[Mansoura Engineering Journal](https://mej.researchcommons.org/home)

[Volume 13](https://mej.researchcommons.org/home/vol13) | [Issue 1](https://mej.researchcommons.org/home/vol13/iss1) Article 11

5-27-2021

Combustion Temperature, Pressure and Products at Chemical Equilibrium of H2-Air, NH3-Air and C3H8-Air Fuel Mixtures.

Abdel-Raof Desoky

Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.

Azmi Khalaf Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.

Follow this and additional works at: [https://mej.researchcommons.org/home](https://mej.researchcommons.org/home?utm_source=mej.researchcommons.org%2Fhome%2Fvol13%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Desoky, Abdel-Raof and Khalaf, Azmi (2021) "Combustion Temperature, Pressure and Products at Chemical Equilibrium of H2-Air, NH3-Air and C3H8-Air Fuel Mixtures.," Mansoura Engineering Journal: Vol. 13 : Iss. 1 , Article 11.

Available at:<https://doi.org/10.21608/bfemu.2021.172753>

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. For more information, please contact mej@mans.edu.eg.

COMBUSTION TEMPERATURE, PRESSURE AND PRODUCTS AT CHEMICAL
EQUILIBRIUM OF H₂-AIR, MH₃-AIR AND C₃H₈-AIR FUEL MIXTURES

درجات حرارة وضفوط ونواتج الاحتراق عند الانزان الكيماوى لعةالبط الھيدروجين – الھوا" –

الأجونيا _ القواء _ البرودان _ المستنينواء منتان الوقوف

AY

A.A.DESOKY and A.S.KHALAF Mech.Eng.Dept., EL-Mansoura University, EL-Mansoura, Eyqpt

الخلاصة – لدراسة التحليل الرباضي للدورات الحرارية لمحركات الاحتراق الداخلي التي تعمـــل العرضة – بدراسة التعبيض الرياضي للدورات التي ربب التعريبات النظران الدامسي التي تسمى المتحدة
بندائل الوفود من الجيدروجين – الأموندا – والتروتان فان ذلك بكتاح الى معرفة فـــــواص
غازات الاختراق في حالة الأنزاق الكيماوي ، ه عازات الاحتراق فى حالة الانزاق الشيماوى ، هذه الخواص أما أن تكون فى صورة جــــــــــداول بـ
معادلات رياضية أو خرائط ، الفرض من هذا البيت هو عمل بعودج محاكاة رياضية ثرموديناميكـــي
الذواص الفازات النابخة من عملية الاحتراق من اورا السبب العربون والسبب السجل التي يقد السجل العام العرب العرب التي تعامل المستقبل المستقبل العرب المستقب
عند ضغوط ودرجات حرارة استشلفة المشتائج هذا السجل اعتبادات في سورة اخرائط وجداول عند تفسيسيوط
ودرجات حرارة ونسب من العمرين بالمقامة الى مساحات الران الطاعة والسمعة الى جانب مساحات العمامية القائل.
بدراسة مسادلات تكوين سلوكات القواء القوى مع فرض باقى العداص فى ذلك اتزال كاما الوي،
وتم الفصول على تدائج فى القادروجين با الأخونيا با

Abstract

 \bullet

For a thermodynamic analysis of engines and gas turbines cycles working with hydrogen, ammonia and propane as fu-is, the thermodynamic properties of the combustion gases must be available in the form of
equations or charts. This paper deals with the development of a
thermodynamic model for the equilibrium products composition with superimposed kinetic NO and CO rates of formation. This model has been used to compare the predicted species concentration, dissociation and
NO and CO rates of formation from different fuel-air mixtures combuation in engines and gas turbines.

The results of computations of the combustion products and
kinetic NO and CO rates of formation at specified equilibrium
temperatures, pressures, and equivalence ratios are plotted in graphs and given in tables. For calculations of the combustion producta at chemical equilibrium a set of 6 equilibrium equations enlarged by the energy and mass balance equations is applied. Kinetic mechanisms for
NO and CO rate of formation assuming other species at equilibrium and steady state for N atoms are also included. The results are obtained for the following conditions:-(1) H₂-Alr, NH₃-Air and C₃H₈ -Air gases fuel mixtures.
(2) Range of pressures, p=1-100 ata.
(3) Range of temperatures, T=2000-5000K. (4) Range of equivalence ratios \$=0.6-2.0 Results of few selected conditions are plotted.

