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ELASTIC STABILITY OF STEEL STRUCTURAL SYSTEMS
RESTRAINED BY INITIALLY CURVED MEMBERS
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ABSTRACT

The axial stiftness of elastic, initially curved, members i3 congidered
using small—deformation theory. Simple relations are obtained for the tangent
axial stiffness. The use of this eguivalent spring stiffpness is described in
an attempt to provide a unified description of the restraint given to a main
columh member by the provision of initially curved members at mid-height. The
buckling of 2 column element in the plane of the nonlinear restraints is
investigated. Further the purpogse of the analysis i3 to describe precise
valueg to the spring stiffness in the light of the analysis referred to the
above. Further. the matrix technigue illustrated in the present paper is
capable of generalization, especially ugind aulomatic  computatichal
procedures. Finally the critical load of the structural system is investigated
with respect to the presence cf imperfection in the lateral restraints.

THTRODUCTION

The nonlinear analysis of structural systems consisting of main
individual columns stiffened lateraliy by 1initiaily curved members are
congidered. Some unavoidable imperfection are taken into account and a
eritical state, still in the elastic range, is examined. The basgic equations
of the axial stiffness of elastic. initially curved. members are reviewed
egpecially to provide information on the equivalent spring stiffness of this
type of members. Simple relations are obtained for the tangent axial stiffness
in terms of the glenderness ratto, initial curvature and axial thrust in the
member. Then the use of this equivalent spring stiffness is described in an
attempt to provide a unified description of the restraint given to a main
column member by the provision of initially curved members at mid-height. The
reduction of the critical load is ipvestigated with respect to the presence of
imper{ection in the lateral restraints.

1: THE AXIAL STIFFNESS OF IMPERFECT CURVED, COMPRESSION, MEMBER.

Congidering a compression member that has initial curvature of sine wave
function as shown in Fig.(l) and given by:
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Y, = a sin(r-nli} CCx <l L {1

where; Y, ig the initial deflection of Lhe member from its cherd-line position
a_ is the amplitude and L i3 the chord line length at the initial
curved positicn

Further, the effect of compressive axial load upon Lhis initial shape i=
to amplify the initiai deflections such that the final deflected shape’y” is
easily obbained (6],

y = ~—-—2——~ sin -Z-2- (2)

in which; P e 1 o7 iz the Euler buckling load when the member is

perfectly straight ,and
i ig the chord line length of the 1nitially curved member.

Now Eg.{2] may be used to evaluate the shortening “Avof the chord~line
nf the curved member due to the compression applied load "P"

51 = as + AA ............... {3)

wWhere, An ig the chord-line shortening due to bowing and,
aA ig the axial shortening of the member due to direct stress {i.e due
to the axial force P } 1n which:
1 dy
- dy,=z -1 -2
A : DI (E;} dx : OI { iz ) ax
using Eqs.(l) and (2) for the values of Y, and v, then;
ﬂzao t 2 Mn
B = -=z= (=m=-- - 1) f cog-i- dx where p = B/P_

F
14 aoptz-p) L

A m wem=S 7 o(cos 20% 4 1) aw
B 2 2 o 1
4L ia-pn
or A = nla? Miz—pe) /a0 (1.-;.1)2 ................ (4}
B °

2z

- e n'a
and JS.A = iE_ (L + === ] ...... Pl e r e e am '[5]

Since the actual length of the unloaded member is approximately equal to

(L + nza:/4L).therefore

A ™ smmma— s i Ly - ) et (6)
&L l.-p)

It ig convenient to express Eq,{6) in non—dimensional form as folfows;
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- 2 2
let AL = Al/L g =a -L and P/AE = H I /A

where, A 135 the slenderness ratio (t-r) of the element, and
r i5 the radius of gyration
Then Eq.(6) may be re-wratten as follows:
- ezﬂz [ S ¥ ﬂ: le'Tz
a o= 2TeiEl T . -ETY
2 2z F
aie=Ih A

E
The axial stiffness of a curved member K can be defined as the load,
applied along the chord-line of the member, which will produce a total axial
shortening of the chord-line egqual to un:ity ie.

L]
P=K .a
L
where; P is the axial locad on the column
and Alis the total shortening, or total elongation, of the chord-line.
In general K- will be a function of P, but will reduce to the "Hooks low"
stiffness AE/L when the effect of bowing is ignored. therefora;
K' - P/Al or 1n non-dimengional form;
KL Mo 4}kzpu - _u;z (8)
";" B ':— = "‘5-‘-;—;'"——"""""_""“'-;_"‘_‘;'E ...............
Al T ¢ @ A i2—jiy + L= casg 11 1

Eq.(8) gives the non-dimensicnal tangent axial stiffness of the curved
member at any load level p in terms of the initial amplitude of the curved
shape, e, and the geometrical properties of the member. The initial stiffness
of the unloaded curved member (p=0) follows directly f(rom Eq.(8) by
differentiation of the numerator and denominator with respect to p, and
substitution of p=0 then,

X
L . . .. (9)
P 2(292.K . e:ﬂz . a)
E JJ___’O T
if the initial ture "e" i h " x?/n’
i e initial curvature "e" is zero . then (K /PEJ“___.O /n

i.e .K“I reduces to EA/v “the Hokes low™ stiffness.

