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A MODEL FOR THE ANALYSIS OF THE TURBULENT FLOW IN
A FINITE CIRCULAR GAP

BY
M.A. Rayan, Mech. Eng. Dept., Mansoura Univ.

ABSTRACT :

An analysis of the turbulent flow in a finite circular gap with a maving wall is
presented in this paper. According to Ng-Pan's theary,the linearized equations of
motion of turbulent flow were numerically integrated based on the apparent kinematic
viscosity method for the evaluation of the turbulent kinematic viscosity, and hence
a simple isothermal model neglecting the inertia forces is developed for the study
of this particular type of flow.

Computation methods were developed for the numerical evaluation of the velocity
distribution and consequently the volumetric flow rate, the shear stress calculatians
were considered for the evaluation of friction losses. The corpputation methods are
directly applied to the study of the hydrostatic supports and thrust bearing in turbo-
machines.

INTRODUCTION

The analysis of turbulent flow in narrow gaps has motivated many investigators
due to its direct application in the hydrodynamic bearings and the hydrostatic supports.
The particular problem of the flow in a circular gap is important for it's practical
applications in hydradynamic thrust bearings and hydrostatic support elements.

In many hydrodynamic bearings laminar flow prevails, but when large Reynolds number
exists turbulence can appear. Generally a hydrodynamic bearing operating in turbulent
regime has high load carrying capacity but with associated problems of turbulence
as energy dissipation and high friction losses. The complete understanding of the
turbulent lubrication theory needs the clarification of many aspects of this particular
turbulent flow as thermal effects [1], inertia forces [Z], .

In the present investigation the principal goal is to present a simplified model to
the analysis of this flow neglecting the influence of inertia forces and considering
isothermal flow. After [1), it seems that the thermal effect is more pronounced
in laminar flow than turbulent flow, which justifies the simplified bypothesis of
neglecting thermal effects.

The inertia forces in accelerating flows is responsible of the partial conversion of
static pressure energy into dynamic pressure energy. Since this study is devoted
to the analysis of this particular flow for practical application, in this stage the
influence of inertia forces is omitted. The linearized equations of motion are consider-
ed after [3], and [4], the Reichardt's formula of apparent kinematic viscosity is
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used to eveluate the turbulent kinematic viscosity. The method is out lined in refere-
nce [5], but for ane dimensional flow. The velocity distribution is predicted and
consequently the volumetric flowrate is evaluated. The shear stress can alsa be
evaluated, which enables the calculation of frictional losses.

COVERNING EQUATIONS

The governing equations are the continuity, and momentum equations, foltowing
are the major assumptians in treating the equations :

- Fully devolped steady isentropic, isothermic turbulent flow.
- Incompressible , Newtonian fluid.

. ~ P
- Externally pressurised 557" = 0 also 36 = ©

- The gap height is much smaller than the raduis R { R»H ) .

- Velocity gradients ecross the film thickness are lager than all other velocity
gradients .

~ No thermal or mechanical distortion accurs .

- Body forces, inertia farces are negligeable .

- Isentropic eddy-diffusivity .

- Local wall shear stress is a function of the local mean flow Reynolds number
and does not depend on the flow details associated with pressure gradients and
the converging flow channel .

The general form of the continuity equation is as follows :



For a finite gap and based on the above mentioned assumptions it reduces to the
following form :

aRU+bV A O I

Based on the above mentioned assumptions the momentum equation is written on
the following forms :

5
= Q—E‘- = —}i_z& = _-a_l:J—-; - —b‘——— ( p-‘j.g ) . 4 & ( 2 )
2R 27 22 Dz
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1 v
B A4 :yé--";--)--<p.v) e (3)
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with —%—g- = 0 and consequently ;g-%—l— = 0
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X
The boundary conditions of these equations are :
L= O
U(R’e’z)\Z=H U = 0O e 01

. /220 V —w R
VIR, 8,215 _ 4 v - 0O (2)
w(R,8,2)Z58 w=o0 c.(3)

- MODEL FOR THE VELOCITY DISTRIBUTION :

The Boussinesqu's eddy-diffusivity formula is as follows :

- B U
-dV = €rgge
Introducing Boussinesqu's formula in equation (2) becornes :
2P 2 (1. £, 24 colla)

Integrating equation {4) with the foregoing boundary conditions (1), bearing in mind
that equation (&) is non linear since the diffusivity is a function of Z, thus the
equation contains terms which should be numerically determined. The first integration
with respect to Z will give :

€ 2U _ 1 dP_
(Vw5 %5 - iR £ Y .. (5)
_ _ 3 »UJ
For 2 =0, C=01+ %) .55 17_0¢
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After Boussinesq's equation the wall shear stress could be written on the following
form :

