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C. 136 Youssef Agag

NODAL LINE FINITE DIFFERENCE METHOD POR THE ANALYSIS OF
ELASTIC PLATES WITH TWO OPFOSITE SIMPLY SUPPORTED ENDS

BY
DR, ENG. YOUSSEF AGAG =

IRTRODUCTION

The analytical solutions of two and three dimensional structural
problems with series expansion are restricted for special cases
of loading and edge conditions. Alternative approaches for the
sovlution of many cases of loading and edge conditions using of
numerical solution are available. There have been a cocnsiderable
number of studies aimed at clarifying the mathematical bases for
the numerical methods and their applications in solving the str-
uctural problems.

The finite difference method is considered as one of the earlie-
8t numerical methods, which is successfully used for the analy-
8is of certain class of structural problems. This method has the
disadvantage that the resulting matrix has a relatively large
B8ize and does not have the nice property of banded matrices. An-
other numerical approach named the finite element method has be-
come a wide spread and convenient solution technique for a wide
range of complex structures. The finite element method, while
powerful and versatile, has its drawbacks since a large number
of simultaneous algebric equations have to be solved.

A development of the finite element method is the finite strip
method, 1n which the actual structure is idealized into strips
connected at nodal lines, while the two ends of all the strips
Join. together to form the two opposite boundaries of the domain.
The first paper on the finite strip method was presented by
CHEUNG (11 on plate bending problems using a simply supported
rectangular strips. This was subsequently generalized by CHEUNG
[Z,3] to include other end conditions. The displacement function
of the strip is expressed as a product of a pelynomial function
across the width of the strip and a series function in the long-
itudenal direction. These series should satisfy a pricre the
boundary conditions at +the ends of the strip. The most common
series used are the basic functions which are derived from the
golution of beam vibration differential equation. These basic
functions have been worked out explicitly by VLAZOV [41 for the
various end conditions.

This paper presents the formulation of a new semi analytical me-
thod named "nodal line finite difference method" (N.L.P.D). This
method is similar to that of the finite strip method eince both
uses the same basic functions in the form of continious differe-
ntiable series in one direction. As a result a two dimensional
problem reduces to a one dimensional one. The basic functions
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ple finite difference approach in the other direction. The pres-
ent approach has an advantage over the finite 8trip method,since
the number of the unknown parameters along a nodal line is equal
to the number of terms used in the basic function, and this is
greatly less than that of the finite strip method.

The proposed technique is used to analyze a gimple case of igsot-
ropic rectangular plates with two opposite simply supported en-
ds. The results obtained are in very close agreement with those
of the same conditions worked out by TIMOSHENKO [5]. The method
can also be extended to include other material properties and
other combinations of boundary conditions.

METHOD OF ANALYSIS

a - Nodal line finite difference equation

The solution of plate bending problems using the proposed techn-
ique, requires the division of the plate into a mesh of parallel
nodal lines in one direction as shown in Fig.1. The displacement
function at each nodal line of the mesh isg expressgsed age a summa-
tion of the basic function terms fitting the boundary conditions
at the two opposite ends of the nodal line multiplied by nodal
parameters. These parameters are assumed as functions of single

A ¥
8imply supported
any boundary
condition
k-2 k-1 k k+1 k+2 a
mash of
nodal lines | . -
AX|  AXlAX| Aax
e
Fig. 1. J | _L_;
simply supported X
¥ 4
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The derivatiorn of the nodal line finite difference equation of
the plate bending problems starts from the differential equation
of the plate. The partial differential equation for the deflect-
ion surface of the elastic isotropic plates 1s governed by

wou- + 2 w.-ﬂ' + wﬂﬂ = g (1)
: B
Y = A . 2
where ( } = Fy-B () 53 and
B is the bending stiffneas of the plate
3 . Bt
12(1=v¥9)

The displacement function at any nodal line k (Fig. 1) is propo-
sed in a series form as

wk = Zr fm.,k("x)' Ym(F) (2)

me1

For the case of plates with two opposite 8imply supported ends,
the basic function 1s a trigonometric series in the form

mw
Ym(y) = s8in - y = ain,um ¥

(3)
Substitution of equation €2) into equation (1) gives
r “nae e 2 Ay qk
Z U Ip + 260 ¥+ £ ¥ = f
v vena 2 e &4 . QK
_H% [f % -2 e S Ao, 1 Binag y = (4)

Applied loads must also be resolved into series similar to the
displacement function

r )
G = Z, 9,k BlnAg y (5)