Eq.({9) yields the equivalent axjal spring stiffness of an initially
curved member when used as a lateral restraint against buckling of a main
cglumn leg. By inspection in Eq.(9) it is seen that, the limiting walue of
K \/Px i.e. the tangent axial stiffness in non-dimensionalt form at  p=q,
reduces while the amplitude of the curved shape, e. increases,at limiting
value of A.

The effgct of axial load "P” on the non-dimensional tangent axial
gtiffnegss K L/P: for various values of X, when e= 0.003 by way of example, is
shown in Fig.(2).

The chart was obtained by plotting, qn horizontal axis, wvalues of the
non-dimensional tangent axial stiffness x l/vt and, on vertical axis, wvalues

of the slenderness ratio X. 1f ig seen that, from the diagrams shown in
Fig.{2), ths axial stiffness K reduces while the i value (i.e the applied
load P ) increagss at limiting value of curvature e.

2: THE ELASTIC BUCKLING LOADS OF A STRUCTURAL SYSTEM RESTRAINED LATERALLY BY
{NITIALLY CURVED MEMBER
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Conaider a simple problem of a main column leg pinned at its ends, and
restrained lateraliy by an elastic curved member pinned to the column at
mid-height and pinned to a rigid support at the other end, as shown in
Fig.{3). The problem is easily daalt with A matrix technique similar to that
employed in a general buckling analysis.

Now let {R}={FRx Ry M } be the small set of exciting forces, applied to
the node -1" Fig.(3), and { r } = { r= ry @ |} be the corresponding get of
node displacements. Then., the governing equation for the behaviour of the
system may be written as;:

{RYy=(KJ)¢{ry . (10)

where; { K ] 18 the overall gtiffness matrix of the sgpring-supported column,
and in this case i5 an asgembly of the member stiffness matrices for the
elements "a" and "b" together with the contribution from the equivalent spring
stiffness of the curved member,

Eq.(10} 13 an entirely general results in which the vector (R} is a
column matrix of all relevant node forces and (r} is the corresponding vector
of node displacements. The pregence of spring supports can always be
incorporated hy addition of appropriate spring stiffness to the corresponding
elements of the leading diagonal of ( K |. Ignoring this contribution from the
spring constraint, and referring to the elements "a" and "b" using the
conventional notation of end 1 and end 2, as defined in Fig.(2) it follows

that. in the simple structure under congideration

LK = Lk T+ 0k, 1 (11)

where: [k2zz] and [kia] are the elements stiffness sub-matrices abstracted from
a general statement aof an element {orce-displacement relationship of
the form ;

" kli klz
(F) = Cur (12)
k. k

21 Iz

where; F, u are member forces and member displacements respectively

It should be noted that,in thig case, [k22a}l and [kiib] are member
gtiffness sub-matrices appropriate to a beam-column element pinned to a rigid
support at end | and Z respectively, and allow for the presence of axial load
P in each element.

The overall stiffness matrix [K] for this pbarticular structure can be
obtained and derived as follows:

- AEA -
=
———— o o
Lc 160 KX
1 - P
b K o (13}
.2
c
40 _EX
(1] (1] _— 3 -—
L

L < o

where; K. is the equivalent spring stiffness of the curved member
gz is the flexural rigidity of the main column
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Ac, le are the cross sectional area and the owverall lengtn of the
column respectively, and

o1, oz are stability functions dependent upon the axial load in the
column and are defined as f[ollows;

ax‘—'s(l—cz)—n:um} ...............

oz = g(1 - c2 )

where; p = P/P_ = PL:/4nzmx is the ratio of the axial load 1n a column

element Lo the Euler load of the coiumn element.

and § = e

which f=ns2. ¥ H_

The general condition for structural instability is that |K|=0. from
which the following buckling criteria results;

This result is identical in form to that derived by Timoshinko and Gere
[12]1. The oniy merit of the analysis shown above is in that the technique is
entirely general for any elastic spring-supported asgemblage of element and
may be automated for a computer solution,

The investigation is typical of that which could be carried out when the
column is constrained laterally by a number of curved members pinned to it at
various points along its length

Equations {15) and (16) define completely the occurrence of all in-plane
buckling loads. There will be an infinite aumber of such loads and generally
it is the first buckling load which is of practical significance. ECxamination
of these equations gives the full account of the buckling behaviour,
interpretad in termg of the geometrical properties of the side c¢urved member
and main column. Firstiy examining Eq.(13) and writing e=2 in terms of (3 using
the results quoted above for S and €., the equation may be re-written in the
form;

_4ﬁ2tainzﬁ—ﬁcoazﬁ‘—ﬁ) _
2 (14 - Tcot 3+ « atn 23 - 2(3 coa 2fr

Inspection of Eq.{17) it is seen that:
az = 0 when (3 = ma/2 j.e.
oz = 0 when H o= 1 and the initially buckled shape is the anti-symmetric

one shown in fi1g (4-a). This may of may not be the first critical buckiing
load dependent upon the value of X resulted from Eq.{16}.

