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GENERALIZATION QF FINITE INTEQRAL TRANSFCRMS
FOR TREATING NONLINEAR PROBLEMS IN HEAT DIFFUSION.

PART II: Application to & nonlinear case

a3 Aiaad] ,J.LL;JI B | R
PN R | I R NTEETINE] TR F
N T aded » Sl

Bishri Abdel-Hamid
Assistant Professor
Applied Mathematics and Physical Sciences Dept.,
Al-Mansoura University, Egypt

dalmdl pa il gl y v amgad] lelbad] gy gty ek il el
n ) el Gl e e e by fe ¢y le by ) Leeady
pl adaine ! fggd ety Uea Ay alnd¥] g Jad ey el e IPI] I S S WS R gV )
1in han ] g el Aldldedd| adalandl pY ] i g agllad] Jadi ] e
s syl pmad gl gal L Sphdh b dydeed bymdd dadl Val
e PR W ) .;-L‘ by

gl iad] oy bt by it o] Mhes by Jad | yla o gtat) b | Wl gdndd]
Ja b | @l ghall by placie Aeghd et o Yladl g daa i

ohel ady ¢ bbbk il agaall bolh dpitlae pe dohiddl aYalaJt
Gy S, ghadl y glelan Ja s Jpeaad] bea el iy et ] i by
B S | A e o R e I e T e N J EFVE N [y W T
N VY SV | B ¥ P |

ABSTRACT

A sgolutjon methodology, based on the finite integral
trapnsform technique, appropriate for solving nonlinear problems
of heat diffusion was develoged by the author in previous work
{1,2]. In this paper, Lhe method 1is applied to solve the heat
diffusion problem in a finite region subject Lo nponlinear
boundary conditions due to radiation exchange al the interface
according to the fourth power law. The results obtained form this
analytic solution are _compared with those obtained from a
nugﬁrécal solution developed using an explicit finite difference
method.

INTRODUCTION

Heat diffusion problems with nonlinear boundary condltions
arise in many practical situations [3-7]. In particular, the
nonlinear boundary condition appears in combustion systems [3],
where in the pre-ignition heating, the particle entering a
furnace and travelling toward a flame front receives haat
uniforaly by thermal radiation from the furnace walls and loses
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heat uniformly by convection to the surrounding gases. It appears
also in flash heating of powdered solids in wineral processing
industries [4], where particles are heated by convection and as
their temperature rigses they begin to 1lose heat by thermal
radiation. In nuclear technology, heat tranafer ia dominated by
bpiling, thermal radiation and forced convection [5]; therefore,
the heat tranafer coefficients depend on the surface temperature
and_ thus the boundary conditions become nonlinear.Similar
boundary conditions appear 1ln attic radiant barrier and other
applicationa [6-8].

The analytic solutionsa obtained from nonlinear heat
diffusion equations differ significantiy from solution obtained
from the, by aasumption, linearized equationa. Unfortunately, few
analytic solutions for nonlinear cases of heat diffusion have
appeareid, The inherent nonlinearity of these problems haa limited
analytical investigations to extremely simplified cases [9,10]

The fipite integral traneform technigque bas been applied to
linear homogeneous and nonhomogeneous problems {9,11,12] and then
applied to nonlinear heat conduction problema with variable
thermunl conductivity [13,14]. However, the metbod haa not been
vet directly applied to problems with nonlinear boundary
conditions.

Recently, a methodology based on the finite integral
tranaform for solving nonlinear diffuaion problems hag been
developed by the author [i]. The methodology ia demonstrated on a
heat diffusion probiem with nonhomogeneous separable boundary
conditions and the solution was compared to the exact solution in
[2]. The same methodolodgy is extended in thia paper to solve the
problem of hent diffusion in a finite region subject to nonlinear
boundary conditions resulting from a coupied convection and
radiation exchange at the surface according to the "fourth power

law”.
PROBLEM DESCRIPTION

A one-dimensional finite giab of thickness I la
considered. The slab has one surface insulated and the other
surface tranasfera heat to a convecting medium maintained at T,
and having a heat transfer coefficient h. At tbe same time,
there is heat exchange by radiation between the surface and the
enclosure which is maintained at T.. The convection
coefficient, h, the surface emisaivity, € and the
thermophysicai properties of the golid are agsumed invariant.
Finally, the initial temperature is assumed to be uniform
throughout the soiid.