1-INTRODUCTION:

The subject of this research is the computation of chemical
equilibrium mixture composition for systems containing C,H,O and N atoms. Hixtures of this type are encountered in the working fluid of
rocket engines [1], jet engines [2] and reciprocating engines [3]. The methods and procedures of computation of combustion products and of their corresponding thermodynamic state differ according to the computation techniques employed and basic assumptions msde. Our discussions vill be restricted to mixtures of 10 species vith P,T and ¢ known.

There are tvo reasons for making equilibrium mixture calculations; first, the pressure and temperature that follow combustion In Internal combustion engines depend on the character of the mixture of product gases. The temperature reached in the combustion chamber of a rocket depends on the composition of the products of combustion.

On the other hand, the work produced by the working fluid in engine and the thrust developed in a rocket depend on pressures and temperatures. The other reason for making such calculations, is for the purpose of examining the chemical nature of the product mixture. The character of exhaust emissions from combustion systems has attracted considerable attention in recent years owing to undesirable properties of carbon monoxide CO and nitrlc oxide NO.

Owing to the extensive production of transportation in recent years, the consumption of petroleum fuel exceeded all of the pre-
estimations. Our petroleum supply cannot capable with all the grow-
ing demand for a long time. The problem taking place now in researches is the continuous reduction of the petroleum reserves of the world. Novadays many research centers of the petroleum companies deal with the development and production of substitutes for the natural petroleum fuels. Synthetic fuels resulting from coal gasification and other processes are typical examples for these substitutes(4).

In due course the extensive research initiated by the major
fuel and engine companies yielded increasing knowledge of fuel
properties and the manner in which they affect engine
performance, safety and reliability. This und emerged, as in the late 1960s the growth of public concern over alr pollution caused by combustion processes. The chemical equilibrium study of the combustlon process with the superimposed kinetic NO and CO rates of formation presented in this paper is simulated by the need to understand the phenomenon of combustion and emission levels from combustion systems when using alternatlve gases fuels.

Hydrogen appears to be an Ideal fuel for engines. It is the cleanest possible fuel in use and it is the easiest fuel material to produce from water by using nuclear or solar energy (5). The main characteristics of hydrogen (6) are listed in Table 1, along with data of other fuels of Interest for combustion engines applications, namely propane and ammonia. The properties of kerosene are also listed, as a basis for comparison. From combustion viewpoint, hydrogen is
characterized by high flame speeds, wide burning limits, easy
lgnition, and freedom from soot formation. The exhaust of the hydrogen limlts, easy engine has no carbon compounds. The presence of hydrogen in the
alxture increases combustion speed and reducing misfiring. As a
result, the lovest specific fuel consumption point is displaced tovards lean mixtures. The main drawbacks of hydrogen lie in its very low density and low boiling point, which necessitate the use of large, heavy insulated storags tanks in the snglne. It is also quite costly to be produce.

potential as a heat sink. Because of its low heat release it is
unlikely to be used in aircraft as a main fuel. However it could find application as a secondary fuel in situations where its high cooling capacity could be exploited to advantage. Unlike hydrogen, ammonia is a 11quid at relatively reasonable storage presaure(7.5ata at 296K).
Moreover, ammonia has been demonstrated as a practical fuel for engine application (6).

Finally, propane fuel is used as a base hydrocarbon gas fuel for comparisons. From inspection of Table 1,1t is clear that the characteristics of propane are similar to those of kerosene. Compared with kerosene, it has a lower specific energy, and a lower cooling extent refuseme, it has a fiver specific energy, and a fiver couring
capacity. Propane has been a motor fuel, as the principal component of
L.P.G., for about 50 years (7). Emission levels with L.P.G. are
reported to be les be stored as a liquid at ambient temperatures by modest pressurization o f the fuel tank. Its higher boiling point implies easler handling. Its availability over the long term could hovever, be limited in some area.

2 -ANALYSIS:

The equilibrium composition of the products resulting from a chemical reaction, such as the combustion process can be computed. These computation can be made according to the conditions defining mathematically the laws that govern the reaction process. In a case of chemical reaction in which the equilibrium temperature and pressure are specified constant, these lavs are:-

1-Equilibrium equation, that is the lav of chemical equilibrium.
2-Atomic ratio, that is the ratio of elements involved in the chemical reaction.

