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C. 8 YOUSSEF AGAG

THE NODAL LIKE FINITE DIFFERENCE METHOD WITH ITERATION
PROCEDURE IN THE ANALYSIS OF ELASTIC PLATES IN BENDING

BY
DR. ENG. YOUSSEP AGAG ®

IRTRODUCTION

The rigorous analysis of plate bending problems is limited to
relatively simple plate geometry, load and boundary conditions.
If these conditions are more complex, the analysis becomes inc-
reaeingly tedious and even impossible. In such cases numerical
methods are the available approaches that can be used. The econ~
omy of the sclution is an important factor to be comsider in se-
lecting the numerical method to be used in the analysias. While
the use of finite difference technique is very simple and the
method is quite general,it is characterized by slow convergence.
Furthermore, extremely fine mesh, and the resulting large number
of simultaneous equations may create round-off errors in comput-
er solutions and adversely affect the accuracy and economy of
the method. The finite element method as the most powerful and
versatile tool of solution in structursl analysis, is now well-
- known and established. This numerical method has the drawback
that it involves large number of simultaneous algebric equations
which has to be solved.

Therefore for certain class of problems, it 1s worthwhile to de-
velop simplified semi analytical methods, of which the finite
strip is one. The finite strip method was introduced by CHEUNG
[1] who used a trigonometric serles as a basic function in the
analysis of elastic plates with two opposite gimply supported
ends. These trigonometric series possess the valuable properties
0of orthogonality that lead to the uncoupling of the static equi~
librium equations. Basic functione other than trigonometric aer-
ies, are used by CHEUNG [2] to analyze plates with two opposite
edge conditions other than eimply supported. Unfortunatly, with
these basic functions the uncoupling property mentioned before
cannot occur. The auther [4,5] developed a simplified iteration
solution technique, in order to overcome the coupling property
which occurs when using basic functions other than trigonometric
series.

A newly developed semi analytical method named " The nodal line
finite difference method "(XN.L.F.D} was introduced by the auther
[6]1 in the analysis of elastic plates with two opposite gimply
supported ends., The basic functions which fitted the _boundary
conditions in one direction of the plate are used in this me thod
at a mesh of nodal lines in conjunction with simple finite diff-
erence approach in the other direction. This method is similar
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to that of the finite strip method since the same basic functio-
ng are used in each of them to express the displacement variat-
ion along the nodal lines. These basic functions, which are der-
ived from the solution of beam vibration differential equation,
have been worked out explicitly by VLAZOV i3] for the various
end conditions.

The object of the present work is to extend the application of
the nodal line finite difference method developed by the auther
[6] to include end conditions other than simply supported ends.
In order to overcome the coupling property of the equilibrium
difference equations, a simplified iteration solution technique
has been introduced. The basic idea of this iteration solution
is similar to that used by the auther (4,5) in the analysis of
plates by finite strip method. The proposed iteration technique
emphasises the role of the dominant terms of the equilibrium
nedal line finite difference equation. Accordingly each term of
the basic function can be solved individually as in the case of
trigonometric series.

The first iteration solution considers the original l16ad vector
and results 1n good approximate values for the unknown nodal
line parameters. These parameters can be utilized with the non
dominant terms of the equilibrium nodal line finite difference
equation to obiain the modified load vector of the plate. This
modified load vector can be used in the second iteration solut-
ion to give more improved values for the unknown nodal line par-
ameters. The same procedure is repeated in the subsegquent itera-
tion solution until the required accuracy is obtained. The iter-
~ation procedure presented herein is applied for the basic funct-
ion of the case of clamped - clamped edge condition. The results
obtained are in very closse agreement with those of the same con-
ditions worked out by TIMOSHENKO [71

METHOD OF ANALYSIS

& - Kodal line finite difference equation

In applying the nodal line finite difference method for the ana-
lysia of plate bending problems, we first divide the plate into
a mesh of fictitious nodal lines as shown in Fig.1. Aceording to
the boundary conditions of the two opposite ends perpendicular
to the nodal lines, a basic function expresses the displacement
variation along the nodal lines is to be chosen. The displace-
ment function at each nodal line is expressed as a summation of
the chosen basic function terms multiplied by a single variable
functions =as 2 nodal parameters. Therefore the two dimensional
plate bending problems are reduced to one dimenaional problems.

