Mansoura Engineering Journal

Volume 10 | Issue 2

Article 3

12-1-2020

The Effect of Unbalanced Excitation System on the MMF Analysis of the Six-Phase Winding.

Abd El-Rahman Amin

Assistant Professor, Electrical Power and Machines Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt., araamin@mans.edu.eq

Follow this and additional works at: https://mej.researchcommons.org/home

Recommended Citation

Amin, Abd El-Rahman (2020) "The Effect of Unbalanced Excitation System on the MMF Analysis of the Six-Phase Winding.," *Mansoura Engineering Journal*: Vol. 10: Iss. 2, Article 3. Available at: https://doi.org/10.21608/bfemu.2021.177206

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. For more information, please contact mej@mans.edu.eg.

THE EFFECT OF UNBALANCED EXCITATION SYSTEM ON THE MMF ANALYSIS OF THE SIX-PHASE WINDING

Abd El-Rahman Ahmed Amin
Department Of Electrical Power And Machines Engineering,
Faculty Of Engineering, Mansoura University.

Abstract:

The effect of losing one-phase or more of the excitation system on the space MMF harmonics has been investigated for two types of six-phase stator windings; by means of Goerge's vector diagram. The scope of this work covers the various changes in the resultant MMF waveforms that occur due to one-phase, or two-phase, or three-phase being opened. Consequently, an insight into avoiding the modes of operation which provide an objectional harmonic contents is given.

The results obtained recommend to use the six-phase winding with phase spread, § , eaual to 60 , in order to improve the overall reliability with one phase being opened; the most common failures occurred.

1. Introduction:

Sometimes in practice a six-phase machine may have to work under unbalanced supply. So, it is important to study the effect of unbalanced excitation system on the performance of the six-phase machine. The unbalanced operation limiting cases could be happened from one phase, or more phases being opened. These might be occurred in practical if either one or several coils had been burnt out or one-phase or more phases of the six-phase supply had been lost. Such deffects may be found in ac drives, which havesuffered due to their susceptibility to single point or more failures in either the power electronics, control circuits, or do power supply.

Unbalanced operation of the six-phase machine has given rise to variety of problems. These problems provide considerable local overheating, poor efficiency and regulation, increasing pulsating torques, and an additional losses in the steel and windings. The reason for these problems is that the currents become unbalanced. Thus, the flux distribution in the air-gap is no longer uniform. Therefore, the harmonic analysis of the resultant MMF waveform would provide different magnitudes of the harmonic contents. Accordingly, the determination of the space harmonic magnitudes, under unbalanced operation, is of vital importance in the analysis of the six-phase machine. Investigation can be carried out by means of Goerge's vector diagram, which is based on the actual distribution of the ampere-conductor into the slots, and then accounts for the resultant MMF waveform for the whole winding.

Strictly speaking, the spurpose of this paper is to examine the resultant MMF waveforms of two types of six-phase winding with δ either equal to 30 or 60 electrical degrees. The scope of investigation covers the various changes in the resultant MMF waveforms that occur due to the unbalanced supply and the classification of the higher space harmonic contents. In addition, the investigation would provide an insight into avoiding the modes of operation which provide an objectional harmonic contents.

2. The Limiting Cases of Unbalanced Six-Phase Supply:

It is well-known that a certain degree of imbalance in the supply is expected at the machine terminals. On the other hand, the extreme cases of the six-phase unbalanced excitation system could be considered as follows:

- (a) One-phase being opened ; $I_{\rm D}$ = 0
- (b) Two-phase being opened; $I_D = I_E = 0$
- (c) Three-phase being opened; $I_D = I_E = I_F = 0$

3. Consequences of Unbalanced Excitation System:

Before discussing the consequences of unbalanced excitation system, it will be worthwhile to say a few words about the space harmonics of a six-phase machine operating under balanced excitation system. Under the balanced supply, there is set up a rotating magnetic field. The analysis of this magnetic field showed that a six-phase winding with $\S = 30$ provides higher space harmonic of orders h = 12 K + 1, while the space harmonic orders for the six-phase winding with $\S = 60$, are found to be equal to h = 6 K + 1, $\lceil 1 \rceil$.

