of vImproperly poaed® problems. This is a class of problems of
mathematical physics that is encountered in many fields, e.g.,
remote sensing, target identification, pattern recognition,...
etc., Barlier contributions to t study of these problems are
due to Tikhonov and Lavrantev h? -118 « The synthesis techni-
que presented in this paper makes use of the results of these
authors. The optimum array excitation is obtaimed through con=
strained minimization of certain objective function (error cri-
terion). The later comprises weighted difference between the
desired pattern and the synthesized one. The choice of the
error criterion is discussed in the next section.

1I- ERROR CRITERION

The synthesis preblem considered in this paper may be stated
as follows. Given a uniforam linear array of n-elements. It is
required to find a set of excitation currents I so that the resu-
lting array factor P approximates a desired field pattern P_.

It will be assumed that Py is a piecewlise continuous functign
defined over the interval -l1g ugl, where u = cos © and @ is the
angle from broadside, Excitation currents 1 2(11' Iogeceey 1,)
will be treated as points in an n-dimensional space 5and array
factors P as elements of the space of square integrable func=
tions defined over the interval [-1, i] . Excitation currents
and array factors are related by the transformation

P = ? I ooo..o-c(l)

L]

The operator F, as known from array theory, is linear and
btounded and, therefore, conti ous[i9] « It is defined by a
scalar product of the form [1§T

FI=(,Y)=2 I, Wy seeeeeee(@)

vhere NV are in general exponential functions of the form exp
(jnkdu).nuhare ndr ig the interelement spacing.



Mansoura Bulletin, June 1979. 13

To solve the synthesis problem means to find an excitation
I such that F I is close to Py. In order to give & precise defi-
nition of "Closeness™ of iwo elements in the spaced or we begin
with defining norms Il and [IP| and letting the distance between
two slements be the norm of their difference. For example, the

distance between P and Pd in the space is given by

D = “p - Pd” : eesesess(3)

D measures the deviation of the pattern P from the desired
one and will be called "error criterion%,

The spaces g and‘?)so organized become metric spaces., Norms
and distances satisfy a number of properties that can be found in

el .

There are severa] ways for defining norms, but only those
norms which makeJ or into a Hilbert space are particulary impor=-
tant. This is because in Hilbert spaces one can define angles,
perpendiculars and projections and perform most geometric const-
ructions familiar in Buclidean spaces. In fact, Lilbert spaces
are in essence natural relization to the latter in the realm of
functiona] spaces.

The nornms hp1[2 and ||1||2 defined, respectively, by the
scalar products :
(p, pf*’

l
(S "P||2 w(u) duS"'5 cocecee(l)

_& o
S 1al®? NS
m=]

are ones for which‘F)and ﬂ are Hilbert spaces. Distance D in
this case is defined by

IIPH2

and

Il , =« 1§+

1
D = “P - Pd ” > =(‘§ (P = Pd)2 w(u) du?'5 ecesseaelB)
-1

It represent tie integral of the squares of deviations of P from
P, weighted b, the function w(u) which reflects the relative
accuracy with which P approximates Pd on the different parts of
the interval -1 £ U (1.

There are other norms which makes a space:P into Hilbert
space. An example is the norm |P||s defined by

1 1
“p"i: (P, P) + (¥, B) =§ Iuauiu)du+J‘wf v, (u) du

-1 L e (D)
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where the prime denotes differentiation with respect to u, and

'1 and '2 are weighting functionsa.

Hilbert spaces having norms of the form (7) or its generali=-
zations are now commonly called Sobolev spaces, after L. Sobolev
who developed their theory tao « Closeness of two elements P and
Py according to norm (7) ensures that, not only values of P and

Pd are closse, but also the values of their derivatives P and Pd.

Having chosen a specific norm, the problem now is to find
the current I = (I, pescey In) which minimizes the error B= nz.
We show that this ano%nts to solving a set of linear equations.
Consider E as function of I and let I be increased by a small
increment I. Then from (1), (3), (4) we get .