The bending problems of constant thickness isotropic plates have
been represented by the differential equetion derived from the
equllibrium condition of internal and external forces. This dif-
ferential equation has the following form
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The displacement function at any nodal line labelled k ( Fig.1 )
is proposed in a series form as follows

me s £y (1) Y (y) (2)

ms= 4

For the case of plates with two opposite clamped ends, the basic
function fitting the boundary conditions is expresged in the
form

Y. = ain‘gmy - sinh'ﬁmy - o{m(cos—gmy - cosh'gmyJ (3)
8ind_ - sinh A«
where b = ’(.ir.'i , ol = m m
m a m coijm - cosh;xm

/c'lm = 4073, 708532, 10.996’ 0-.'2_11:12_-'-1‘7_!.

The second and fourth derivatives of the basic function 1in the
y direction can be written as

174 2 K ity 4
p— 'ém Yo ’ Th = ﬁm n
where ' (4)
» &
Y, = - sin ‘ppmy - sinhgmy + c(m('cosﬁmy + coshﬁmy)l
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For the purpose of iteration procedure presented here,the second
derivative function Y must be resolved 1into a series of the
basic function Y

./ r

Ym = El an Yn (5)
where
for m=n = (- 2 ) |
Bmm czz ol Ad
m m” m
) (6)
4}4n
for m = n B = [1+(=1)"*M (A~ o)
mn Qﬁ(lig“ﬂ4g3 mn nm’ ]

Resolving the load into series similar to the basic function and
substituting equations (3) and (4) into equation (1) at any
nodal line labelled k leads to thls relation

L. ree ad fr 4 1 r
EE [fm Y +2'£m m, kim* +k fm 1Ty ='§'£§1qm,kYm (7)

Considering equations (5) and (6),equation (7) can be written as

ST orent Y a2 L2 (Z B Y )+#ir =1Z":q

mer My kim mt m,k mn-n m, kY m=1 M, kim

(8)

After rearrangement of the terms, equation (8) takes the form

= [f“" 2(Z'£2ﬁmnf;.k3+,gr?zfm,k] Y "1]3' Z, Y, k¥ (9)

m=!

For each term of the basic function, equation {(9) takes the form

no 2 LR] 4 - 1
2(2-,% nmfn,k+-£mfm’kl =5 Uk (10)

=

Equation (10) can be rewritten in the following form
no 2 Y 2 .- 2 .
2"; /emm m,k* —ﬁ- m k)+2(,§,'£n6nmfn,k"£’m Bmmfrn,k)]

1
B m,k (1)

By applying the central finite difference technique in the dire-
ctlion perpendicular to the nodal lines, equation (11) can be
written as

1 1 2 - 2
;:.x'l[{fm k- 2+cmfm k- 1+Cmfm k+c f‘m k+1 fm,k+2}+2{£|an8nm

(fn,k—1'2fn,k+fn,k+1)w,xanmm(fm,km‘I-zf Kkt m k+‘l)}]

1
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where C;l = - (4-2.8mmq1§’;)
2 2 4
Cm = (6-4 Bmmtpm+,l.pm)

*n a N = 2

k*)m" N * aHX

Ax= _%T is the constant interval betwaen
the nodal lines

After separation of +the dominant and the non-dominant terms,
equation (12} takes the form

1 2 1 4

a -
tfm,k-2+cmfm,k-1+cmfm,k+cmfm,k+1+fm,k+ZJ=E)\4qm,k-qm,k (13)

-

Where qm,k represents the non-dominant terms of the central
nodal line finite difference equation

,
- 2
I,k = 2 [E.l‘unﬁnm(fn,k-‘l _2fn,k+fn,k+1 )
2
+l{"m‘gr.um(fm,k—‘i"2frn,,ls:*'fm,lcﬂ)] (14)