With one-phase or more being opened, the machine will have some of the slots partially excited in the case of the six-phase winding with \S = 60 . However some of the slots will contain zero ampere-conductor in the case of six-phase winding with \S = 30 . Accordingly, the resultant MMF is no longer having the space harmonic orders, h, as resulted from the balanced operation. Therefore, plotting and analysing the resultant MMF waveform of the unbalanced operation become essential to give an insight into avoiding their modes of unbalanced operation which provide an objectional harmonic contents.

4. Determination of The Resultant MMF Waveform Under Unbalanced Excitation System:

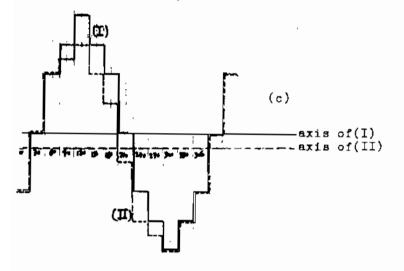
In order to achieve data consistency with the actual ampere-conductor distribution for the unbalanced operations given in section 2, the Goerge's vector diagram has been established for these different cases. In addition the balanced operation is given to facilitate the comparison. The current carrying conductors are assumed to be of sinusoidal waveforms.

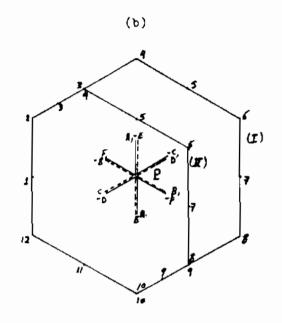
All phases of a symmetric six-phase machine are identical. The number of turns, wire sizes, etc., are the same for each of the six-phase and follow identical distribution. The six stator phases are labelled A, B, C, D, E, and F. They are evenly displaced in space and excited by the currents having the same displacement in time-phase as the windings have in space-phase. Therefore, two types of windings are considered. The first type is a six-phase winding with δ = 30 , while the second one is a six-phase winding with δ = 60 . The balanced operation of both types have been investigated recently [1] .

On the other hand, the MMF waveform produced by the unbalanced supply can be analysed by making use of Goerge's vector diagram. Where the resultant MMF is found by summing the actual distribution of the ampereconductor in each slot. Since the currents flow are of sinusoidal function of time, it can be represented as a vector. The unbalanced supply operation, resulting from one phase or more being opened, could be represented easily by eliminating the corresponding current vectors from the

vector current diagram. Therefore, the resultant MMF for each case of unbalance could be easily determined. However, the instantaneous values of the MMF over the different teeth can be found by projecting the vectors Pl, P2, P3, ... on the time line. The position of the time line can be chosen arbitrarily, since the magnetic energy in the air-gap is constant. The time line was chosen vertically. Accordingly, the effect of losing one-phase, or more phases could be investigated.

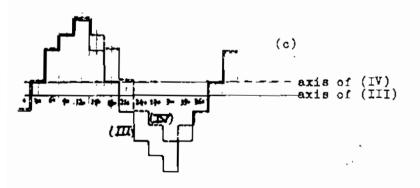
Figures 1 , 2, and 3 illustrate the derivation of the MMF space waveforms, for a two pole, six-phase winding with 8 either equal to 60 or 30 electrical degrees, with q = 2 slots for the first type of the winding, while q = 1 or 2 slots for the second type. In order to explain the procedure, Figure 1 representing the case II of the losing of one phase could be considered. It displays this procedure a 12-slot, double pole pitch, six-phase winding with $\S = 60$, q = 2, and unity-pitch winding. The upper and the lower layers lie in the same slot belonging to different phases. Figure la, case II reveals the distribution of the 12 slots between the layers and phases. So, the layers containing letter D provide zero ampere-conductor as the phase D is assumed to loss its excitation. Figure 1b shows the directions of the currents for the case II at that instant of time, for different slot-groups as well as the Goerge's vector diagram. The polygon II represents the Goerge's vector diagram of losing one-phase ; $I_{\rm D}$ = 0. The shape of the MMF over the different teeth for this case is different from the MMF waveform of the case of the balanced supply, case I, as shown in Figure 1c. In addition, Figure 1c case III and Figure 1c case IV show the various waveforms on losing two phases or three phases , respectively. The instantaneous values of the MMF waveforms are recorded every five electrical degrees and supplied to the computer program as an input data.


The resultant MMF waveforms of the cases of unbalanced excitation shown in Figures 1, 2, and 3 are analysed by the computer program. The aim is to determine the magnitude of the belt and slot harmonics, and to facilitate the comparison between the balanced and unbalanced excitation systems for six-phase winding with a displacement angle δ of 60 or 30 electrical degrees.