€
Za:)’(1+:,_,'._7)'"2"|2 0 e (06)
Consequently the constant C, = Z./ N el (7))
Substitute ( 7 } in ( 5) and lntegrate with resper:t to Z
. dP Z d7 ____acZz .
U ( Rsey Z ) - ‘a‘R‘ J’_ﬂ_(‘_l_l:ﬁ_)'- ?I u (1 +.E-). . s . ( 8 )
c o
Put (1 + 5o ) = F (Z), in equation (8) , and after equation (7) , C, becomes :
c, _.dpP _J_.Z__'__g'_Z'/As__F D
d R J d Z/F
w
Then equation (8} , becames : 7 Ea
d/Z z dZ
(rB.z) - 4B (247 92 _z_g__u_J_E___ jez
dR 7 M F dR 5 dZ /F S F
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dR HF Jd Z/F F
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- . ) E * o
Now introducing the nondimensional notation :

+

z :Z/H U = U/wR, R :R/R‘
Pt P HRE
e f
Then the nondimensional velocity distribution is as follows : n
- ! Z
z
+ + J +
o ree ot e | (deg Sgade el
by V1 dR F dZ'/ F F
o [*]
Introducing the dimensionless pressure gradient v
p * - _g_?_ / Jﬂ_\f—!_ . . ( 12 )
dR H
The pressure gradient coeffient is defined as fallows
2 4P
RP_)U" iR . {13)
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After equations (12), (13) the dimensionless pressure gradient is written on the
following form :

v RH
P Re R1 Z‘r
Put 1 (Z ) = __’_=-__ ] = ) _.l-:..__ ..
v
After equations(12), (13), (14), equation (11) could be written on the following form:
U et ] I@) -y 1@ C e (15)
(R, & 7)

Equation (15) is the equation of the velocity distribution in nondimensional form.
The mean flow velocity over a circular gap is defined as follows :

H
-_— 1 .
T e ——— T
U(R) 53R °JU.ZMRdZ
Or in nendimensional form becomes :
+
—_ B + d/Z ... {16

Assume pure Poiseuille flow, pure Couette dP/dR = O at R=R 5. This to avoid problems
arise from th? non uniformity of velocity distribution at entrance, thus :

(R) J [.](Z ‘I-'%%--.[(zﬂdz" .17
Put + + - + +
I:}I(Z)dz , J:jJ(Z]dZ
and G = J - ‘-]-(1)~ T thus equalion { 17 ) becomes :
r = 1(15 i 5 q .
—_— *
U(R1)_P . C . .. (18)

SHEAR STRESS CALCULATION

Assuming linear distribution of the shear stress and after equations (6), (7) equation
(9) can be writlen on the following form :

H \

% Jo ez Jz_az.

St 4R e W b . 4P, H - Foe ( 19)

p - d ndZ - p dR tdz T
I J¥

Introducing the function J(1), I{1}, after equation (14}, in equation (12)

o dp 1(1)
Zo - = a"R-_ H —T_(_T_j-_ - % . ( 2[] )
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Rearanging equation (20), and introducing the ratio between gap height and inner

raduis, yj: H/R,I to obtain the shear stress equation on the following form :

i T 1 (1)
Re"‘lﬁ*"?J' 13 cen(21)
Where T is the dimensionless shear stress definedas T, = ----- e

Equation (21} provides the relation between the Reynolds number and the pressure
gradient. For linear distribution of the shear stress one can write the following relation:

-7, 9P 7 C.(22)

¢ dR
Or in nondimensional form becomes :
+
T(z)=T0+RpZ ... (23)
After equation (21) and the definition of the pdimensionless pressure coefficient
_ J(1) .
Tn = = Rp . -T-(*,T“j“— . ook (Za)

Apply equation (23) on the upper wall where Z = H, stationary wall, and after equation
(24), the following expression of the shear stress on the upper wall is obtained :

J(1)
Tu:Rp(1--T-(-‘T-)) ... 025

the values of the shear stresses are presented in form of ralios between the shear
stresses and the Reynolds number as following :

METHOD OF SOLUTION:

A computer program is written in Fortran code. The program flow chart is shown
in figure (2). The inputs are; speeds, shear stress ratios , pressure coefficients, lubrication
oil characteristics and the support geometric characteristics. Equations (14) were
numerically integrated. The Reichard's formula for the calculation of turbulent apparent
kinematic viscosity is used. (equations (27) through (34) The results are introduced
in equation (17), then equations {14) and (17} are numerically integrated using Simpsons
rule. Finally an area integration is under taken to find the discharge.