The general form of equation (13) can be written as

1 2 1
n cm Cm Cm 1J{fm,k—2 fm,k—1 fm,k fm,k+1 fm,k+2}
4
1 B -
Ty kT g ) 09)

Equation (15) represents the central nodal line finite differ-
ence esquation in matrix form

e

In the first iteration solution, the non-dominant term 9n,k is
neglected., Accordingly, the central nodal 1line finite differe-
nce equation can bhe written as

1

[1 Cm m  Cm

114{f f f f

m, k-2 fm,k--1 m,k m,k+1 m,k+2}

at

= B>\1 qrn,k (16)

Application of equation (16} at each nodal line of the plate
gives uncoupled system of simultaneous algebric equations, which
can be written in the matrix form as follows

51, if3 = {le (17)
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where IST, is a square band matrix,

{f}. is the vector of the unknown nodal
line parameters,

and !P}m is the original load vector

Solution of equation (17) results in good approximate values for
the unknown nodal line parameters i{fip of each term of the basic
function. These parameters can be utilized to determine the non
dominant term gm,kx &t each nodal line and to obtain the modified
load vector. The modified load vector can be used in the second
iteration solution to give more improved values for the unknown
nodal parameters. The same procedure can be repeated in the sub-
sequent iteration solution. The general form of equation (17)
iakeg the form

(s1 if3, = 1B3, (18)

where {ﬁlm is the modified load vector

Due to the uncoupling property of the resulting difference equa-
tions, each term of the basic function can be solved individua-
11y such as that in the case of trigonometric series. Moreover,
the resulting sgquare matrix [SIlpm has the nice property of banded
matrices with small band width equal to 5. This matrix can be
atored in a reduced rectangular matrix of dimension (Mx5). Where
M is the number of the fictitious nodal 1lines. Thus requiring
small core storage and short computer time for execution.

b - Internal forces

The internal forces per unit length at any point of an elastic
igotropic plate are connected to the displacement through the
following relations

Mx=-B(w"+v.w”) 1

My = -B (w + yw’)

My, = = Mgy =B (1-v) w”/ ) (19)
aQ = -B (W )

q, = - B(w' + wt) ]

By applying the central nodal line finite difference technique,
the internal forces at any nodal line labelled k can be written
as the following
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BN 2% .
Mx,k T "EEEE;[ mem,k-T'(gym-)“#mym)fm,k+ mem,kﬂJ
M, . = -BXFE Ly (2 *Y'ye
¥,k ~ T Talmgm mm,k~-1" VYo m,k+mefm,k+1}

Mxy,k= - Myx,k= a (1'v)npfL#mymt_fm,k-1+fm,k+11

¢ (20)
_ B>\3 r 'R X/
'Qx,k - ?ﬁ% ['mem,k—2+(2Ym_LPmYmem,kJ
ry ¥/l
_(zym_tmem)fm,k+1+mem,k+2]
B }?‘JEE fn, 2Ry R E
Qy,k T hE?mm.Lﬂm mem,k-1+(LPmYm_ Ym)fm,k+ymfm,k+1] J

L 1 L 74

1 s
whera YB}:%_I;YHI ,Ym=%€ym ,Ym=2—§1¥m

¢ - Boundary conditions

Solution of the governing differential equation of the plate
bending problems by the nodal line finite difference method
requires propre finite difference representation of the bound-
ary conditions. Consequently, we replace the derivatives in the
expressions of various boundary conditions with the pertinent
finite difference expressions. When central finite difference
technique is used at the edge nodal line, +the introduction of
two fictitious nodal lines outside of the plate is " required,
According to the prescribed boundary conditions at the edge
nodal line, +the parameters of the exterior nodal lines have to
be expressed in terms of parameters of the edge and the two ad-
Jacent interior nodal lines. For each term of the basic func-
tion, the parameters of the exterior nodal lines are connected
to those of the edge and the interior nodal lines through the
following relations