By substituting equation (5) into equation (4), we get

*

r 5 2 .. 4f ] = 1
r Lt - 2 AT Jk T A m,k ° T F 534 %m,k

m=A4 m,k m

(6)

For each term of the basic function, the fellowing relation can
be written

. 2 .. 4
fm,k -2 jimfm,k + /Amfm,k * B m,k (7)
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By applying the central finite difference technique in the x di-
rection, we get

fmlﬁ;z fml571 fm;j/ me§;1 fm:ﬁ;z
Sz A S S A
fo = L 0 0 1 0 0 1
1
o =m0 1 -2 1 o 1 ) (8)
[T X 1
fm,k =azxe U] -4 6 -4 1 I

ﬁhere ax 1ls a constant distance between the nodal lines in the
X direction.

subistituting equation (8) into equation (7) gives
1

a2 2 4 2
a1 -(4+2wy)  (6+ay +b)  —(4+2v)) 124F | 5 S
| _
fo,x fm,x+1 Tmke2d = 5%,k (9)
where "Pm'“'aygl’ﬂm&x ’>‘=Z§‘i

Bquation (9) can be rewritten as

1 2 1
£ Cm cm Cm 11{fm,k—2 fm,k-1 fm,k fm,k+1 fm,k+1}

a*
= B x% m,k (10)

Equation (10} represents the central nodal line finite differen-
ce equation in a matrix form.

Application of equation (10} at each nodal line of +the plate
gives

where ES]m is a square matrix,
{f}m is the vector of the unknown nodal line parameters

and {P}m is the load vector.
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The resulting square matrix [S)
(MxM} having a band width e
er of the nodal lines,.
matrix can bhe stored
sions (Mx5). As a result of tha
blem is drastically reduced.

m

t,

b - Internal forces

For an elastic isotropic plate,
length at any point are given by
M_ =~-B(w + vau?)
= =B 7 e W)
M, (w W)
- i : o/
Mxy = B {1-v) w
Qx = -B{w" + w)
Qp =-B Cwe' + wi)

Once the displacement function at
(equation (2)),
internal forces.
nique in the x direction,
line k can be written as

the

it is a relatively simple matter to
By applying the central finite difference tech-

is a band matrix of dimensions

qual to 5, Where M equal to the numb-
When eliminating the zero elements, this
in 8 reduced rectangular matrix of dimen-

the execution time of the pro-

the internal forces per unit

(12)

J

each nodal 1line ig available

obtain the

internal forces at each nodal

_ B)\z r 2 . -
Mx,k _—'“EEEE.[ fm’k_1—(2+v9h)fm,k+ fm,k+11 Bin A¢ y
M =_.§§i25 [¥f -(2v+w2)f +yf 1 gin A4
Y,k az oo, m,k-1 m’ " m,k m,k+1 m”
B>‘2 r P
Mxy,k= '?ETG1"'V)3; 4 [_fm,k-1+ fm,k+1] €o8 Y
P (13)
BX << ' 2, 2
Qx,k == ZESEE.t'fm,k—2+(2+%m)fm,k-1_(2+q%)fm,k+1
+ fm,k+2J Bln'qmy
BN & 2
Qy,k ="""E's"E,wm[fm,k-1-(2+Wm)fm,k+fm,k+1 1 cos ALy )
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¢ - Boundary conditions

The proposed technique requires the application of the central
nodal line finite difference equation at each nodal line of the
plate. This equation can be used for all nodal lines withen the
plate including the edge nodal lines. BEach edge central nodal
line finite difference equation will introduce two additional
exterior nodal lines. According to the prescribed boundary cond-
itions, the parameters of the exterior —nodal lines have to be
defined in terma of parameters of the edge and the two adjacent
nodal lines. Thus the parameters of the exterior nodal lines can
be written in the following forms.

| 1
Exterior .r_f > L
nodal lines \ l &

]

: ; Interior
Edge l e < <+—nodal lines
nodal line L j_ Fig. 2.

1 - Simply supported egde [ w, =0 , (w" +wfw”)k= 0 1

frrl,k =0
Pmyx-1 = = T ke (14)
Tn,k-2 = = T k42
2 - Clamped edge I w, =0 , wi{ =0 1
fm,k = 0
fm,k~1 fm,k+1 (15)
3 - Free edge ([ ( w'" + v w”}k =0 , {ws (2-v) w”’}k = 01
fm,k + 0 1
fm,k—‘l = §“lfm,k - fm,k+‘l (16)
fm,k-2 =‘S‘I%fm,l{_ 2-g;-zf1n,‘k«¢-1 * fm,k+2 j
where

2 2,
T o= (2+Vwm) y Sp= E2+(2-v)tpm1
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NUMERICAL EXAMPLES

To demonstrate the accuracy of the nodal line finite difference
method presented herein,the solution of some plate bending prob-
lems has been carried out. The proposed solution technique is
applied to plates with two .opposite eimply supported ends “and
any combination of boundary conditions on the other two sides.
The study is restricted to the elastic isotropic plates with
constant thickness under symmetrical types of loading.