5. Computer Results And Discussion:

By means of a computer program using the step by step technique, some of six-phase windings have been investigated under the unbalanced excitation system. The results are tabulated in Tables 1 to 14. Table 3 can serve as a check on the computer program validity. It contains the harmonic analysis for a 12-slot, double layer, unity-pitch, six-phase winding with $\S = 60$, for q = 2. The obtained harmonic contents show a consistency with the previously published results $\begin{bmatrix} 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \end{bmatrix}$. Tables 3 to 14 illustrate the fundamental and the higher space harmonic magnitudes as relative values YN1%, of the maximum height of the stepped waveform; YMAX, and also as a percentage of the fundamental harmonic; YN2%.

The 12-slot windings of double-pole pitch is wound for six-phase winding with δ either equal 60 or 30 electrical degrees, for unity pitch, as shown in Figures 1 and 2, consequently; for different cases of unbalanced excitation. The results are given in Tables 3 to 10. On the other hand, the effect of increasing the number of slots per pole per phase; q = 2 for six-phase winding with $\delta = 30$ is shown in Figure 3. The harmonic analyses are given in Tables 11 to 14. The computed per


A	A	-c	- c	85	8	*	-8	c	٠	-£	- <u>R</u>	A	A	٠.	- د	(a)
-£	£	۵	۵	Ŧ	- F	Ε	E	- Þ	-D	F	F	Æ				
T	2	3.	4	5	7	7	Н	4	74	11	12	1	2	3	4	(I,#)

A	A	~	-с	В	ß	-A	-A	c	c	8	8	A	A	-د	- c	(a)
£	Ę	۵	D	-F	-,5	ε	٤	-Δ	-0	F	F	-E	-E	D	D	
1	2	3	4	5	6	7	7	9	10	11	12	1	7	3	4	(177, 2527)

- (I) Balanced excitation system.
 (II) One-phase open ; ID = 0.
 (III) Two-phase open ; ID = IE = 0.
 (IV) Three-phase open ; ID = IE = IF = 0

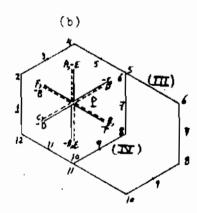
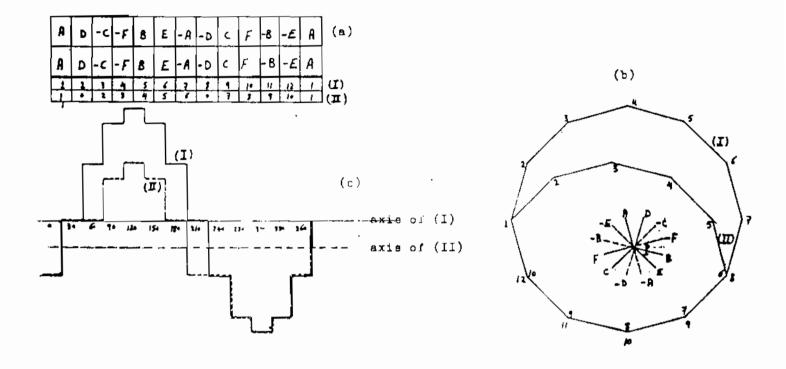
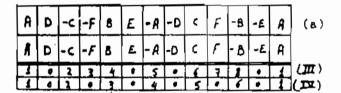
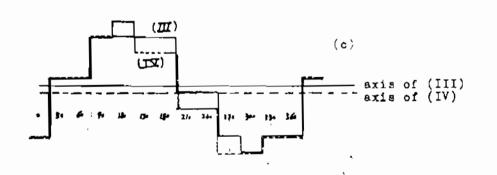




Fig. (1) Derivation of space MMF for, a six-phase winding with \$ = 60°, unity-pitch, q = 2 under unbalanced excitation system, of different cases I, II, III, IV. (a) Stator-coil currents for double pole pitch.


(b) Goerge's vector diagram.

(c) The space MMF waveform.