3-Concentration condition as defined by Avogadro's law, Dalton's law and state equation of a gas.

The system equation is then; equilibrium equation, this law is expressed as:

> $K_p = \frac{(ny)^{\gamma}*(nz)^{z}}{(nA)^{\alpha}*(nB)^{b}} F(-1)^{(y+z-a-b)}$ (1)

Atomic ratio:--

 λ

AC=C/H no. of carbon atoms to no. of hydrogen atoms.
AD=O/H no. of oxygen atoms to no. of hydrogen atoms AN=N/H no. of nitrogen atoms to no. of hydrogen atoms. The concentration condition defines the relation of number of moles n_i, to the state properties P, T of the gaseous mixture. It
derlved from Avogadro's law and is expressed in general form by:-is

By Introducing PV=RT, Eni=p and by substituting with Dalton, s law $\sum_{i=1}^{n} P_i = \sum_{i=1}^{n} P_i$
Consequently, in this case, all equations may be expressed either in
terms of number of moles n₁ or in terms of partial pressure P₁.

In this study, the fuel is represented as C_XH_yN_y, where x is the In this study, the fuel is represented as typywy, where x is the
number of carbon atoms in the fuel, y is the number of hydrogen atoms
and v is the number of nitrogen atoms. Hence, for a mixture of
equivalence ratio ϕ ,

#CxHvNw + (02+3.76*N2) ------ n1CO2+n2CO+n3O2+n4O+n5NO+n6N2+n7H+ (3) ng R2+ng OK+n10H2O

where: = $x+(y/4)$ is the stoichlometric AFR and $n_1, n_2, n_3, \ldots, n_{10}$ represented the number of moles of CO_2, CO , O_2, C, \ldots and H_2O respectively per ϕ moles of fuel.
To determine the number of moles n₁, n₂, n₃,, n₁₀, the
dissociation reactions are considered. In the present case there are

six such independent reactions, those used being;

The equilibrium constant (K_1) for the six reactions
considered (eqs.4 to 9) by the equilibrium composition program for a
given temperature and pressure are evaluated using a data in the form of fourth order polynomials for possible temperature ranges
(8). These data are shown in Table 2, and the equilibrium constant data is expressed in the form:-

> $Ln(K) = - - - + (b + - - -) * Ln(T) + d$ (10)

Glven the reactant mole fractions, and atomic ratios C/H, O/H and Given the reactant mole fractions, and atomic ratios C/H, 0/H and
 N/H , the equilibrium products mole fractions of
 $CO_2, CO, O_2, O, NO, N_2, H, H, Q, OH$ and H_2O at the specified temperature and

pressure are calculated. The eq values between successive iterations becomes as small as we like. When the mole fraction change for any specles is outside the allovable error, n₁₀ is changed:

Figs. 1 through 7 are some illustrations of the sort of results obtained from chemical equilibrium calculations. Flg. 1 reveals the profound influence of temperature and equivalence ratio at P=6 atm for H₇-Air mixtures. From this figure it can be seen that, for temperature lover than 2000K, the dissociation has no significant effect on the composition of the combustion gases. This can be seen from figs. (1-a to 1-f), which show the composition of the combustion gases.

calculated under chemical eguilibrium conditions for stoichlometric,

veak and rich fuel-air mixtures. Although the combustion gas

is assumed to consist these components may be considered.

Writlng down the combustion equation of H₂ with alr for temperatures below 2000K and neglecting the components which exist in negligible small concentrations:

a) for ϕ sl

 $#H_2 + 0.5(0, +3.76N_2)$ ----- $#H_2O + 0.5(1-\#10, +0.5(3.76)N_2)$ 1121

Thus the mole fractions of the different components are:-

 n_{10} = 2 ϕ / (ϕ + 4.76) n_0^2 = (1- ϕ) /(ϕ +4.76)
 n_0 = 3.76 /(ϕ +4.76) $= (1 - \phi)$ /(ϕ +4.76)

b) for $\phi > 1$

and

and

 \cdot

$#H_7 + 0.5(0_2+3.76N_7)$ ------ 0.5(H₂O+(2 ϕ -1)H₂+(3.76)N₂) (13)

So that the mole fractions of different components are:-

 $n_{10} = 1/(2*+3.76)$ n_B $=$ (2 ϕ -1)/(2 ϕ +3.76) $= 3.76/(2\phi+3.76)$ ηg

Equations 12 and 13 show the influence of \neq on the mole
fraction of H_2, O_2, H_2 and H_2O . The validity of these equations can be
checked by calculating the mole fractions of H_2, O, H_2 and H_2O and comparing them with their corresponding values resulting from chemical equilibrium calculations shown in Table 3. This comparison at
temperature of 2000K, from this comparison it is clear that these equations can be applied with enough accuracy to calculate the mole fractions of the different components with respect to ϕ .