1
3
1
+
i
9

_..!_.___Ir__,_rpm AL Ll , L -
o ' Tight edge

k=2 k-1 k k+1 k+2 ynodal lina

!

| 'right exterior

tnodal lines

left exterior
nodal lines

1

1

i

|
interior ;
nodal Ilnes i
F

:

1

— - > Ea o

L ECEF SRR N

left edge
nodal line

Y KO A A

_________

________
DI T O?
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1 -~ Simply supported [ we =0 ,

= 0

- fm,k+1

- fm,k+2

2 ~ Clamped edge [ ", =
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T
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fm,k-'2' =
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= 0

T, k1
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= 0

+ o

T, x4

fm,k+2

—

0

-

)

A - Free edge [ { w' + v w”)k =

The direct formulation of a free boundary condition w
a trigonometric series as a basic function has be

ved by the

tion 1in the case of bagic functions
series requires

author [6].

present work.

C.

{ w + v w” )k =01
P~
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| IO St

— ——
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|ax|az]ax

A X

(21)

(22)

€23)

"+ (2~ V) w’”}k =0 ]

hen using
en easly achie-
The treatment of the free boundary condi-
octher than trigonometric
further investigation not implemented in the
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NUMERICAL EXAMPLES

Two main factors have to be considered when dealing with any
iterative procedure, The first of which is the convergence crit-
eria, the second is the accuracy. In order to demonstrate the
convergence and the accuracy of the proposed technique presented
here, some selescted plate bending problems have been analized.
The atudy of convergence is carried out for square plates subj-
ected to uniform distributed loasd and having the boundary cond-
itions illustrated in Figs.3-a and 3-b. The gtudy deals with the
effect of both number of terms of +the basic function and the
mesh interval ax on the convergence of the proposed method. The
results obtained are summarized in tables 1 and 2

To check the accuracy of the proposed methed, analysis of recta-
ngular plates with different ratios of rectangularity has been
achieved., As far as the loading is concerned, uniform distribut-
ed and triangular load are congsidered. The results obtained from
the fourth iteration solution are presented in tables 3, 4, 5, 6
and 7. The analysis is carried out for seven terms of the basic
function and with Ax equal to £/40

Due to symmetry of loading in the nodal lines direction, only
odd terms of the basic function contribute to the results of the
above mentioned examples