B(I +oI) = ||P - P || 2
“F (1 +1_~.1) - P ||2 =

(F (I + AI) R F (I +bI)- P ) o.-o(&)

]

d’

Using known properties of linear operators and scalar products,
we find that

E(I +41) = (i-x-pd.rx-p)a,(ru. n-p)
+(FI - Pd' F.AI) + (FAI. FAI) -..-..(9)

Hence upon naglecting second order terms we get
AE (I) = B(I +AI)= B(I) = (FaI, FI - P)e
+(§.I-Pd' r.bI) 000000(10)

'he adjoint operator F' is defined by
(FI' P) - (I' .F+ P) o-.oo-oo-(ll)

It follows that
AB(I) = (oI, F¥* F1 - ¥ Py) + (F* PI - ¥t Pgr &1)
l-ocoo-..(IZ)

If E(I) is a minimum, then AE(I) should be zero for any
small increment AI. From (12), this requirement implies

¥ F1 - ¥ Py =0

or

-~ »
F+ ‘FI =F’P -.-.n.-a.(l})

d
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Let us determine the oxplicit foram of F* and ¥* F. We nave
from the definitions of the scalar product and the operater F°
(equation (2)),

(f1, P,) aj

=( I, j aY Py w(u) du)

1

-1
n . -y
i Z I'Slm}}mpd w(u) du =(I, P Py) cveseeaslll)
-1

n=]

Henoe, we see that %* Pd iz a column vector B having n-components
given by

Bi = (.F* Pd)i = ('\Ijil Pd.) i = 1' 2.-ooo'n 00000-0(15)

f.0. P* P, is the projection of P, on the sat«V o Also, ¥t rI
is a voctgr whose 1 th component gs

Ay & _ -~ _
(F* ¥1) = (s FD) -Z Ij(r\yi. «VJ) ceesasss(l6)
J
It is then easily seen that ¥ } is a matrix operator given by
A*A ] -
F F =A=aij = [(ATIL.'\YJ.)] o-oo-oco(l?)
i =1’ 2...-. n li:lg 2,.---'

Equation (13) is therefore sguivalent to the system

Ij (N]Ji' Yj) = (’Yi' Pd)’i = !.. 2recsey N .......(18)

i=1

or, in matrix form , R
Al = B .......(19)

Matrix 1 is positive defipite., It is the matrix of the

quadratic form:

1

J (AVI o + ﬂf; 8, + ceco ¢ 11 en)a x w(u) du

=1
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Where eo,, ﬁ%...... e &are unit vectors, Moreorer, if the funct-
ions ard 1lihearly 1naepondont. then /A/ # O and A is non-singular.
This is a necessary and sufficient condition for the existence of

& unique solution to the system (19) and, hence, to the synthesis
problem.

The above resultis have beeon obtained for approxzimation acco-
rding to [P norm. In case of Sobolev norm |[P[ _, similar
resul ts can H% obtained. The required current is %ho solution
to the system.

ASI - Bs .-000000(20)

~

Vhere As is a square n xn matrix givenm by

1, - [“ig] - [y, PR ("Yi' A'/’J)] cerereea(2l)

, i, J = 1y 24eeey 1
and ﬁs is the column. vector:

Bs = [(’*’Ji' P) +* (f\l/i. P/d)] .-....-o(22)

i= 1' 2..o-| a

As an illustrative example, consider the design of an ll-
element center symmetric linear array with half-wave interele-
ment spacing, (Fige. (1)) The desired pattern is a sector beanm
defined by:

.5 \< u <005

Pd =1
= 0 |‘|>O¢5 000-0000(23)

such a pattern is of special importance in some applications
such as navigational radars and warning approach systems.