- (I) Balanced excitation system.
 (II) One-phase open; Ip = 0.
 (III) Two-phase open; Ip = IE = 0.
 (IV) Three-phase open; Ip = IE = IF

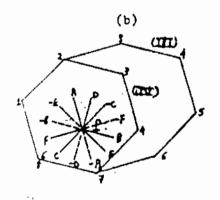
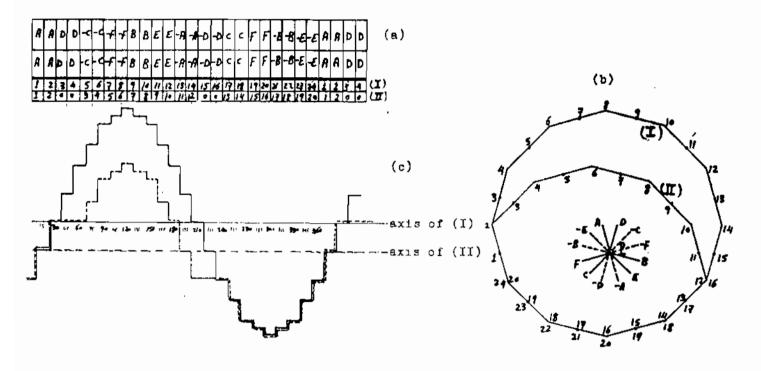
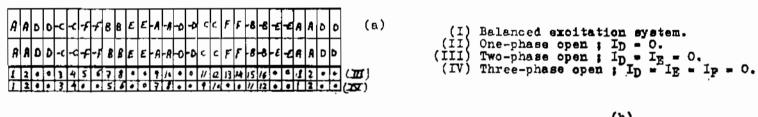




Fig. (2) Derivation of space MMF for, a six-phase winding with \$ = 30°, unity-pitch, o = 1 under unbalanced excitation system, of different cases I, II, III, I (a) Stator-coil currents for double pole pitch.

(b) Goerge's vector diagram.

(c) The space MMF waveform.

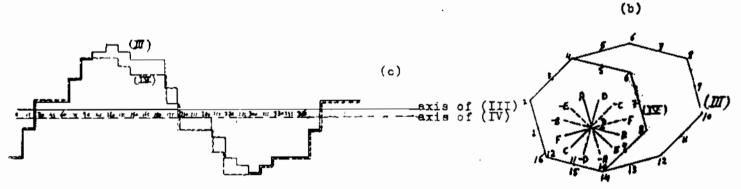


Fig. (3) Derivation of space MMF for, a six-phase winding with \$ = 30° unity-pitch, o = 2 under unbalanced excitation system, of different cases I, II, III, IV. (a) Stator-coil currents for double pole pitch. (b) Goerge's vector diagram. (c) The space MMF waveform.

TABLE 1

unbalanced The comparison between the fundamental harmonic magnitudes for different cases of excitation system.

	Proper of winding Propes of excitation	Zo LMA	Thurs	NT.	IN O OI ILS
Telegraphic to and the		Q T 15 T	(b.u.)	(n d)	balanced excitation.
	balanced		4.0	3.69	100.0
q=2, 3 = 60°	one-phase open	97.853	3.5	3.425	85. 82.
S=12	two-phase open		2.5	2.22	60.16
	three-phase open	•	2.0	1.845	50 . 0
Six-phase,	balanced				100.0
q=1, \$ = 30°	one-phase open	90.676	2.9	2.63	92.69
S=12	two-phase open		•	_	53.05
	three-phase open		1.93	1.9	50.4
Six-phase	balanced		3.8		100.0
q=2, \ 5 =30	one-phase open	90.539	2.9	2.63	69*65
S=24	two-phase open	•	2.2	•	53.99
	three-phase open	•	1.98	1.925	51.2

TABLE 2

The comparison between the belt harmonic magnitudes as a percent of its fundamental for different cases of unbalanced excitation.

Types of winding		Third barmonic	Fifth harmonic	Seventh	Ninth harmonic
Six-pha	balanced	0.0	5.4	3,887	0.0
$q = 2$, $5 = 60^{\circ}$,	one-phase open	4.394	5.4	3.887	1,499
s = 12	pha se	6.785	5.4	3.887	2.314
	three-phase open	0.0	5.4	3.887	0.0
Six-phase	balanced	0.16	0.028	0.02	0.054
$q = 1, \delta = 30^{\circ}$	one-phase open	15,787	9.195	6.618	5,385
S = 12	two-phase open	5.957		13,221	2.032
	three-phase open	0.672	20.153	14.506	0.229
Six-phase,	balanced	0.127	0.233	0.049	0.61
q = 2, $5 = 30$ °	one-phase open	14.732	7.565	4.456	1.653
S = 24	two-phase open	•	14.556	8.196	0.674
	three-phase open	1.643	16,369	8.764	0.27

E. 10 A.R.A.Amin

TABLE]

Space MMF harmonic analysis for 6-phase, \$ = 60°, unity-pitch, q = 2, for balanced excitation system.