o q

AY WTTITI T OO T WU IO IO

A B P

AL L LR LG Ll e £

G y, D X
- {a) {b})
Q q q
[HINOLISIIDA AN RN AidANN | eI © eI ©

|

PP AT T T T I oy JW- 77 TATFT e
(e) (d} (&)
simply supp,

Fig. 3. clamped AT LI e e el
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Table 1. Study of convergence. Square plate clamped on sides AB and ¢D. simply
gupported on the two other sides subjected to uniform dlstributed-
load of intensity gq. Pig, 3-a _ ¥ o= 0.3
ax No of [Tteration Central Central Central My at
Terms Crder Deflection My ly Middle of AB
18t Iter 19.1544 2.4743 3.4533 -6.2942
! a 2nd " 19.0887 2.4215 31,2859 -6.7920
I 34 19.1432 2.4265 3.2957 -6.8126
| i4th ' 19.1434 2,4264 3.2954 -6.8134
|
| 1at Iter. 19.1568 2.4806 3.4746 -6,3243
5 2nd " 19,0933 2.4328 31.3238 -6.8458
| 3 4d " 19,1481 2.4379 3.3339 -6.8669
: 4th 19,1383 2.4377 3.3336 -6.8676
18t Iter. 19.1558B 2.4 3.4627 ~6,3412
6 iend " 19.0918 2.4264 3.3023 -6.876%5
| |3_g " 19,1466 2.4314 3.3122 -6.8978
; ? '4th " 19.1468 2.4312 3.3118 -6.8984
i
L 20 18% Tter.| 19.1563 2.4793 3.4703 -6.3517
7 |2nd " 19.0926 2.4305 3.3162 -6.8957
jd " 19.1475 2.4356 3.3262 ~6.9170
4th "o 19,1477 2.4354 3.3259 -6.9176
18t Iter. 19,1563 2.4793 3.4703 -6.3587
8 2nd " 19,0926 2.4305 3.3162 -6.9084
3d " | 19.1475 2.41356 3.3262 -6.9298
4th " i 19,1477 2.4354 3.325% ~6.9303
1t Tter.i 19,1563 2,4793 3.4703 -6.3635
; 9 2nd " 19,0926 2.4305 3.3162 -6.9173
; 3dg 19.1475 2.4356 3.3263 -6.9388
j 4th " 19.1477 2.4354 3.3258 -6,9392
|
1t Iter. 19.1728 2,4782 3.4571 -6.,3001
4 2nd o 19,1070 2.4253 3.2892 -6.7991
'3 4 " 19.1617 2.4304 3.2990 -6.8198
;4th " 19.1619 2.4302 3.2987 -6,8206
igt Iter. 19.1752 2.4846 3.4784 -6.3302
5 [2pd " 19.1116 2.4367 3.3272 -6.8529
2 d " 19,1666 2.4418 3.3373 -6.8740
4th " 19,1668 2.4416 3.3370 -6.8747
1gt Iter. 19.1743 2.4810 3.4664 -6.3471
| g lend v 19.1100 2.4302 3.3056 ~6.8836
{ 3d " 19.1651 2.4353 3.3156 -6.9049
¢ | 4th 19,1653 2.4351 3.3153 -6.9055
40 18t Iter.| 19.1747 2.4833 3.4741 -6.3576
7 2nd " 19,1109 2.4344 3.3195 -6.9028
3 d " 19.1660 2.4385 3.3296 -6.9242
4th " 19,1662 2.4393 3.3293 -6.9247
18% Iter, 19.1747 2.4833 3.47T410 -6.3645
g [end ! 19,1109 2.4344 3.3195 -6.9155
3d " 19,1660 2.4395 3.3296 ~6.9370
ath " 19.1662 2.4393 33,3293 -6.9375
18t Iter. 19.1747 2.4833 3.4741 -6.3693
2pd " 19.1109 2.4344 3.3195 -6.9244
2 13 g - 15,1660 2.4395 3.3296 -6.9459
[ftﬁ " 19,1662 2.4393 3.3293 -6.9464
Exact (7] 19.20 2.44 3.32 -6.97
Multiplier 10"4.q at/B 10'2.q a2 10-2.q a 10 2.q al
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Table 2. Study of convergence. Square plate clampad

on four sldes

subjected to

uniform dlstributed loed of intensity q. . Flg. 3~b ¥ = 0.3
ax |No of |Iteration Central Central Central M at N at
Terms| Order |Deflection| My My  |uiaale of aB{Mida¥e of ac