The results shown in flg.1 also indicated that at higher temperature the mixture will have dissociated products of H, O, NO and OH. Note that the mole fraction for H2O, the large molecules decrease steadlly with increasing temperature, while the mole fraction for the atoms O and H behave oppositely. The dlatomic molecules O₂, H₂ and OH all reach maximum at some temperature. So it is not generally known whether they will increase or decrease with a temperature change of small dimension, note how rapidly the composition is changing in the region of 3500K.

Similar shapes of the mole fraction are obtained for the combustion of NHair fuel mixtures as shown in figs. (3 and 4). Note the slmilarity with figs. (1 and 2). At low temperatures (less than 2000K)

only the triatomic molecules H₂0,0₂ and N₂ are present, while at high temperatures H.O and OH are present. At 3500K where the composition is changing rapidly, atoms diatomic and triatomic molecules are present in more nearly equal amounts.
Figs.(5 and 6) are

rn more needing to construct.
Figs. (5 and 6) are an illustrations of the sort of
result, obtained from chemical equilibrium composition calculations. of They reveal the profound influences of temperature and pressure for a reactant mixture of hydrocarbon (C₃H_R) with air. It can be seen from these figures that below 2000K the mixture consists of CO₂, H₂O, O₂ and
N₂, but when heated to 5000K at constant pressure the mixture vill have changed to comprise CO, H, OH and O. Note that the mole fraction for H₂O and CO₂, the large molecules, decrease steadily with increasing temperature, while the mole fraction for the atoms 0 and H behave
oppositely. The four diatomic molecules 0_2 , H_2 , CO and OH all reach maximum at some temperature, so it is not generally known whether they will increase or decrease with a temperature change of small dimension. Note how rapidly the composition is changing in the region of 3500K. The results shown in flg. 7 are a comparison for the results of calculations obtained for the H₂-Alr, NH₃-Air and C₃H₃-Air fuel
mixtures. The results reveal the influences of equivalence
ratio, pressure and fuel type on chemical equilibrium composition at 3500K. More results are shown in Table 3.

4-KINETIC NO AND CO CALCULATIONS:

The condition favourable to NO formation are those of high temperature, long residence time, high pressure and high oxygen
availability. The temperature effect is predominant. Under normal
condition, it is generally accepted that NO forms via the extended Zeldovich mechanism:-

The NO formation rates shown in figs. (8 and 9) and Table 3, were computed for such a mechanism, on the assumption of equilibrium
concentration of $[0], \{0_2\}, [0H], [H]$ and $[N_2]$ and making the steady
state approximation of $[N]$. These results show that for a given
temperature, NO produc lean mixtures, while it becomes lower for rich mixture. This can be seen for all temperature and fuel type considered. It is clear from these results that nitric oxide formation rates and equilibrium concentrations depend, strongly, upon temperature and equivalence
ratio. They decrease substantially as temperature is decreased
or as fuel-air ratio becomes exteremely fuel-rich or fuel-lean. The effect of fuel type on Nitric Oxide rates of formation is seen to be less profound.

 \overline{a}

 $\ddot{}$

 \bullet

Carbon monoxide is an inevitable intermediate in hydrocarbon combustion. Emission levels of CO can therefor only be minimized by completing as far as equilibrium allows, its oxidation to carbon dioxide. Conditions favourable to its oxidation are high temperature, oxygen availability, high pressure and long residence time. The
predominant mechanism for CO oxidation is:-

$$
0 + OH \xrightarrow{\kappa_{10}6} CO_2 + H
$$
 (17)

Assuming this reaction and equillbrium levels of [OH] and [H] it is possible to derive the results presented in fig.9 and Table3,
describing the CO production levels in terms of temperature, pressure
and equivalence ratio. These results show that for temperature in excess of 2000K, equilibrium carbon monoxide concentrations should be approached rapidly. It is clear that at these temperatures equilibrium carbon monoxide levels are acceptable for equivalence ratios less than unlty. As indicated, combustion temperature, pressure and equivalence ratio are major factors in determining CO rates of formation.