PHASE = 6.0 DELTA = 60.0 ID = 1 IE = 1 IF = 1
D= 7.0 SLOT= 17.0 CHORDING = .0 WAX = 6.00

TABLE 4

Space MMP harmonic analysis for 6-phase, \$ = 60°, unity-pitch, q = 2, with one-phase open; I_D = 0.

PHASE = 6.0 DELTA = 60.0 10 = 0 |E = 1 |F = 1 0 = 2.0 SLDT = 12.0 CHORDING = .0 MAX = 3.50

HARMONIC ORDER . ALPHAN YNL	xiz 1 1021	YNIZ	AL PHAN	HARMONIC ORDER
H#####################################	******	*********	*********	
I -18,552 97,		77. 266	-77.500	i
2 57,995	.000		50,34%	2
1 -62,5 00 4.	.000 .000	.000	.0	3
30, 964	000 .000	000	4, 764	4
5 , 33,532 5,	4,983 5.4∞	983	12.50	5
> -52,404	000 .000	000	-51,512	4
3.552	>.56c 1.667	>. 5 6e	50	
74.451	200. 200	000	16 40%	÷
-67.500 1.1	.000, 000,	.000	77.376	
10 ⊣.863 .0	.000 .000	. 000	-5.631	10
11 49.552 9,	8.716 9.447	8.716	57.500	11
12 -20,702	.000 ,000	.000	-25 . 264	1¿
13 11.448 7.5	7.491 8.118	7.491	2, 5 00	13
14 81.996 .0	.000 ,000	.000	82.761	14
15 -52,500 .5	.000 ,000	. 000	5.124	15
16 -10.450 .0	.000	000	-11.165	l &
1" 60.552 1.6	. 596 1.700	. 596	17.500	17
18 -88.564 .0	.000 ,000.	.000	~85.920	19
15 24,448 1,5	463 1,595	463	47.500	19
20 -B1,519 ,0	.000 ,000	.000	-86.368	20
21 -37.505 ,7	.000 .000	.000	13.522	21
22 13.285 .0	,000 .000	,000	15.755	22
79 78.552 5.6	4.772 5.122	4.772	87.500	22
24 -87.781 .00	,000 ,000	,000	-85.840	24
25 41,449 4,8	4.537 4,918	4.537	32.500	25
26 -32,671 ,ox	.000 .000	.000	-32, 49)	26
27 -22.496 .60	.000 .000	.000	-80.740	27
26 31.517 .00	.000 .000	. 000	28. 993	28
29 -44, 446 1, 15	1.131 1.225	1.131	-77.498	29
30 -57 ,387 .00	.000 .000	.000	-35, 291	30

TABLE 5

Space MMP harmonic analysis for 6-phase, $\xi = 60^{\circ}$, unity-pitch, q = 2, with two-phase oven: ID = IE = 0.

TABLE 6

Space MMF harmonic analysis for 6-phase, 6 = 60°, unity-pitch, q = 2, with three-phase open; Ip = Ig = Ip = 0.