Now proceed to an examination of Eg.(16), and substitute for K‘l from
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Eq.(9). after re-arrangement of the algebra, making use of the non-dimensional
quantities Xe and Ae. the buckling criteria of Eq.(16) may be written in the
following form,

The buckling occurs when;

. (193
26 Am + 8T + 4
AaLcR:
where, v = -—-:;;I;-— O {20}

As ig the slendernsss ratio of the side curved member
Xe 15 Lthe slenderness ratio of the column

The sienderness ratios are defined as the actual length of the element divided
by the appropriate radius of gyration.

[t should be noted that ou is a function of the axial load on the main
column and Eq.(19) may yvield either the first or the second buckling mode. The
mode shape is shown in Fig.(4-b) whefe the lateral displacement of node 1
depends upon the spring stiffness 'K °

The results of the abaove analysis can be conveniently represented
graphically in chart form giving an automatic means of determining the
critical buckling loads from Eg.{(1%9)., alt a glance.

The behaviour is summarised in Fig.(5} for a range of laterally curved
member slenderness ratio 'Ae’ [rom 100 to 350 and a seiection of values of the
non-dimensional parameter . Two walues of the initial curvature, e, of the
lateral restraint are shown viz. ¢ = 0.003 and e = G.Gl. Similar charts could,
of course, be plotted for other initially curved shapes. The diagram was
obtained by plotting, on a horjzomtal axis,values of the gtability function
o, for various values of pe and. on a vertical axis, the ratio of the axial
load in the column to the Euler load of the complete column (uwe = aum), and
the right hand side of Eq.{19) for various values of v, & and Aa.

To use the chart in Fig.(5), locate the slenderneas ratio value of the
lateral restraint on the right-hand side vertical axis. Knowing the wvalue of
curvature e, then v value can be calculated from Eq.(20}. The chart is
traversed horizontally to meet the appropriate v curve, thence vertically to
intercept the single m1 plot . #aod therefore the horizontal traverse is
completed to intercept the left-hand si1de vertical axis at the critical value

of pe,

1t i3 seen that the chart in Fig.{(5) "is constructed specitically in terms
of geometrical properties and imperfections of the side curved member. Also
this chart predominantiy vields values of pe <4.0 and indicates that Eq.(19]
picks out the first critical buckling mode.

Finally, the relative importasce of Eq.(15) and (16} in picking out the
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{irst critical buck!ing mode may be summarised in one simple interaction
diagram between v and e, for any value of As, by substituting the valus of o1
at pm = 1.0 in Eq.(19}) and plotting the resulting equation in v and e.

Since eu = 81 - cz) - nﬂpﬂpnd it may be shown that s(l - czi = 0 when
B 1.0. then this condition, Eq.(19} reduces to:

n° o= v /(2&2R2=+ e¥n” & 4}

v o= na{ez{z‘\2’+ nz) Ay e (2%}
This result is plotted in Fig.t6}) . for a range of slenderness ratio of
the gide rail between 100 and 350. To determine whether the fairst critical
buckiing load of the column lies below or above pe = 4, (pm = 1.0), the
interaction diagram is entered with pre-determined values of v and e {which
are functions of the geometry of the system only). If the entry poinct lies to
the left of the curve corresponding Lo the appropriate value of Ae then the
firgt critical buckling load pe is leas than 4.0 and will be given by Fig.(5).
Other wige the first critical buckling load wil! be pe =4.0. The gecond
critical buckling load, which i3, of course, laryely of theoretical interest
only, can never exceed pe = 8.1684 since this corresponds to the mode shown in
Fig.(4-c], and requires an infinitely stiff constraint at mid-height of the
column.

CONCLUSIQNS

An attempt has been made to asgess the axial gspring stiffness of curved
elements and Lo apply the results to one fairly simple constraint problem.
Whiist the problem chosen has fair resemblance to a particular practical
condition. the main purpose in presenting the above work has been to provide a
unitied view of the elastic buckling behaviour of the system considered. The
pregsentation of information in chart form has the mer:it that the resuits of
the analysis can be ascertained with a minimum of involvement with the
algebra, and does completely describe the fundamentai behaviour concisely in a
gituation where there are many desaign parameters.

There seems to be no overwhelming difficulty in presenting similar charts
for more complex situations containing a number of spring constraints and even
including the effects of lateral-torsional buckling of elasto~plastic
bahaviour.
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