The above trangient heat conduction problem can be descrlbed
by the following partial differentjial equation
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g;}{x,t) = é %%(x,t}; 0<x<L, >0, | (1)

gubject to the following boundary conditionsg
kK L(x,t) - B(T(x,t)-Tg) = 0€(T'(x, t)-T);

x=0, t>0 (2a)}
q(x,t) = 0; x=L, 0. (2b)
and the initial condition;
T({x,t) = T,. E=0, 0<x<L. {2c)
For convenlence, we recast the above governlng equation and the

auxiliary conditions into the following dimenaionless form

Lea,r) = Binyry (3)

subject to the following dlmensionless boundary conditions;

g%(n,r) ~ 8g{n,7}) = N(n,7,8) ; n=0, T>0 (4a)
Btn,1) =0 ; n=l, T>0 (4b)

and the dimenaionleas initial condition
f(n,7) = 1. . T=0, 0<n<l (4c)

The dimensionless parsmeters N, 7, 8 and 8 are defined in
the nomenclature. The right-hand side of equation (4a) is

W(n,7,0) = nfo'(n,7) -0]] - 8o {6)
where i1 ia the radistion constant and is defined as

0ET, L
k

{7}

where 9, € and k are the Stefan-Boltzman constant, the surface
emissivity, and the thermal conductivity, respectively.

FINITE INTEGRAL TRANSFORM SOLUTION

The flnlte integral trensform method ia applied to determine
the temperature distribution 0(n,T)}, The wethod procemda by
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treating the. nonlinearity as an effective nonhomecgeneoulty. The
associated eigenvalue problem is developed from conmwidering the
associated linear homogeneous part of the dimensionless problem
given by {(3) and (4).

Employing the method of separation eof variables on the
asaociated linear homogeneous problem yieldas the followlng
eigenvalue problem

2

%ﬁ% + 2\ w(n) = 0, . (8a)
subject to

ay

In — 8 w(n) = 0; n= ¢ (8b}

ay

= 0 ; y o n =1, (Bc)

The solution to this problem gives the eigenfunctions
v () = X, cosd, T + B mink.n, n=1,2,... {9)

which correspond to the discrete amt of eignvaluea given by the
transcendental equaticn :

8 coax, ~ X, sinx, = 0, n=1,2,... {10)
The orthogonality relation for the eigenfunction are

m#An

1 0'
J'w,,(n)w_(n)dn = {Ntk,}. m e n (11)

1]

where N{X,) ia the normalization integral given by

N(%) = 30 (\le8e8®) + 54-(A1-0")sin2), - Bcoa2), }.

n=1,2,... [12)
The integral tranaform pair ia developed uaing the orthogonality
relation and may be readily written as [9];

INTEGRAL TRANSFORM

0, = [ wmen,ry an. (13a)
INVERSION FORMULA

S v (). B,
8(n,1) = 2 "{"L({B" 1) (13b)

n=1
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Operating on {3) with f;wn(n)dn and on equation (8a) with

ILG{H.T)dn, subtracting the results followed by utilizing
the definition of the integral tranaform, yields

atv da$

2dn =

L8n,1) an -[10(n,1)50dn = SO, 1RO, ). (14)

n anl

t
fw

By tbe use of the second Green's theorem [9)] along with the
boundary conditions given by equationa {4) and equations (B8), one
can reduce equation {14} to the following syatem of first order
nonhomogeneous ordinary differential equations

dd

TO.T) + NP1y = -f(o,7,B)v (0)
, n=1,2,... {15)
subject to the following transformed initial condition
P(x,,0) = [, ¥ (n)8(n,0)dn, n=1,2,... {16)
where,

= v (md(n,,T)

ﬁ;{l‘l,ﬁl’,@) = 1l [“irsz __Nm'_] (17]

I=t

and where the inversion formula given hy equation (13b) ham been
utilized.

The asolution of equation {15} renders the dimenaionleas
integral tranaforn._@(kn,rj. The solution can be obtained
using an appropriate numerical integration 3scheme. Once
¢(x",1) is obtained, the temperature diatribution can be
reconatructed through the uae of the inversion formula.

RESULTS

The tranasient, nonlinear heat conduction problem subject to
a radiation boundary condition ie inveatigated for two casea. A
linear case characterized by no heat exchenge by radiatlon at the
boundary, i.e. i= 0, followed by a case of stronger nonlinearity
when fl=2. The results of the generalized finite integral
trenaform are compared to those obtained from a finite difference
schene.

In the firat case, all the heat exchange at front surface ia
due to convection. The temperature decay increases as Biot number
grows as shown in Figures (1) and (2). While the finite
difference method predicts higher values, the maximum difference
iln dimenslonlces tamperature predlcted form the two solution
methods 13 within 0.6X%,
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In the second case, the effect of a stronger nonlinearity is
considered by taking 1=2 and doubling the temperature of the
enclosure B,. As shown in PFigures (3) and (4) the solid’'e
tempersture response under these circumstances is dominated by
the radiation exchange and the effect of Biot number is not as
obvious as in the first case. The finite difference method
appears to predict lower values of temperature at the hack
boundsry. A maximum difference of 1.3X between the +two solutions
was noticed in this csse as shown in Table (I)}.