PHASE = 6.0 DELTA = 60.0 II = 0 IE = 0 IF = 6 0= 2.0 SLOT= I2.0 CHORDINO = .0 YMAX = 2.00

******************		**********	14.H-24.H-11	, *************************************	********	************	· 2.W
HARMONIC (ROEX	ALPHAN	IINT	M21	HAVEHONIC ORDER	ALPHAN	זואו	WZ
*******	*********	********	ннен,н	+1++1+++++	,	**********	***********
:	13.602	89.714	100,000	ı	-27.500	92.268	100, 000
2	-9.300	.000	.000	2	60.341	.000	.000
3	92.500	6.019	6.785	3	•0	,500	.000
•	31.833	, 000	.000	4	-1.764	.000	.000
5	28.602	4.791	5.400	5	42.500	1,963	3,400
6	-41.785	.000	.000	,	-51.512	.000	.000
7	1.398	3.448	3.687	7	-12.500	3.586	1.147
9	77.375	000	.000	,	74, 476		
9	-67.50¢	2.053	2.314	9	-77.374	.000	.000
10	-8.013	000	.000	10	-5.631	.000	-000
11	13.602	a. 390	9,447	11	57.500	.000	.000
.2	-6.782	.000	.000	12		9.716	1.47
13	16.299	7.207	8.118	13	-25.284	.000	,000
14	92.226	.000	,000	13	2.500	7.491	1.118
15	52,498	1. 791	1, 453	15	82.761	.000	,000
:6	-9.589	.000	.000		-5. 124	,000	.000
17	58.603	1.535	1.730	16 17	-11.165	,000	.000
18	-84.215	.000	,000		72.500	1.594	1,730
:9	31, 397	1.406	1,585	18	-85.920	.000	.000
20	87.060	000	,000	19	17.500	1,463	1.565
21	37, 497	990	1.116	20	-44. 368	. 000	,000
	8 962	000	.000	21	13.522	.000	.000
27			5.172	22	13.755	.000	.000
n	73.603	4.588		23	87.500	4.772	3. 172
24	99.887	.000	,000	24	-65. 840	,000	.000
ಸ್	46.399	4.363	4.918	お	32.500	4.507	4.718
?6	21.353	.000	.000	24	-32.491	.000	.000
27	-27.503	950	. 959 -	77	-83.740	. 000	,000
29	34,875	.000	,000	26	28.893	. 000	,000
29	88.605	1.067	1.225	29	~77, 499	1,131	1.225
30	-57, 195	.000	,000	30	-35.29	.000	.000
**************	*************	4++++++ + ++ +	************	14+44+4144+4	********		***************

PMASE = 6.0 DELTA = 20.0 10 = ; |E = | |F = | Q= 1.0 SLOT= |2.0 DMRD[NG = .0 YMAI = 3.87

TABLE 8

Space MMP harmonic analysis for 6-phase, \$= 30°, unity-pitch, q = 1, with one-phase open; ID = 0.

PHASE = 6.0 DELTA = 30.0 ID = 0 IE = 1 IF = 1 0= 1.0 SL07= 12.0 CHORDING = .0 YMAX = 2.90

YN21	ANII	ALPHAN	HARMONIC ORDER	19/21	TIKY	ALPHAN	MANONIC ORDER
**************	*****	4000000000000000000	*************	***********	***********	************	*************
100.000	90.676	-20.660	1	100.000	98.684	-27,500	1
.000	.000	-75.069	2	.000	. 600	33.690	2
15.767	14.315	53.969	3	- 160	. 158	-92.50c	3
.000	.000	37, 438	(.000	, 000	67.620	4
9.195	B. 330	-34, 443	5	.028	. 027	42.520	5
.000	.000	-24.545	ě .	.000	000	-62,049	6
6.618	6.00I	64,443	7	.020	.020	-12.469	7
,000	.000	79.143	8	.000	.000	75. 192	á
5.385	4.882	-23,969	9	.054	.051	-67 504	+
.000	.000	-2.048	10	.000	.000	2.090	10
9,447	8.544	50.660	ii	9.447	7.322	57 500	11
.000	,000	4.653	12	.000	.000	-20.835	12
6.118	7,361	7.340	13	8.118	8.011	2 500	13
.000	.000	79.688	ii	.000	.000	81.987	14
3,365	3.069	83.970	15	. 034	034	-52.380	15
.000	.000	-4,508	16	.000	000	12.097	18
2,946	2.671	-1.445	17	,009	.009	72.441	1.7
,000	.000	-88, LOG	18	000	900	-36.115	1.8
2.699	2.448	-85, 536	19	.008	,008	17, 483	:9
.000	.000	-85, 453	20	. 000	300	84 720	36
2.577	2.355	6,032	21	.024	026	-37.356	21
.000	.000	1,606	22	.000	,000	14.748	22
5.172	4, 690	80.661	ຶກ	5. 172	5, 104	97 500	25
,000	.000	-85.695	24	.000	.000	38.214	24
4.910	4, 459	39.340	25	4.918	4.850	32,500	.5
.000	,000	-42.955	26	.000	.000	-48,051	26
2,230	2.022	-66.031	27	.070	.022	-22. 572	27
.000	.000	27,780	26	.000	,000	29.474	26
2.087	1.072	25,536	29	,006	.006	-77.060	29
,000	.000	-1,390	no no	.000	.000	-3 .30	30

TABLE 9

Space MMP harmonic analysis for 6-phase, 6-30°, unity-pitch, q = 1, with two-phase open, Ip = Ig = 0.