The aperator equation (1) relating the field pattern and
the current takes the form:

4
P = FI1 = Zz' In'\(n = Io + 2 ZE: I. cos AT ....(24)

n m=]

i.o..’\ﬂl = €n cos aWu, €

1]
—
|
)
©

2 n‘) 0
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Two error criteria have been considered: the mean square or
Gaussian error, wvhere approximation is carried eut accerding to
the /P I, norm, and the error criterion correspondiag to the
sobolev form ﬁP "ﬁ. In each case, calculatiens have been made
for the following weighting fumnctions:

(1 ) a constant wiu) =1 -1 < ug 1l
(i1) a8 staircase function w(u) = 1 [u| 0.5

=z 2 0.5 <|ll|<1

The latter is used to emphasize errors in the sidelebe region.

The exclitation currents in each case are obtained by solving
the pertinent system of linear equations:

21 =B ord I =3B, The elements of the corresponding aatri-
ces are scalar pgoducts comprising integrals of products of tri-
gonometric functions and are easily computed. With a welighting
function equal to a constant,, the computation is further simpli-
fied, since the functionssﬂyhs nﬁ imyglforl orthogoni]l gets with
respect to the norms “P|| ﬁP| g ¢+ The matrices A, B, A , Bg
are diagonal. In case szmean square error criterion, the excita-
tion currents have & simple interpretation,they are the coeffici-
ents of the Fourier - Cosine expansion of the desired pattern.
This interpretation is true only for the special case of half-wave
interelement spacing and constant weighting function. 4lso, it
is worthnoting that for this particular case the approximations
according to || P | and “Plfs norms coincide. Thus, the following
relations can be %asily proved:

-~

AS=EA' ’ ‘QB:CB 00003000(25)

where C is a diagona)l matrix defined by;

-~

¢ = [e. ] | creveees(26)

¢, ;= 0 1 £33
1

=I+ Ezi 1271— i:J:O’ 1,....-,!1

It then follows that the systems Al = B and A I = Bg are equi-
valent. Hence the two methods of approximation give identica]l
results. This is an important property of the Fourier expansion:
the series expansion not only approximates the givem function in
the mean square sense, but als50 the derivative of the expansion

is close to the derivative of this function in the same sense[20).
This property gives the Fourier expansion method some advantage
over other synthesis techmniques.
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For th her choice of the weighting functions, the two norms

[p 1|, and [Ip I. are not topelogically equivalent and the two 'met=
hods Bf approximation yleld different results as shown from curves
s,d en Pige(2)s The gaussian error oriterion provides & better
natch between the &mplitudes of the desired and synthesized pattie-~
ras, while the sobolev norm results in & better match between their
lerivatives, In both cases, there is a genera)l agreement between
ihe desired pattern and the approximate one, but the quality of
appreximation is not the same over the whole interval. This is
because the error criteria used are average error meiasures: they

no not specify the excursionm of the approximation fumctien at any
nrbitrary point. The quality of approximation is degraded near

tthe discontinuity of the desired pattern, there relatively large
nscillations are observed (Gibbs - phenomenon). The use of &
weighting function results in some improvement, near the discon-
hinudty, but at the expense of larger deviation in other parts of
Lhe interval as seen by comphring curves b, o of Pig. (2).

In some applications, it is necessary to limit the maximum
nxcursion of the approximating function from the desired pattern.
'his can be done by using & Chebyshev=type error criterion., 1In a
recent publication, howsver, it has been shown that such an appro-
ximation can be achieved through a series of weighted least square
spproximations [21] « The methods of the present work would be
wseful in this context.

111=- VARIATIONAL FORHULATIOK

In the previous section it has been shown that the functional
HPI - Pdﬂ has & unigque absolute minimum. PFrom the point of vievw
~»f realization, however, ye are not as much interested in minimiz-

ing the absolute error ([FI = Pd a8 in determining that axcitation
| sueh that the performance 1 will not deteriorate if))1lis subje-
1ted t0 small randoms errors. In other words, we may accept more
wrror, if necessary, in order to reduce the sensitivity of the
.esign to an acceptable level.