5- NOMENCLATURE

REFERENCES

1.A.M.Ibrahim and M.M.El-Faual, Thermodynamic Properties of the
Combustion Gases of Hydrogen, S.A.E Paper 841401, Fuels and Lubricatio Meeting, Baltmorn, Oct. 1984.

2.P.Sampath and F.Shum, Combustion Performance of Hydrogen Gas in a Small Gas Turbine Combustor, 5th World Hydrogen Energy Con-
ference, Tornto,Canda, July1984.

3.A.Chigier, Energy and Combustion Science, Pergomon Fress, 1979

4.A.A.Desoky, A Logical Bases for Advances in Combustion Technol-
ogy of Spark Ignition Engines,6th World Hydrogen Energy Con-
ference, Vienna,Austria,July 1986

5.W.Strobi and W.Peschko, Liquid Hydrogen As a Fuel of The Future for Individual Transport, 6th World Hydrogen Energy Conference,
Vienna, Austria, July 1986

6.A.H.Lefebvre, Gas Turbine Combustion, McGraw-Hill Book Company, 1976

7.E.S.Starkman, et all, Alternative Fuels for Control of Engine
Emission, Journal of Air Pollution Control Association, Vol.20, No. 2, 1970

B.A.Campbell, Thermodynamics Analysis of Combustion Engines, John Wiley and Sons, 1979

TABLE I. FROPERTIES OF SOME ALTERNATIVE FUELS

Froperty	Kerosine L.H2		L.C3H9	L.NH3
Lower Specific Energy MJ/Kg Cooling Capacity MJ/Kg Relative Density (289K) Specific Heat, KJ/Kg.K	42.B .38-.85 -80 1.97	116 20.2 -071 7.32	46. I.ZO .585	17.2 3.39 -682
Boiling Point, K Freezing Point, K Flame Speed m/sec	423-573 223. .39	21. 13. 2.67	-231 91. . 43	240. 195 .30

TABLE II COEFFICIENTS FOR CALCULATION REACTION CONSTANTS Kp

 $\frac{1}{2}$.

 $\ddot{}$

l,

 ϵ

ï

M. 79

 \blacksquare

 $\ddot{}$

Mansoura Engineering Journal (MEJ) Vol. 13, No. 1, June 1988

 \cdot

 \cdot

 \mathbb{R}^2

M. 81

-
Figure (1) Equilibri $-a$ L. .
Liet ad foar. - Air Aistean as prò acm.

KET TO FIGURES
FOR C3MB - AIA FUEL MIITURES
1=nCO2,2=nCD,3=nO2,4=nD,5=nMQ,6=nM2,7=nH,8=nH2,9=nOM,10=nH2O
FOR M2 - AIR AMD NK3 - AIR FUEL MIITURES,
Լ=nH2O,2=nH2,3=nD2,4=nN,5=n0,6=nOH,7=nM2,8=nMO

Section of the Section As

ļ

Exploration Concentration

 \cdot

 $\ddot{}$ ăs. \diamond . .. $\dot{\phi}$ - s.a. \mathbf{r} $+ . 0.4$ $\pmb{\kappa}$ ı, \boldsymbol{v} $\boldsymbol{\varkappa}$ ø łő $\,$ \overline{a} 2000 150 w 1500 1000 100 y. 5,500 a ut 1500 Tengarature (TJ *K Temperature (SI^NK) Temporanore (T) *K $F(\mathbf{g}) \in \Omega$ and μ p. (2-6) $\bar{\epsilon}_{\rm{R}}$ (2-d) \blacksquare

 \overline{a}

 \mathbf{i}

 $\overline{1}$

 \bullet

 ϵ

٣Ļ \bullet (3) t δ or C_0 H₂ ié aux

 \bullet

 \cdot

10 stm

 λ

 \bullet

 $\ddot{}$

 \mathbb{R}^3

ł

 $\ddot{}$

M. 89

Figure (9) Estes of the Co-temployer as a largeon of Tomputers and objections cases for C_j H₁-Az for meators.

 $\ddot{}$

ï

 \cdot

 $\ddot{}$

 $\ddot{}$