PHASE = 6.0 DELTA = 30.0 ID = 0 | E = 0 | E = 1 | Q = 1.0 SLOT = 12.0 CHIRDING = .0 YMAX = 2.20

TABLE 10

Space MMF harmonic analysis for 6-phase, $i=30^{\circ}$, unity-pitch, q=1, with three phase open, $I_D=I_B=I_P=0$.

PHASE = 6.0 DELTA = 30.0 ID = 0 IE = 0 IF = 0 0 = 1.0 SLUT= 12.0 CHORDING = .0 YMAE = 1.72

MONIC DROER	alphan	ANIS	YNZI	HARMONIC ORDER	ALPHAN	ANTI	miza
	*********	************	*******	*****************	*********	· · · · · · · · · · · · · · · · · · ·	**********
t	-37, 145	91,083	100,000	1	-27.643	98, 447	100.000
2	-82,405	.000	.000	2	-41,634	, 000	.000
3	63. 8 [0	5.426	3. 75 7	3	-37.499	. 662	.472
•	45.401	.000	.000	4	H. 965	.000	,000
5	58, 259	lo./30	19.348	3	-47.35 7	19.840	20. (5)
P	37.611	. 900	.000	6	-65.772	.000	.000
;	38.25°	17 042	1 3. 2 21	7	77. 35 7	11.290	14.504
8	49.33b	.000	.000	8	72.437	.000	,000
7	-33 811	; 851	2.032	9	47.500	. 224	. ZZ ?
iC	2.855	000	.000	10	3, <i>77</i> 5	.000	.000
.1	A 145	9 604	9.447	11	57. M)	7, 300	9.447
. 12	69.114	000	.000	12	-57.179	.000	.000
•3	1. 145	7.394	8. L18 ·	13	2.357	7.992	0. 110
14	au. 294	. 000	.000	14	90.216	.000	.000
12	-84.185	1.163	1.277	15	-7.492	. 142	.144
ا ف	-9 782	.000	.000	66	-4.574	-900	,000
17	-28,260	5.360	5.885	17	-17.358	4.356	1.454
}B	- 85 913	.000	.000	18	-84.820	.000	,000
19	-61.741	4.911	5.39?	19	-72.643	5.824	5,914
26	84.220	. 000	,000	20	-79.649	,000	,000
21	-3.867	. 893	.990	21	-82, 454	. 109	.111
22	26.021	. 000	.000	\boldsymbol{z}	32.481	.000	,000
23	-82.655	4.7[1	5, 172	23	87,644	5.092	5.172
24	-78.137	.000	.000	24	-79.744	.000	.000
25	22.655	4.479	4.91B	75	32, 337	4.941	4.718
26	-35.978	. 000	,000	24	-38.373	.000	,000
27	-56.189	. 767	.842	27	22.481	.093	.095
79	23, 944	.000	.000	29	30.445	,000	.000
29	1.741	1.797	4, 148.	77	12.643	4,503	4.574
30	-10.840	.000	.000	30	-24.414	.000	.000

Space MMF harmonic analysis for 6-phase, \$ = 30°, unity-pitch, q = 2, for balanced excitation system.

PHASE = 6.0 DELTA = 30.0 ID = 1 IE = 1 IF = 1
0= 2.0 SLOT= 24.0 CHORDING = .0 YMAX = 3.80

ARMONIC ORDER	MAHYLA	THEY	YMZI
******		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
100	-30.000	98.824	100,000
3	-84.7%	.000	.000
444.3	89.999	.126	.127
4		.000	.000
5	30,002	,230	. 733
5.	-59.172	.000	.000
11 - 4	-29.979	.048	.049
500.5	74, 902	.000	.000
9	90.000	.603	.610
10	b.158 to	.000	.000
- 11	30,000	1.075	1.088
1.2	-46.933	. 006	.000
13	-30.001	. 724	.935
2.4	76.634	. 000	,000
15	-89,985	.379	.383
16	-10.795		.000
. 17	29.855	. 021	.022
18	-01.713	, 000	.000
19	-30.028	.068	.068
20	-79,773	.000	.000
21	-89.795	.021	.02:
22	. 226	,000	.000
23	29.799	5.111	5.172
24	-86.926	.000	.000
75	-29.999	4.860	4.918
26	-67.130	.000	.000
27	-89.880	.018	.018
28	34.857	.000	.000
29	29.990	. 052	.053
30	-26.020	.000	.000

TABLE 13

Space MMF harmonic analysis for 6-phase, $k=30^\circ$, unity-pitch, q=2, with two-phase open, $I_D=I_E=0$.