Study of convergence of the proposed method for a square plate
under uniform distributed load has been achieved. The boundary
conditions, for this case is illustrated in Figs.3.a and b. The
obtained results are summarized in Tables 1 and 2. The study
illustrates the effect of both number of terms used in the bagic
function and the mesh interval A x on the convergence of the
mathod.

Tables 3,4,5 and 6 include the results obtained from the analys-
is of rectangular plates with different ratios of rectangularity
¢/a under a uniform distributed load. As far as the: loading is
concerned, types of loading other than uniform distributed are

In the above mentioned examplea,only odd terms contribute to the
results, because of symmetry of loading along +the nodal line
direction. The results obtained demonstrate the high accuracy
and the rapid convergence of the proposed method.

- A B A B
a (a) 4 i (b}
. f
C Vi D C D
A B A B
H
]
]
i
(c) L (d)
i
i
]
J
C D C o

———as simply Bupported
Fig. 3. wezirsraii  ¢lamped
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Table 1. Study of convergence. Square plate 8imply supported
on four sldes subjected to uniform distributed load

of intensity q. Pig.3-a, v = 0,3
I' ax [ mo of Central Central Central
terms Deflection Mx Ny
1 41.0868 4.9130 5.1640
2 40,5821 4.7580 4.7096
3 40,6238 4.7892 4.8124
4 40.6160 4.7779 4.7748
b 40.6174 4.7803 4.7828
7 40.6178 4.7820 4.7887
8 40,6176 4.7809 4.7849
9 40.6177 4.7817 4,7875
10 40.6176 4.7811 4,7856
! 41,0919 4.9184 4,1661
2 40.5867 4.7634 4.7112
3 40.6283 4.7946 4.8141
4 40,6205 4.7833 4,7765
: ) 40.621¢ 4,7857 4.7845
! 7 40,6223 4.7875 4.7903
s 8 40,6221 4,7863 4.,7865
' 9 40,6222 4.78T1 4.7891
10 40.6222 4.7866 4.7873
Exact [5] 40.60 4.79 4.79
| Multiplier 107 .q.a%/B | 1072.4.a2 1072, q.a°
| —

Table 2. Study of convergencs,
and BD, eimply supported on the two other sides subjected
to uniform distributed load of intemsity q.Fig.3-b, vy a0.3

Squars plate

clamped on

8idma AC

Aax No of Central Central Central Mx =at
terme Deflection Mx My Middle of AC
1 13,9368 3.4666 2.8305 ~7.2849
2 19.4528 3.3067 2.3914 -6.8562
: 3 19,4944 3.31380 2.4940 ~6.9351
! 4 19.4866 3.3267 2.4564 -6.9117
: €/20 5 19.4888 3.3320 2.4741 -6.3205
: 6 19.4880 3.3291 2.4644 -6.9166
: T 19.4884 3.3309 2.4703 -6.9185
! 8 19,4882 3.3297 2.4665 -6.9175
i 9 19.4883 3.330% 2.4691 -6.9181
! ;10 19.4882 3.3300 2.4672 -6.9177
; 1 19.6990 3.4627 2.8080 -7.3582
! 2 19,2189 3.3024 2.3694 ~6.8947
: 3 19.2574 3.3337 2.4721 -6.9905
4 19.2496 3.3224 2.4345 ~6.9579
£/40 5 19.2519 3.3277 2.4522 -6.9720
6 19,2510 3.3248 2.4425 -6.9650
7 19.2514. 3.3266 2.4484 -6.9688
8 19,2512 3.3254 2.4445% ~6.9666
9§ 19,2512 3.3262 2.4472 -6.9679
_ 10 19.2513 3.3257 2.4453 -6.9671
I I
I Exact (%) 19.20 3.32 2.44 -6.97
Multiplier 10"4.q.a4/B 10"2.q.a2 10-2.q.a 10“2.q.a2

143
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Table 3. Analyals of rectangular platea simply supported on four
sides subjected to uniform distributed load of intensity q

