Mansoura Engineering Journal

Volume 17 | Issue 1

Article 10

3-1-2021

Analysis of the 2-D Transient Heat Conduction in a Composite Finite Cylinder with Heat Generation.

Mohamed Mahgoub

Industrial Engineering Department., Faculty of Engineering., El-Mansoura University., Mansoura., Egypt.

Follow this and additional works at: https://mej.researchcommons.org/home

Recommended Citation

Mahgoub, Mohamed (2021) "Analysis of the 2-D Transient Heat Conduction in a Composite Finite Cylinder with Heat Generation.," *Mansoura Engineering Journal*: Vol. 17 : Iss. 1, Article 10. Available at: https://doi.org/10.21608/bfemu.2021.167394

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. For more information, please contact mej@mans.edu.eg.

ANALYSIS OF THE 2-D TRANSIENT HEAT CONDUCTION IN A COMPOSITE FINITE CYLINDER WITH HEAT GENERATION

BY M.M.MAHGOUB FACULTY OF ENGINEERING MANSOURA UNIVERSITY, EGYPT

الشوهيل الحراري الشير مستقر شناكي البيعد لهي أصطوانه مركبة و محدودة العلول مع وجود محدر حرارة داخلي

ABSTRACT

The objective of this paper is to study the 2-D transient temperature behavior in a composite finite cylinder with internal heat generation. For this purpose, a new dimensionless 2-D finite difference technique in the axial and radial directions is developed. The developed technique is then applied to obtain the time development of temperature profiles in a complex composite cylinder.

INTRODUCTION

The problem of heat conduction in rectangular fins both in steady-state and transient case receives recently great interest [1,2]. A single analytical 1-D transient heat conduction equation has been developed which is applicable for cartesian, cylindrical, and spherical coordinates [3]. The effect of temperature dependent thermophysical material properties has been considered in [4]. On the other hand, there is little activity on the 2-D heat conduction in cylindrical coordinates.

In nuclear industry, the transient temperature behavior of the fuel is of vital importance [5-10]. In light water reactors such as pressurized water reactor (PWR), the fuel rods are cooled convectively through the heat transfer into the cooling fluid. Therefore, the problem of heat conduction in the cylindrical fuel rod has been studied explicitly under predescribed conditions and assumptions. Conduction in the radial direction is usually taken into account [6,7,B]. With nonuniform cooling, conduction in the azimuthal direction must be considered. The steady-state heat conduction in the radial and azimuthal directions has been

considered in [9], while the transient case was studied in [10]. The general equation for heat conduction is

$$\nabla^{\mathbf{a}} \quad \mathsf{T}^{\mathbf{*}} \quad + \quad -\frac{\mathbf{q}^{\prime \prime \prime}}{k} \quad = \quad \frac{\mathbf{\rho}_{\mathbf{c}}}{k} \quad \frac{\mathbf{\partial}}{\mathbf{\partial} \mathbf{t}^{\mathbf{*}}} \tag{1}$$

Unfortunately, the exact analytical solution for Eq.1 for the 2-D case is formidable. Analytical solutions are obtained only for the 1~D conduction and simple boundary conditions [2,11]. In the present work, a new dimensionless finite difference technique is developed for the problem of transient heat conduction in the radial and axial directions in a composite cylinder with internal heat generation. The new technique is general and simple.

Fig.(1) Composite cylindrical system

PHYSICAL FORMULATION AND MATHEMATICAL MODEL

Figure (1) represents a composite cylindrical system. The heat is generated in the inner solid cylinder of radius R_1 . The material of this cylinder may be an electric conductor, nuclear reactive material or chemical reactor. This inner cylinder is encapsulated

Mansoura Engineering Journal (MEJ), Vol. 17, NO. 1, March 1992 M.26

.

within another cylinder having an inside radius RI and outside radius R2. The outer cylinder represents the cladding material of a fuel rod or the insulator of an electric cable. The contact resistance has been considered through the heat transfer coefficient in a very thin gap between the two materials. The system is cooled by convection into the surrounding fluid which has temperature that varies along the axial direction of the system from T_{in}^{*} to T_{out}^{*} . Numerical solution of Eq.1 is obtained through transforming it into algebraic equation. Therefore, the dimensionless time variable t and the dimensionless space variables r,z are broken into discrete intervals Δt , Δr , and ΔZ , as shown in Fig.(1). The inner solid cylinder is divided in the radial direction into N layer and the outer cylinder into N_{γ} layer. The entire system is then divided in the axial direction into NZ divisions. Applying the principle of energy balance for each nodal point i, j and rearranging, one gets the following dimensionless discretization equation :

$$T_{i,j}^{t+\Delta t} = a_0 + a_1 T_{i-1,j}^t + a_2 T_{i+1,j}^t + a_3 T_{i,j-1}^t + a_4 T_{i,j+1}^t + a_5 T_{i,j}^t$$
(2)

3-

where $T = \frac{T^* - T^*_{in}}{\Delta T^*_{g}}$, $\Delta T^*_{g} = q_c'' R_1^2 / k_1$, $a_0 = (q'' / q_c'') \Delta t$ and $\Delta t = (\Delta F o_r)_1 = \frac{k_1 \Delta t^*}{\rho_1 c_1 R_1^2}$