| 18t Iter. 12.8171 2.3278 2.4274 -4.4968 -4.9524
A 2nd 12.7378 2.2611 2.2729 -4.9542 -5.,0314
‘ Id v 12.7826 2.2730 2.2829 -4,9829 -5.0342
| 4th " 12.7831 2,2728 2,2822 -4.9858 -5.0349
| 18t Tter.| 12.8195 | 2,3342 | 2.4486 -4.5269 -4.9626
| 5 [2nd " 12,7424 | 2.2732 | 2.3125 -5.0101 -5.0296
| 3d " 12.787%6 2.2857 2,3244 ~5.0421 ~5.0302
| 4th 12,7883 2.2856 2,3239 -5.0453 -5.0307
| 18t Iter.| 12.8186 2.31306 2.4367 -4,5438 -4.9580
; g |2md ¢ 12.7407 2.266) 2.2898 -5,0422 -5.0312
‘ g 12.7859 2.2785% 2.3005 -5.0762 -5,0333
4 4th v 12.7866 2,2783 2.2999 ~5.0796 -5.0339
L 18t Iter.| 12.8190 2,3329 2.4443 -4,5543 -4.,9604
7 2nd " 12.7415 2,2707 2.73045 ~5.0624 -5.0301
Id 12.7868 2.2832 2.3160 -5.0976 -5.0313
4tk " 12.7875 2.2830 2.3155 -5.1011 -5.0318
18t Iter.| 12.8190 2.3329 2.4443 ~4.5612 -4.9604
g |emd " 12.7415 2,2707 2.3045 -5.0758 -5.0301
34 " 12.7869 2.2832 2.3160 -5.1119 -5.0313
4th ¢ 12.7876 2,2830 2.3155 -5.1155 -5.0318
1at Iter. 12.8190 2.3329 2.4443 -4,5660 -4,9604
g l2Ad 12.7415 2.2707 2.3045 -5,0852 -5.0301
g " 12.7869 2.28132 2.3160 -5.1219 -5.0313
i4th " 12.7876 2.2830 2.3155 -5.1255 -5.0318
18t Iter.| 12.7167 2.335%0 2.4140 -4.4684 -5,0131
: ; i2nd " 12.6382 2.2880 2.2590 -4.9286 -5,1109
! 3 d " 12,6827 2.2799 2.2630 -4,9576 -5.1140
i ath " 12,6832 2.2798 2.2683 -4,9605 |, -5.1147
! 18t Tter.| 12.7191 | 2.3414 | 2.4352 -4.4985 | -5.0298
; °nd 12,6427 2.2801 2,2988 -4,9848 ~5.1018
> l3g e 12.6878 | 2.2927 | 2.3107 -5.0170 -5.1024
ath v 12.6884 2.2926 2.3102 -5.,0203 -5,1029
1gt Iter.| 12.7182 2.3378 2.4213) -4.5154 -5.0213
¢ |2m@ ¢ 12.6410 2.2732 2.2760 -5.0170 -5.1089
374 " 12,6861 2,2855 2.2867 -5,0513 -5.1113
y; ath ¢ 12,6867 2.2853 2.2861 -5.0547 -5,1119
| 10 1at Iter.| 12.7186 | 2.3401 | 2.4309 ~4.5259 -5.0262
i 2pd " 12.6418 2.2777 2.2907 -5.0372 -£,1037
[y S 12.6870 | 2.2902 | 2.3023 _5.0728 -5.1049
ath 12.6876 2.2901 2.3u117 -5.0763 -5.1054
18t Iter. 12,7186 2.3401 2.4309 ~-4.5329 -5.0362
8 2nd " 12,6418 2.2777 2.2907 -5.0507 -5.1037
34 " 12,6870 2.2902 2.3023 -5,0871 -5.1049
4th 12.6877 2.2901 2.3018 -5.0907 ~5.1054
18t Iter. 12,7166 2.3401% 2.4309 ~4.5371 ~5.0262
2%3 o 12.6418 2.2777 2.2907 -5.0801 -5.1037
! 9 i3g 12.6870 2,2902 2,3023 -5.0972 -5.1048
4th " 12.6877 2.2901 2,3018 -5.1008 -5.1054

Exact [7] 12.60 2.3 2. -5.13 -5.13
_ - - 2 -2 2

Multiplier 10-?q 34/B 10 2.q a 10-2.q a 10 2.q a 107%.q a

L
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Table 3. Analysis of rectangular platee clamped on gides AB and CD, simply
gupported on the two other aides pubjected to uniform distributed
load of intensity q. Pig. 3-8 (4ax=£/40, 7 Terms, 4%h Iter.}, v = 0.3