Fig.3-a , ax=f/40, No of terms=7, v = 0.3
[ 4/a Central Central Central
Deflection Mx My
i 1.0 40.6223 4.7875 4.7503 N.L.F.D
40,60 4.79 4.79 Exact [5]
1.1 48,6852 4.9304 5.5498 R.L.F.D
48,50 4.93 5.54 BExact [5]
1.2 56.4974 5.0067 6.2692 N.L.F.D
[ 56.40 5.01 6.27 Exact [5]
| 1.3 63.9104 5.0323 6.9392 N.L.P.D
i 63.80 5.03 6.94 Exact 15]
1.4 70,8333 5.0208 7.5552 N.L.F.D
70.50 5.02 T.55 Exact [5]
1.5 77,2201 4.9830 8.1159 N.L.F.D
77.20 4.98 8.12 Exact [51
2.0 101.2487 4.6347 10,1649 N.L.F.D
101,30 4.64 10.17 Exact [5;
3.0 122.,280%9 4.0640 11.8843 N.L.P.D
122.30 4.06 t1.89 Exact [51 .
4.0 128.1533 3.8432 12.3454 N.L.F.D
128,20 3.84 12.35 Exact [5]
Wultiplier 10"4.q.a4/B 10"2.q.a2 10-2.q.a2

Table 4, Analysis of rectangular rlates clamped on sides AC and BD, siwmply
supported .on the two other sides subjected to uniform distributed
load of intensity q. Pig.3-b, ax=£&/40, No of terms=7, ¥ = 0.3

[ £/a Central Central Central My at
; Deflsction Mx My Middle of AC
i 1.0 19.2514 3.3266 2.4484 -6.9688 N.L.F.D
: 19,20 3.32 2.44 ~6.97 Exact [5]
1.1 25.3779 3.6967 3.0972 -7.8548 N.L.F.D
25,10 3.7 3.07 -7.87 Exact [5]
1.2 32.0624 4.0086 3.7825 -8.6487 K.L.F.D
31.90 4.00 3.76 -B.E8 Exact I51
1.3 39.0969 4,2600 4.4839 -9.3418 K.L.P.D
38.80 4.26 4.46 -G.38 Exact [5]
1.4 46.2784 4,453 5.1829 -9.9333 N.L.FP.D
| 46.00 4,48 5.14 -9.98 Exact [5]
! 1.5 53.425%3 4,5926 5.8639 -10.4280 N.L.P.D
! 53.10 4.60 5.85 -10.49 Exact [51
2.0 84.6182 4.7314 8.7025 -11,7892 N.L.F.D
84.40 4.74 8.69 -11.91 Bxact [5)
3.0 116.8937 4.2090 11.4439 -12.1804 N.L.F.D
116.80 4.19 11.44 ~12,46 Bxact (51
Multiplier 107%.q.a%/8 | 1072.q.a%] 1072.q.4%] 1072.q.a2
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Table 5. Analyeis of rectangular plates clamped on side BD and aimply supp=
orted on the other three sides aubjected to uniform distributed

load of intensity q. Pig.3~c, a=#/40, No of terms=7 v = 0.3
h”"mé7;_‘ Central Central Caentral ¥Mx at
Deflection Mx My Middle of BD

2.0 92.7700 4.6840 95.4203 -12.0280 N.L.F.D
93,00 4.70 9.40 -12.20 Exact [5)

1.5 64.5309 4.7748 6.9149 -11.1473 N.L.F.D
654.00 4.80 6.90 -11.20 Exact [5]

1.4 57.530 4,7133 -b.2698 -10,795%1 N.L.F.D
58.00 4.70 6.130 -10,90 exact [5]

: 1.3 50,2124 4.6061 5.5836 -10.3538 N.L.P.D
? 50,00 4.50 5.60 =-10.40 Bxact [5]

[ 1.2 42.7098 4.4437 4.8657 -9.8093 N.L.P.D
! 43,00 4.40 4.90 ~9,80 Bxact [51

5 1.1 35.2005 4.2170 4.1301 -9.1489 N.L.F.D
35.00 4,20 4,10 -9,20 Exact [5]

1.0 2709074 309189 3-395? -8.3643 N-L-FoD
28.00 3.90 3.40 -8.40 Exact I5]

1/1.1 31,7401 4.3355 3.32%56 -9,1263 N.L.F.D
. 32.00 4.730 3.30 -9.20 Exact I5]

1/1.13 38.0115 4.9889 3.1050 ~10, 3038 K.L.F.D
38.00 5.00 3.10 =-10.30 Exact (5]