The following boundary conditions are applicable for the considered case :

i - at r = 0 (the innermost nodal points i = 1), we have

$$(\partial f / \partial r)_{r=0} = 0.0$$
 (3)

2- at $r = R_2/R_1$ (the outermost nodal points $i = N_1 + N_2$), we have $(\partial T/\partial r)_{r=R_{-}/R_{+}} = -(hR_{1}/k_{2}) \cdot (T_{N,j} - TF_{-j})$ (4)

at
$$z = 0$$
 (bottom nodal points $j = 1$), we have
 $(\partial T/\partial z)_{Z=0} = (h_L/k) \cdot (T_{i,i} - T_{in})$
(5)

4- at
$$z = i$$
 (the top nodal points $j = NZ$), we have
 $(\partial T/\partial z)_{Z=1} = -(h_L/k) \cdot (T_{i,NZ} - T_{out})$ (6)
where k in Eqs.5 and 6 is K_1 for material 1 and K_2 for material 2.
The coefficients $z = -2$ and $z = -2$

The coefficients a_1 , a_2 , a_3 , and a_4 which satisfy the above boundary conditions are listed in the tables below, where : $Y = 2 A_{\rm T} N^2 A_{\rm T}$

$$\begin{aligned} x_1 &= 2 \Delta r_1 N_1 \Delta t, & x_2 &= 2. \Delta r_2 N_2^{-1} (DR) (RD) \Delta t \\ Y_1 &= \varepsilon^2 Nz^2 \Delta t, & Y_2 &= Y_1 (DR) \\ E &= \left[0.5 + \frac{N_1}{H_g} + \frac{0.5 N_1}{N_2(CR)(RD)} \right], \text{ and } A(i) = R_i^2 - R_{i-1}^2 \end{aligned}$$

M.M.Mahgoub

The effect of the contact resistance at the interface between the first material and the inner surface of the second material is taken into account through the coefficients a_1 and a_2 for both layers N_i and N_i+1 .

	Interior nodes	Last column i = N _l	Bottom layer j = 1	Top layer j = Nz
^a 1	$-\frac{X_{1} r_{i-1}}{A(1)}$	$\frac{X_1 r_{i-1}}{A(1)}$	$\frac{X_{1} r_{i-1}}{A(i)}$	$\frac{X_1 r_{i-1}}{A(i)}$
^a 2	X ₁ . Y ₁ A(1)	X ₁ ri A(i) E	X _i r _i A(i)	Xi ri A(i)
a ₃	۲ ₁	Y ₁	$\frac{Y_1 H_{L1}}{Nz}$	Y ₁
a ₄	۲ ₁	Y ₁	^ч 1	Y1 HL1 Nz

Coefficients of the nodal points in the inner cylinder

Coefficients	of	the	nodaí	noints	iο	the	outer	cylinder
COELLICIENVS.	- C - J	0156	110084	horue?	* ()	VIIE	OUVEL	CATTIOCI

	Interior nodes	First column $i = N_1 + 1$	Last column i = N ₁ +N ₂	Bottom layer j = 1	Top layer j = Nz
a j	$\frac{X_2 r_{i-1}}{A(1)}$	$\frac{\chi_2 r_{i-i}}{A(i)}$	$\frac{X_2 r_{i-1}}{A(i)}$	$\frac{X_2 r_{1-1}}{A(1)}$	$\frac{X_2 r_{i-1}}{A(i)}$
a ₂	$\frac{X_2 r_i}{A(i)}$	$\frac{X_2 r_i}{A(1) E}$	$\frac{X_2 \text{ Bi } \Delta r_2}{A(1)}$	$\frac{X_2 r_i}{A(1)}$	$\frac{X_2 r_i}{A(1)}$
^a 3	Y ₂	Y ₂	Y2-1	Y2 HL2 Nz	Y ₂
a 4	Y ₂	Y ₂ .	Y ₂	Y ₂	Y2 HL2 Nz

For all modal points $a_0 \approx (q'''/q_2''')\Delta t$, and

 $a_5 = 1$, $a_1 = a_2 = a_3 = a_4$

Applying Eq.2 to each nodal point one gets a system of finite difference dimensionless equations. In this stage, The solution of this system can be performed using either the explicit or the implicit scheme [12]. In this work, the explicit scheme is used because of its simplicity although it is conditionally stable. As an illustrative example, the transient temperature profile of nuclear fuel rod of a FWR has been calculated. Such a composite cylinder system is chosen here because of its complexity as described in the Appendix, where the following data are valid:

 $R_1 = 1, RI = 1.021, R_2 = 1.18, = 0.001, RD = 6.29, CR = 6,$ DR = 9, $H_{g} = 6.44$, HH = 1.0, M = 2.55, and BI = 12.55. For this specific problem, the heat generation rate is a sinsoidal function in axial coordinate z, where

$$\frac{q^{\prime\prime\prime}}{q^{\prime\prime\prime\prime}} = \sin(\pi z) \tag{7}$$

To get the dimensionless temperature of the cooling fluid at any level z, the following dimensionless relation is then obtained from the heat balance :

$$= M \Delta Z \left[T_{N_{i}} - TF_{i} \right] + TF_{i}$$
(B)

TF j+1 Other systems are easier to deal with, such as electric cables, chemical reactors etc..