g/ Cantral Cantral Central M at
M Deflection Mx My Middle of AB
1.0 19,1662 2.4393 3.3293 -6.9247 N.L.F.D
19.20 2.44 3,32 -6.97 Exact [T7)
1.1 20.8769 2.2990 3.5652 -7.3364 N.L.P.D
20.90 2.30 3.55 -7.39 Zxact [T7)
1.2 22.2359 2,1559 3.7473 -7.6490 K.L.P.D
22,30 2.1% 3.75 ~T.T1 Exact (71
1.3 23,2985 2,019 1.8857 -7.8825% N.L.P.D
23,40 2.03 31.88 -7.94 Exact L[7]
1.4 24,1210 1.8934 3,9892 " -B.0539 N.L.F.D
24.00 1.92 3,93 -8.10 Exact (71
1.5 24.7465 1.7813 4,0651 -B8.1772 N.L.F.D
24.70 1.79 4,086 -B,22 Exact [7]
2.0 26,0990 1.4193 4.2084 -8,3915 R.L.F.D
26,00 : 1.42 4.20 -B.42 Exact [72
Multiplier| 107%.q a%/B | 1072.q 4% 107%.q a?| 107%.q &%

mable 4. Analysis of rectangular plates clamped on four aides subjected to
uniform distributed load of intensity gq. Fig. 3-b

(Ax=#/40, 7 Terms, 4th Iter.), v = 0.3
é/a Central Central Cantral M at M at
Deflection| My My  |Midale of aB|Midale of ac
1.0 12,6876 2,290 2,307 -5.0763 ~5.1054 N.L.F.D
12,60 2.3 2.3 -5.13 -5.13 Exact [7]
1.1 15.1151 2.3132 2.6795 -5.7558 -5.3486 N.L.F.D
15.00 2.3 2.64 -5.81 -5.38 Exact [71
1.2 17.2812 2.2816 3.00T1 -6.3390 -5.4982 N.L.F.D
17.20 2.28 2.599 -6.39 -5.54 Exact (7]
1.3 19.1454 2.2 3,.2815 -6.8228 -5.5819 R, L.F.D
19-10 2-22 3-27 -6.87 -5063 Exact [?]
1.4 2047063 2-1231 3-5054 -702136 -506223 N.L.P.D
20.70 2.12 3.49 -7.26 -5.68 Exact [7]
1.5 21.9854 2.021 3.6840 -7.5223 -5.6363 X.L.P.D
22.00 2.0} 3,68 -T.57 -5.T70 Exact U7]
1.6 23.0151 1.9214 3.8241 -7.7615 -5.6353 N.L.F.D
23.0C 1.93 3.81 -7.80 ~5.7T1 Exact [T]
1.7 23,8011 1,823% 3.9320 =-7.9435% -5,6263 N.L.F.D
23-80 1.82 3092 -7099 "5-71 BExact 7]
1.8 24.4683 1.7327 4,01137 -8.0793 -5.6135 N.L.FP.D
24.50 1.74 4,01 -8.12 -5.71 Exact [71
1.9 24,9584 1.6509 4,0744 -8.1786 ~5.5993 ([N.L.F.D
24.90 1.65 4,07 =-8.22 -5.MT Exact [T1
2.0 25.329% 1.5787 4.1185 -8,.2493 ~-5.5848 N.L.P.D
25.40 1.58 4,12 -8.29 -5.71 Exact (71
Multiplier 10-?q at/B 10'?q al 10'gq a® 10'?q al 10-gq al
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Table 5. Analysls of rectangular platea 8imply supported on side BD, clemped

on the three other sides subjected to uniform diatributed. load of
intenaity q. Fig. 3-c¢ (ax=§/40, 7 Terms, 4th Iter.) v = 0.3
{ 2/ Central My at My at
a Deflection Midale of AB Middle of AC
0.5 44,9952 -7.5604 -11.4316 N.L.®P,D
44,90 -7.86 -11.48 Exact [73
0.75 28,6859 -7.1714 -B,3358 K.L.PF.D
28.60 -7.30 -8.38 Exact [7]
1.0 15-7209 _509423 '504720 N.LcF-D
; 15.70 -6.01 -5.51 Exact [7]
Ca/3 21,6296 ~7.4497 ~5.6633 N.L.P.D
21.50 -7.50 -5.71 Exact [71
2,0 25,7145 -8.,3205 ~5.5809 N.L.F.D
25.70 "'8037 -5071 Exact [T]
Multiplier| 10™%.q L%/B 1072,q 1.2 10~2,q 12