! 1/1.% 42,5938 5.4423 2.8577 -11,1076 N.L.F.D
i 42.00 5.40 2.80 -11,10 Exact I5]

g 1/2.0 48.9088 6.,0212 2.3608 -12.1128 N.L.F.D
‘ 49.00 6.00 2.30 -12.20 Exset I5]

(ltiplier 107%.q.14/8] 1072.q.12 | 1072.q.12 | 1072.4.12

L is the pmallest value of Zand a

Table 6. Analysis of rectangular plates free on side BD and simply supported

on the other three sides subjected to uniform diatributed load of
intenaity q. Pig.3-d, Aax=f/40, HNo of terms=7 v = 0.3
| /a Max. Max. Central Central
g Deflection My My Mx
i
L1172 70.9325 6.0175 3.8506 2.2327 N.L.F.D
71.00 6.00 3.90 2.20 Exact [51]
2/3 96.7861 8.3262 5.5127 3.0233 N.L.P.D
96.80 8.30 5.50 3.00 Exact [5]
S VA 109.1829 9.4370 6.3942 3.3830 N.L.P.D
; 109.20 9.40 6.40 3.40 Bxact (5]
L1/ 122.1195 10,5976 7.4183 3.7365 N.L.F.D
123.20 10,70 7.40 3.70 Exact [51
1.0 128.5015 11.1705 7.9869 3.8976 N.L,F.D
i 128.60 11,20 8.00 3.90 Exact [5]
5 1.1 134.0327 11,6672 8.5353 4.0254 K.L.F.D
; 134,10 11.70 8.50 4.00 Exact [5]
; 1.3 141.6098 12.3477 9.4333 4.1683 N.L.P.D
141,70 12,40 9.40 4.20 Exact {5)
1.5 146 .0688 12.7483 10.1242 4,2133 §,L.P,D
146.20 12,80 10.10 4.20 Exact (5]
2.0 150.6418 13.1593 11.2482 4,141 N.L.F.D
150.70 13.20 11,30 4,10 Exmet [5)
Multiplier 10-4.q.a4/B1 10“2.q.a2 10“2.q.32 10_2.q a2
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Table 7. Central deflection of square plate simply eupported on four
sides subjected to uniform distributed central patch lcad of
breadth ax and intensity Qo.Fig.4,ax=0/40,N0 of terms=7,v=0.3

P=gq.P8 = Qpg.&5%, Pa

Central
£ Deflection a -
—~+ax

1,00 67.4904 A iF B

0.90 74.1652 - H

0.80 80.6639 )

0.70 86.9535 § . =

0.60 92,9461 3 £

0.50 98.5222 3 H

0.40 103.7 R =
! 0.30 108.3473 8 —1— 8N — fa H gt
| 0.20 112,2017 N s
L o.10 115,3573 8 =

0.05 115.7702 3 H

0.04 115.86T1 N R

0.02 115.9975 [

.01 116,0304 ¢ | b

4 5 2 lea
Multiplier| 107 %.P.a“/B
Pig., 4

Table 8. Central deflection of rectangular plates 8imply supported
on -four sides subjected to central concentrated load P of
area {Aax,fa), §=0.01,Fig.4, Ax=£/40,No of termsa7, 0.3

i/a Central Deflection
N.L.P.D Exact 15)
! 19 116.0304 116.00
1.1 126.7417 126,50
1.2 135.6654 135.30
1.4 148,8684 148.40
,1’6 157.3188 ' 157.00
)-8 162,5735 162100
2.0 165.7946 165.10
| Multiplier 1074, F.02/8
CONCLUSION

A new semi analytical method for the analysis of plates in bend-
ing has been presented. The method permits the direct formulat-
ion of the problem, since it transforms the partial differential
equation into an ordinary differential one, in which the simple
approach of the finite difference method is applied, This method
is simple in concept, easy to program, requires minimal input
data, fairly small storage and short time for execution.

An analysis of elastic plates with two opposite simply supported
ends is presented in this paper. The results obtained demonstra-
te the high accuracy of the method. The basic idea of the method
can also be extended to problems for 1sotropic and orthotropic
plates with different boundary conditions.
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NOTATIOR

w = transverse deflection.

a = length of the nodal lines.

¢ = length or width of the plate.
AX = distance between the nodal lines.
B = modulus of elasticity.

t = thickness of the plate.

¥ = poisson’s ratio.

B = flexural rigidity.

fm,k = nodal line parameters.

Ym = basic function.

q = load intensity.

[S]rn = square band matrix.

ifi, = nodal line parameters vector.
{P}m = load vector.
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