RESULTS AND DISCUSSION

Since there is no analytical solution of Eq.1 for the 2-D case in cylindrical bodies, then there are no reference data for comparison. Forthunatly, the radius to height ratio of the considered example is too small ($\varepsilon = 0.001$), which makes reasonable comparison between the numerically obtained values (at large time) and the 1-D steady-state values. The 1-D steady-state analytical solution of the considered example has been obtained in the Appendix.

Referring to Fig.2, the dimensionless temperature at the centerline T is 0.352 at t = 2 (which is steady-state value). The

physical centerline temperature is then given by

$$T_{o}^{*} = T_{o} \left(\frac{q_{c}^{*' \times 1}}{k_{1}} \right) + T_{in}^{*}$$

= 0.352x3045.7 + T_{in}^{*} = 1072 + T_{in}^{*} degree

According to the 1-D analytical solution given in the Appendix, the corresponding value is $T_0^* = 1074 + T_{in}^*$. Comparison between the

two values indicates well agreement which proves validity of the proposed numerical technique.

Figure 3 illustrates the radial temperature profiles at the bottom (z = 0.0), center (z = 0.5), and top (z = 1.0) of the composite cylinder. It is clear that the temperature distribution at the center is higher because the heat generation rate is a sinsoidal function in z with its maximum value $q_1^{\prime\prime\prime}$ at the z = 0.5. Another

important result is that the radial temperature profile at the top of the composite cylinder is higher than that at the bottom. This is expected since the temperature of the cooling fluid rises in the direction of z.

Figures 3 and 4 indicate the effect of Biot number on the radial temperature profiles at different times (0.1 and 2.0). It is clear that the effect of Biot number on the temperature of the outer cylinder is faster than its effect on the inner one. In addition, low Biot numbers exhibit higher temperature level. The time development of the radial temperature profiles for low Biot number (BI = 0.1) is given on Fig.6.

To examine the effect of the material thermophysical properties. the radial temperature profiles are plotted on Fig.7 for different

Mansoura Engineering Journal (MEJ),Vol.17,ND.1,March 1992 M.34

APPENDIX

Steady-state analytical solution of the 1-D heat conduction in composite cylinder with internal heat generation

Thermal and hydraulic specifications of a KWU 1300 MWe PWR [13] Heat generation rate at z = L/2 is $q_{\perp}^2 = 4.7 \times 10^8 \text{ W/m}^8$,

Inlet temperature $T_{in}^* = 291 \, {}^{\circ}C$,

Mass flow rate $m = 332 \times 10^{-3}$ Kg/s, Specific heat of coolant cp = 5.5 KJ/Kg.K, Fuel is UO₂,

 $k_1 = 2.5 \text{ W/m.K}, \alpha_1 = 8.28 \times 10^{-7} \text{ m}^2/\text{s}, R_1 = 4.025 \times 10^{-3} \text{ m},$ Cladding is Zircaloy-4,

 $k_2 = 15.13 \text{ W/m.K}, \alpha_2 = 7.538 \times 10^{-5} \text{ m}^2/\text{s},$ RI = 4.11×10⁻³ m, R₂ = 4.75×10⁻³ m,

Fuel rod active height L = 3.9 m, Heat transfer coefficient in the gas gap $h = 4000 \text{ W/m}^2$,

The heat transfer coefficient along the cooling channel $h \approx 40000 \text{ W/m}^2\text{K}$ as calculated using following Sieder-Tate correlation [5,11] Nu = 0.023 Re^{0.8} Pr^{0.4} $(\frac{\mu_{w}}{m})^{0.14}$

M.M. Mahgoub

M.35

Considering the composite cylindrical system described in the above figure, under steady-state condition the centerline temperature T_0^* is given by:

$$T_{0}^{*} - TF^{*} = (q^{\prime\prime} R_{1}^{2}/4k_{1}) + (q^{\prime\prime} R_{1}/2k_{g}) + \frac{q^{\prime\prime} R_{1}^{2}}{2} \left[\frac{1}{k_{2}} LN(R_{2}/RI) + \frac{1}{hR_{2}}\right]$$
(1)
here $q^{\prime\prime\prime} = q_{1}^{\prime\prime\prime} \sin(nz/L)$ (2)

where $q''' = q_c''' \sin(\pi z/L)$ (2) Substituting for values of $q_c''', R_1, R_1, R_2, k_1, k_2, h_g$, and h, we get

To determine TF^* consider the relation:

$$TF^* - T_{in}^* = \frac{L R_i^* q_c''}{m cp} \left[1 - \cos(\pi z/L) \right]$$
(4)

At
$$z = L/2$$
, we get $TF^* = T_{in}^* = 20$ degree (5)

From Eqs.3 and 5, we get
$$T_{\mu}^{*} \simeq 1074 + T_{i\mu}^{*}$$
 degree (6)