A measure of the array sensitivity to_random errors is the
«orm I of the excitation current [13. 23]. The synthesis problem
18y then be restated as follows.

Given the geometry of the array, the desired field pattern
“d' and the allowable deviation E of the synthesized pattern P
1rom Pd.'

Ip-pyll =P ~p Il <E cerensas(27)

it is required to determine the excitation current I having
+.inimum norm which satisfy requirement (27).
o solve this variational problem, we have to minimize the funct-
ional 2 - 2 '

H(I) = ”Il, + d.,lFI - Pd.” -.......(28)
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where oK is a positive Lagrangian multiplier. By the r.ciprocity
theorem of the calculus of variation, minimizing the functiona] M
is equivalent to minimiszing the functional:

H(I) =°<[i I'Ia + ,I}I - Pd”2 .'......-(29)

Minimization of such a functional i3 the basis of the regu-
larization method suggested by Tikhonov TlB] for solving impro-
perlyposed problems of mathematical physics, in which the guest-
ion of stability and sensitivity are an issue,

In addition to keeping I & minimum, we m&y have some further
requirements, Thus, we may specify the field in certain directio=
ns by equalities of the form:

i‘mI = P (un) = l onooa-.-(}O)
%OI = P ('I.l.o) =0 o-nc-oco(Bl)

wvhere up defines the main beam direction and u_the null of the
main beam. The first equality is a nornalizatgon constraint
while the latter specifies the main beam width-*

The problem then is to minimize hIHa over the set:

-~

s {1: II}I-—PdHZ.gE, i‘n1=1. F°1=o} eee(32)

The functional M{I) now takes the form:
e 2 - -
M@ oz 2 s flrr-p 20 pF Tep T o...G3)

where ﬁl and pz are additional Lagrangian multipliers.

Note that minimization of the norm [ I| 2 not only improves
the sensitivity of the array but also minimizes the ohmic losses
in the radiators and, therefore, improves the gain of the ante~-
nna.

In appendix, it is proved that the set 8 is closed and con-
vex. Al80, it can be easily shown that the functiom £(I)= |l IJ| 2
is strongly convex and twice continuously differentiable It
follows that this function has & unique minimum in 3 [24T .
This proves the existence and uniqueness of solution of the syn-
thesis problem in the present formulation. According to Lagrange
multiplier rule (Kubhn-Tucker theorem), this minimum is obtained
by writing that the differentia]l of the functional N given by
equation (33) with respect to I is zero.

From equation (12) of the previous section, weé have:
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A“r: S USRI ¢ S A 5 S A JOPY¢ Ll 5 Pys BI) oun.(34)

Also, from equations (30), (31) and tbe definition of the opera-
tor F in equation (2), we get

Brm: = A (I, '\Vn) = (I « &I, "‘yn)'(lo ’\V.)
= ( &I' ’\r/m) 000000000(35)

and, similarly
AAFOI - A(I. ’\Vo) - (A I.‘\Vo) ooooo-oon(js)

where h{m denotes the value ofny at u = u
main beam, and © the value of‘qlat u =
bhe desired pattern. 2

Finally, the differential of I is given by

the direction of the
o ™ the first null of

m
u
AlITIR = ACIAL) = (AL, I) + (I,51) cernesese(37)

From equations (33) = (37), we get:

~

FI -7 p o Y s By ®

s, + PRI -F R s p gty B, NAS SERNC 1

AM =(AI| °<1 + F*

The unknown nmultipliers ﬁ ' in equation (38) differ from the
corresponding ones in aqultio% (33) by a factor of 0.5, which is
not important at present. For M to be extremum, A M should be
zero for any small oI, and from equation (38) this implies,

=1 + P* ¥1 - F* P, + ﬂll\f/m-r/ﬁa/\j/o =0 .....(39)