PHASE = 6.0 DELTA = 30.0 ID = 0 IE = 0 IF = 1 0= 2.0 SLOT= 24.0 CHORDING = .0 YMAI = 2.20

HARMONEC ORDER	alman	SMLZ	YN2%

-	-39,147	97, 676	100.500
02.00		, 500	.000
1		4,797	5. 187
		,000	, 500
5		13.461	14,556
20.353	-42.916	,000	.000
2	70.867	7,579	8.196
8	67.843	,000	.000
9	-18.284	.599	.647
19		.000	.000
11	65.204	.810	. 876
12		. 000	. 000
13	-65. 204	.696	. 153
16	73.123	.000	. 000
15	18.276	.376	. 1,407
14:	-10.418	.000	,000
4120	-70,665	3.373	3.648
18	-82.635	.000	.000
15	68,532	3.952	4.273
20	-71.565	.000	.000
21	-46408	.789	. 853
22	-10, 337	.000	.000
20	39, 946	4.783	5.172
24	90.131	.000	.000
25	-39.146	4,548	4.918
26	-53. 177	.000	.000
27	46.377	. 678	. 733
28	27.803	.000	.000
29	-68. 533	3.055	3.303
30	-9 RO1	000	.000

Space MMP harmonic analysis for 6-phase is 30°, unity-pitch, q = 2, with one phase open, Ip = 0.

PHASE = 4.0 DELTA = 30.0 ID = 0 IE = 1 IF = 1
0= 2.0 SLDT= 24.0 DEERDING = .0 WAY = 2.90

HARMONIC ORDER	ALPHAN	MIX	YNCZE
***************************************	· · · · · · · · · · · · · · · · · · ·	************	***************************************
1	-23.367	90.539	100.000
2	53.616	.600	,000
3	46.930	13.339	14,732
4	42.774	.000	,000
5	-47.110	6.849	7.565
6	-65, 469	.000	.000
7	39.445	4.034	4,456
8	54. 489	.000	.000
5	-30.685	1.496	1.453
10	-6.607	.000	.000
1:	31.667	1.348	1.707
12	41,530	.000	.000
13	-31.668	1.328	1.467
24	71.826	.000	.000
15	30.681	.941	1,009
16	-8.602	.000	.000
17	-39.443	1.796	1.763
18	-61.692	.000	.000
19	47.109	2.011	2.221
20	-80.697	,000	.000
21	-46.932	2.194	2,424
22	-8, 621	.000	.000
23	23.366	4.683	5.172
24	-87.680	.000	.000
25	-23.367	1,452	4.918
26	-68.293	:000	,000
27	44.729	1,864.	ei tes
28	32.817	,000	.000
29	-47.111	1.354	1.717
30	-13.951	.000	.000

TABLE 14

Space MMF harmonic analysis for 6-phase, 8-30°, unity-pitch, q-2, with three phase open; ID = IE = IF = 0.

PHASE = 6.0 DELTA = 30.0 10 = 0 1E = 0 IF = 0 C= 2.0 SLOT= 24.0 CHORDING = .0 YMAX = 1.96

HARMONIC ORDER	ALPHAN	AMPE	- YOCZ

1	-31,063	97,226	160,000
2	66.457	.000	,600
3	-39,088	1.397	1,449
4	43.531	,000	.000
5	-56.217	15,915	14.369
6	-37.093	.000	.000
1	62.395	8.520	8.744
8	74.612	.000	,000
9	76.115	. 262	.270
10	.909	.000	,000
11	31.384	1.443	1.484
12	-71,917	.000	,000
13	-51.365	1.240	1.275
14	71.479	.000	.000
15	-76, 144	. 165	.167
16	-10.470	.000	.000
17	-62.594	3.792	3.901
18	-62.017	.000	000
19	56.217	4.672	4,905
20	-69.619	.000	.000
2)	39,005	. 263	.270
22	-11.364	.000	.000
23	31.042	5.028	5.172
24	-79-114	.000	,000
ಸ	-31,062	4.781	4.910
26	-53.243	.000	.000
27	-39, 686	. 226	1232
28	27.660	.000	.000
79	-54.217	3.612	3,715
30	-16.976	.600	.000