L 18 the smellest value of £ and a

- Teble 6, Analysis of rectangular platea clamped on esides

AB and QD, eimply

supported on the two othar sides subjescted to triangular lead
Fig.3-d , (ax=¥¢/40, T Terms, 4th Iter.) v = 0.3
(4 a 3¢ _a _3f
Y, X=5 3 Y=» X=T , ¥=3 I‘{s ¥=0|x=9=,y=0
Mx My Mx My My My
0.5 0.7096 2.1041| 1.5306( 2,7135 -4.1958| -5.5494| N.L.F.D
C.70 2.1¢ 1.80 2.90 -4, 20 -6.20 Exact [7]
0.75 0.9879| 1.9617) 1.6970! 2.0820 ~3.9729] -4.4045| N.L.PF.D
1.10 2.00 1.80 2.10 -4,.00 -4,50 Exact [7]
1.0 1.2196) 1.6644 1.6459| 1.5683 -3.4624| -3.4263! R,L.F.D
1.30 1.70 1.70 1.50 =3.50 -3.50 Exact [7]
1.25 2,0600( 2,0753| 2.3687| 1.8380 -4.4664| ~4,1461| N.L.F.D
2.10 2.10 2.40 1.%0 -4.50 -4.30 Exact I7)
1.5 2.9250| 2.3049| 3.0490 1.9820| -5,1568] -4,6202| N.L.P.D
3.00 2.30 3.10 2,00 =5.10 -4.,80 Exact [7]
2.0 4.3464| 2.3828| 4,1084| 2.0196 -%.7884| -5.0188| N,L.F.D
4,30 2.40 _4.20 2.00 -6.00 -5.30 Exact [T7]
Multiplier 1072, q, 12

ieg the

smalleet value of 2 and s
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Table 7. Analysis of rectangular plates clamped on four sides subjected to

triangular load Pig.3-e , {Ax=¢/40, 7 Terms, 4th Iter.) ¥y = 0,3
o/ e x=£ . y:; x= g, y-g x=0, y=% xzze, y=0
w Hx My Mx M,; My
0.5 0.7915 0.1973] 0.5148| ~t.1223| =0.2739| -1.0312| R.L.P.D
0.80 0.198 0.51% -1.15 -0.28 -1.04 Exact [7)
2/3 2.1714 | 0.4496| 0,8186( -1.8487| -0.6564| -1.6716| B.L.F.L
2.17 0.45%1 0.817 -1.87 -0.66 -1.68 Exact [7]
1.0 6,3438 1.1450) 1.,1506( -3.325%1| -1.7805| -2.5382 N.L.F,D
6.30 1.1% 1.15 =-3.34 -1.79 -2.57 Bxact [7]
1.5 11.0292 1.B416| 1.0235 ~-4,6015] -2,9459| -2,7776| N.L.F.D
11.00 1.84 1.02 -4,62 -2.95 -2.85 Exact (7]
Multiplier|15%q 14/B 1072q,1.2
|
L is the smallest value of £ and a
"CONCLUSION

A new development of the nodal line finite difference method is
introduced for the analysis of plates with two opposite ends
other than simply supported. In the present work, plates with
two opposite clamped ends have been analyzed. In order to over-
come the coupling property of the equilibrium difference equat-~
ilons in the case of basic functions other than trigonometric
series, a simplified iteration procedure has been developed.
This procedure emphasises the role of the dominant terms of the
central nodal line finite difference equation. Accordingly,each
term of the basic function can be solved individually such as
that in the case of trigonometric series. The results obtained
demonstrate the rapid convergence and the high accuracy of the
method. This method can be extended to include other end cond-
itione and other material properties.
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NOTATION
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= transverse deflection.

= length of the nodal lines,

= length or width of the plate.

= distance between the nodal lines.
= modulus of elasticity.

= thickness of the plate.

= poisason’s ratio.

= flexural rigidity.

= nodal line parsmeters.

= bagic function,
= load intensity.
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