This is the genera)l operator equation determining the optimum
excitation current. From the discusgiops of the previous section,
the explicit forms of the operators ¥* F and ®* depend on the
particular norm according to which the synthesized pattern shou-
1d approximate the desired one. For approximation in the mean

§2u§re (guassion) error sense, we see from equation (17) that

F* F is the sgquare matrix A given by:

1 = [(«Vi,rwfj)] 19 % lye00ey 0 (equation 17)

and from equation (15), T P,y is the column matrix:

T ) P e
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The operator equation (39) now takes the form

(x?l + ) I 4 (31 /\r‘m + PZ PlJO s B vesesses(40)

where T 18 the unit matrix.
The soluti?n of tho linear system (40) is obtained as follows.

Let 1€0),1{1), 1(2) be respectively, the solutioms of the systems
(D(U'i' A) I = 3 » oooooooo("l'l)
(0(% +* A) I = _Yl .0...0.0(42)
and - a °
(O(U +* A) I = -h’/ 00000000(43)

Then the solution to (40) is
I = I(o) L ] /31 I(1> +* /Bz Iﬁ) 0000.-.0(44)

Accrodingly, the following procedure may be used for solv~
ing the system (40):

i) Assume a suitable value for the rogularinlttz parapgter «.

11) Solve the systeams (41) - (43) te got I 1)and 1Q2)

i11) Substitute these values in (44) to get & iﬁhﬂnﬂuﬂ of the
Lagrangion multipliers Fl andpzo

iv) 4pply the boundary conditions

P(U

n
-

(equation Wy

'Y
u) = (L™
and

P(U

Uo) = (I, nyo) = 0 (equation 31)

to determine Pl and ﬂa and, consequently, the optimum excitat-
ion current I.

The cholce of o depends on the allowable overall deviation
the synthosizod pattern from the desired one, 1.e¢. on B =
IFI - P4llR, However, the relation B -oX is not linear, as seen

from the nunorical results in the next section., Therefore one
may at first assume some trisal values for ¢(, solve the system
(40) for these values, determine the error E in each case, &nd
then apply &n interpolation method to get the pertinent the value
of KO
1v- HUHIRICAI. RESUI.ES

The technique described above has been applied to a number
of example problems. Fig.(3) shows a sector beam pattern syn-
thesized using 9~ element array with halfwave interelement spacing
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Fig. (4) shows the same pattern produced by a similar array, .but
having & quarter - wavelength interelement spacing. Different
values of the regularization parameter o have been considered.
The excitation currents in each case are indicated on the corre-
spending figure., For o{ = O, these currents are much larger than
for other values, especially in the case of quarter-wavelength
spacing. There, the currents in the innermost elements are exce-
ssively large and much larger than the currenta in the elements
near the ends of the array. Such unequal loading of the array
elements diminishes its electrical reliability and is not recom=-
mended in any practical design. Als0o, the high degres of taper-
ing in the current distridbution over the operature results in an
increased superdirectivity ratio and & correaponding decrease in
antenn® gain, The phenomenon is less troublesome in array having
half wavelepgth interelement spacing. A similar remark has been
nade 1in [15 e« It i8 Been from the results on Fig.(3) and Fig.(4)
that, itroducing & small regularizatien parameter decreises the
norm of the excitation current lIﬂ y &nd, therefore, decroases the
sensitivity of the array to comstructioa errors. Also, the tape-
ring of the aperture distribution is reduced, which improves the
supordirectivity of the array, However, as seen from Fig. (4),
this is done at the expense of increasing the deviation the(error
B) of the synthesised pattern from the desired one. The curve

on this figure shows that E increases mopotonically with o<,
Therefore, one have to strike a compromise, accept more error B
but roduco[lIl and consequently, the senslitivity to comstruction
error to an acceptable level. This can be done by comnstructing

a plot of [[I]| and E as function of & as. in Fige (5), and then
choosing an optimum value for o

The value of E corresponding toxX= O is the minimum attain-
able error for an array of given length and number of elements.
This valuwe indicates the limiting casse.