A medium lubrication oil characteristics were choosen,z the dynamic viscosity

_H= 0.0486Kg/ms, kinematic viscosity v’ = 0.000054 m2 /s. A cases of negative pressure
gradient, and positive pressure gradient were considered. The program is also re-
written in Basic code, since most of the small computers use Basic. The program.may
be refined in the future in order to provide the required curves and 3-D graphics
of the support.
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RESULTS AND DISCUSSIONS:

Sampie results are presented in figures (3),(4),(5),(6). Two representative
cases are considereds
- Positive gradient dp/dx, i.e pressure rise in the positive direction of the
radial coordinate.
- Negative pressure dradient dp/dx, i.e pressure drop in the positive direction
of the radial coordinate.

Several runs are performed at variable speeds, and shear ratios. Only
the wvelocity distribution in radial direction is presented, since it constitutes
the first step in the calculation of the volumetric flow rate. In both cases
the wvelocity distribution is obtained for different Reynolds number values.

Figures (3)and(4) show examples of velocity distribution obtained from
this flow thecry, for positive and negative pressure gradients. The curves
show typical form of turbdlent flows which is characterized by pronounced
velocity gradients in the vicinity of the walls. A separation occurs near the
upper wall, the magnitude of reverse velocity distribution is decreased with
decreasing the Reynolds number.

The volumetric flow in nondimensional form is presented in figure(5) for
negative pressure gradient, and figure(é} for positive pressure gradient. This curve
i the basis for determining the volumetric flow in a gap between two disks.

CONCLUSI ONS:

The presented model provides a simple rapid method for the analysis
of turbulent flow between two disks. It provides a detailed informations of
the flow conditions, which are useful for rapid determination of the flow charact-
eristics, as follow:

- Equation{11) which is presented in figures(3) and (4) gives the velocity distri-
bution.

- Equation(18) which is presented in figures(5),(6) gives the volumetric flow
rate.

- Equations(24)and(25) allow the determination of shear stress .

Certainly the validity of the assurmed hypothesis must be experimentally verified.

NOMENCLATURE:

H Gap height (m),

P Pressure ( N/m* )
R Radial coordinate (m)

U Flow velocity, radial component {m/s)

V Flow velocity, vertical component ( m/s )

W Flow velacity, 0 component (m/s)

z Vertical coordinate (m)

€ Apparent kinematic viscosity of turbulent flow (/s )

» Dynamic viscosity of the fiuid { Kg/ms )
v’ Kinematic viscosity of the fluid (m2fs )
P Density of the fluid ( Kg/m3)
(4 Shear stress (N/mZ )
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APPENDIX

The Reichardts Formula and The Calculation of Turbulent Apparent
Kinematic Viscosity

The Reichardt$ formula envolves the calculation of the turbulent eddy diffusi-
viby:

€ *rZ Zo T z 1z :
_i:_;_ = k [ —_1—’;—- -:6‘— - 6 tanh ( .:I,:"_’_ “:5—_; -:)-— ) J e (27)
*
where k , 5+ are emperical constsnts whose values are :
0.3 Kk <0.4 526 <15
Introducing nondimensional notations, equation (27) becomes :
*
¢ x ot z
_}:_:;- = k[Z - Stanh (--c-_;)] ...(28)
: 0
With Z} oz T
= - B

In solving equation (25}, the difficulties arise from the unknown reciprocal influence
of two closely spaced walls, the stationary and rmoving walls. A simplified hypothesis
should be introduced to overcome this problem, So that the eddy diffusivity in the
vacinity of each wall is influenced only by the corresponding wall and the line nf
demarcation is Zrn defined by :

_frf'__ La _H_:_%'T‘__ _Zi"', (29)
- pu A Fo
As an approximation Z__ = ( 1/2) H thus:
«  Z [ .
7 5 \/p 0K ZH/2 ... (30)
5 H-Z \/Z H/2& 7 S H )
v A
In nondimensienal notation equations (30), (31) becomes :
2" -7 'l 0% 2°< 12 .. (32)
AN G AR Y2 27 .. (33)

After equations (27) through (33) and using the numerical values of the constants

*
k g the eddy-diffusivity is written on the following form :

z,é—/ = 0.4 ( z\lT - 10.7 tanh ( Z \[T/‘IDJ)] ce . (34)
with 7z - 7 for 0=/ «<0.2
z =1-2 for 0.8 <Z <]
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\ SPEEDS, AN(J),PRESSURE COEFFICIENT RP,V
%/%, P GEOMETRIC CHARACTERISTICS R1,R2,H

Y
§ g CALCULATE
i Re

CALCULATE
azt
(1) =} =
. 1 Z+ +
J(1,:f1é.d]
ou "
Y
CAICULATE
PS, To/Re
CAICULATE

1= § 1(2) az'
T= .’ I() az'
vw ps (3= 21 T

T S: U"dzI*(z)

Z=2+ 0.1

Jw J+1

Figure 2. Computer program flow chart.
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