In both cases the back boundary responds slower to thermal
effects on the front boundary. However, the temperature of both
surfaces napproach esch other as time progresses until steady-
atate is reached.
CONCLUSIONS

The solution of a transient heat conduction problem subject
to nonlinear boundary conditions due to a coupled convection-—
radiation heat exchange has been obtained. It was shown that the
generalized finite integral transform provides a straightforward
methodology [or heat equations subject to nonlinear boundary
conditions. Combining this result with the results reported in
literature for other types of nonlinearities, it is concluded
that the (finite integral transform technique is a genperal
methodology that can be used to solve both linear and nonlinear
heat conduction problems. The method is systematic, consistent,
and computationally rapid.

NOHENCLATURE

Film thicknesas

Specific heat

A subscript denotea fluid

Heat transfer coefficient between the film
and the surrounding

Thermal conductivity of the slab

Thickness of a glab

Normalization integral

Dimenslonal time variable

Amblent temperature

Dimensional Temperatursa

A welight function

Space variable

A subsecript refers to solids
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Greak Syabol
@ . Thermal diffusivity
B = ﬂf Biot number
@(RH,T Transform of dimeneion legs teaperature
n = f Dimensionleas space variable
An Eigenvalues
B Dimensionless temperature of the surrounding
B(n,r):IL%LEl Dimensionleas temperature
p Density of solid
T = i?t Dimensionless time
v (n) Eigenfunctions
r Heat capacity ratlo
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TABLE {1}

RELATIYE DIFFERENCE 1IN TEMPERATURE CALCULATED FROH
THE FLNITE OLFFERENCE AND THE FINITE INTEGRAL TRANSFORM METHOOS

CASE - 1

T Relatlve Difference

TEMP. FRONT SURFACE TEHP. BACK SURFACE
TIHE tFITT) FO {FITT) FO
f
Biot = 0,01, Rad. Conset. = O, Trad = 2,0, and Tamb = 0
g.000 1.0000000 0.0000000 1.0000000 0.0000000
0.100 0.9964T0Q0 0.0050126 0.9999500 0.0039997
n.200 0.929502300 0.0110520 T 0,9994400 0.0070075
0.300 .9933%300 0.0Ll508RKT 0.9986500 0.0L10179
0.400 0.9928600 0.0201472 0.9977500 0.0L150303
0.500 0.9918700 0.0241935 0.9968000 0.01805K4
Bint = 0.1, Rad. Congt. = 0, Trad = 2.0, and Tamb = 0
a.000 L.aono0qQ0d 0.0000000 1.000000¢ 0.0000000
0.lvg ,.9652900 0.0010274 0.9992200 -=0.0040026
0,200 0.9514200 0,00231512 0.9940000 -0.0221129
g.300 0.9406200 0.0021291 N.9860700 ~0.0395502
0.400 0.9309600 -0.0032205 0.97T1700 -0.0542387
0.500 0.9217800 -0.0L08504 0.9673300 -0.0661145
giot = I, Rad. Conet. = 0, Trad = 2.0, and Tamb = n
0.000 ‘1.0000000 0.0000000 L.o000N000 0.0000000
0.100 0.7235800 0.0027617R8 0.9331100 -0,0493109
0.200 0.6433900 -0,0031128 0.9506400 -0.2219562
0.300 0,5888500 =0.0424526 p.s8918000 -0.3834935
g0.400 0.5441700 -0.1176057 0.8309500 -0,5222929
0.500 0.5045200 -0.2160450 0.7725300 -0.6472234
CASE -2
% Relative Difference
TEMP. FRONT SURFACE TEMP. BACK SURFACE
TIME {FITT) '?Di. {FITT) FD
Biot = 0,01, Rad. Consgt.= 2.0, Trad= 2.0, and Tamb= 0
g.000 1.0000000 0.0000000 1.0000000 0.0000000
0.100 1.9711601 -0.0020260 1.0471100 0.413511%
0.200 1.9799000 o0,.0010115 1.2189300 0.9401182
0,300 1.9844700 3.00554486 1.38261400 1.0523554
0.400 1.98T7900 0.0090556 1.5144800 1.0260950
0.500 1.9903600 0.0105532 1.6184700 0.952T7T493
Blot = 0.1, Rad. Const.= 2.0, Trad = 2.0, and Tamb = @
0.000 L.00O00000 0.0000000 1.0000000 0.0000000
0,100 1.9683000 -0.0045T28 1.0470039 0.4164202
0.200 L.9770600 0,.0000000 1.,2185200 0.9519759
0.300 1.95816300 0.0045419 1.35618001 1.0725212
0.400 1.9849600 0.00580596 1.51343100 [.0512702
0.500 1.9875300 0.0100644 1.6171900 0.9619494
Biot = 1.0, Rad. Const.= 2.0, Trad= 2.0, and Taab = 0
0.000 1.0000000 3.0000000 1.0000000 0.0000000
0.100 1.9394500 -0.0304192 1.0459R800 0.4445589
0.200 1.9483100 -0.0205279 1.2137400 1.0710706
0.300 1.8529300 -0.,01250D4 1.3735800 1L.2674551
0.400 1.9582000 -0.0071539 1.50247%00 1.2991970
B.500 1.9589000 -0.,0035722 1.6041400 1.2673502
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