In the above examples the synthesized pattern is not const-
rained to have & definite main beam width. Therefore, ﬁiz was
set equal to zero in equation (40),

If, however, the main beam width is specified rigorously,
then we may follow the steps indicated in section III to synthe-
size the required array., This is the case 0f the example in
Fig.(5). The object of this example is to design an array, hav-
ing side lobe level as low as possible, and whose main beam has
a width between nulls equal to 60° and is broader than that
produced by & chebyshev array of the same length as the designed
one. The desired pattern is synthesized using & center symmetric
linear array of 9- elements as in Fig. (1). To facililate compu=~
tations, the specified pattern has been expressed an alytically
bys

P

n
=

||Ull < 5 (equation 29)

Jol > .5

U° = .5 (equation 31)

d

L]
o
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As seen from Fig. (5), the above reguiremenis ahave been
acheived, but at the expense of a side l1obe level higher than
that of the chebyshev array.

V=~ CONCLUBION

The above analysis and numerical examples show that the
variational method presented in this paper is a4 powerful and
useful tool in the synthesis of linear arrays. The regulari-
gation technique involved in the method ensures the insensiti-
vity of the synthesized array to design errors.
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APPENDI X
To prove that the set 8 is closed and convex
The gset S is defined by
s={1:F1=1,FI=0 FI~p ¢ n? ceease(l)

wvhere I are points in the n-dimensional space of excitation
current F is 3 linear continuous operator defined by:

Fl= (1, ¥y =2 1, Y, (u) (equation 2)
m
?mx = (I, (u)), (equation (30))
FI= (1, qV(uo)). (equation(31»

and u_, u_ -~ refer to the main beam &and first zero of the
pattern, respectively.

« Consider a sequence of points of S:Il, Iz. In,.... and let
I” be a 1imit point of this sequence. This implies that for any
€ > 0, there exists a positive integer m such that for all iante-

gers n m, the inequality |I"‘ - 10 ?Eis true. We shall prove
that I'€.S.

»

Let FmI‘ = a, then

ja -1 = [F I PI% = |F aF - 1Y)

£ CEL YD & Iyt

‘Taking the limit, we see that 1¥F la-1| = O and hence 8 = 1, i.e.

PmI‘= l 0.00-.(2)

In the same way, it can be shown that
. K
F I =0 ceeess(3)

To prove that I* satisfies the third requirement im definition
(1), we make use of the inequality

["31”' "za”] < ey - 32”

valid for any two elements %, and 2, of a Hilbert space.
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Let ,[}I‘ - Pd” = A"’ % oooo?o(ﬁh)
we bhave .

€, < \ LA N B L N |\g|ﬁ'1" - ?1‘1'

- 3 n
=[lr (1% -1 )f[ L€ ”«,/f!
Taking the limit, we see that;
61 <° ......(5)
Substituting into (4), we get
o
" FI - Pd” \<A ......(6)
From (2), (3) and (6) we see that the limit point 1¥ of the
given sequence satisfy all requirements of the definition (1)
and hence belongs to the set S, This proves closeness of this

set, To prove convexity of S, take any two points I_and I
of 8 and consider the point n B

1 =t1n+ (1 - t) Il O\<t\<1 seeese(T)

By definition, 8 i8 convex if I S. This fact follows from:

rl(t In + (1 - ¢) In) t P I 4+ (1-%) rlll

m n
=t ¢+ 1=t =z ] oo.---(B)
P61, + (1=%)1) =¢tFI & (1=%) ?oll
= 0 0000-0(9)
1% (s 1+ -8) 1_ = Pl

=ll'i't1n-tpd+}(1-t) 1;-(1-t) Pd”

<% \l'fr 1 - P, lf +(1=%) ’li:l - »,|
\s tA + (l-t)A = A 000000(10)

From (7) tkrough (10) we sea that I satisfies all requirements of
S and hence belongs to it. Thus, the 8 it convex,
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