[Mansoura Engineering Journal](https://mej.researchcommons.org/home)

[Volume 17](https://mej.researchcommons.org/home/vol17) | [Issue 3](https://mej.researchcommons.org/home/vol17/iss3) Article 2

9-1-2021

Influence of Water Temperature and Side Slope on Sand Bed Channels.

Abdel Razik Zidan

Department of Agricultural Engry., College of Agriculture and Veterinary Medicine., Al-Qassim., Saudi Arabia

Follow this and additional works at: [https://mej.researchcommons.org/home](https://mej.researchcommons.org/home?utm_source=mej.researchcommons.org%2Fhome%2Fvol17%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Zidan, Abdel Razik (2021) "Influence of Water Temperature and Side Slope on Sand Bed Channels.," Mansoura Engineering Journal: Vol. 17 : Iss. 3 , Article 2. Available at:<https://doi.org/10.21608/bfemu.2021.170421>

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. For more information, please contact mej@mans.edu.eg.

Mansoura Engineering Journal (MEJ) Vol. 17, No. 3, Sept. 1992.

INFLUENCE OF WATER TEMPERATURE AND SIDE SLOPE ON SAND RED CHANNELS

Zidan, Abdel Razik Ahmed

Dept. of Agricultural Engrg, College of Agriculture
and Veterinary Medicine, Al-Qassim, Saudi Arabia

تاثير درجة حرارة العياه والميل الجانبى على القنوات الرسلية

> خلاص Ã.,

اسـتخدم نسـوذج رياضي لصعرفة مدى تاشير كل من درجة حرارة
الصيـاه وكذلك الصيل البانبي للقطاع المحاثي علي خصائص القطاع في
الأراضي الرعلية ، أثبتت الدراسة أن عمق الصياه وعرض القطاع لا يتحافران بارتقحاع درجحة الخصرارة ودلحك لبميع القنوات التى جم .
حَبِيباتَهِـا البلوسـط يسـاوي أو يقـل عـن فر مم ، أما في التصرفات
الكبـِيرة ومع الرمال الخفنة قد يقل عرض القاع ويزداد عمق الصياه خاصحة إذا ما تغيرت درجة الحرارة شوق الصفر الصنوي إلى حوال عشرين درجة منوية

كما اثبت البحث ان إنحدار اللاناة بقل بصورة منتظمة بإرتفاع درجـة النصـرارة وذلـك لـجميـح القتوات تحت الدراسة ، هذا وقد أجرى
تنـليل إحسـرارة وذلـك لـجميـح القتوات تحت الدراسة ، هذا وقد أجرى الطولي للقاع) ودرجة العرارة

إزديـاد الصيـل البـانيي للقطـاع المائي قد يقلل كل من عرض القطحاع وعملق المحيحاه ويزيلد علن إنتعدار القناة

ABSTRACT

A mathematical model was used to study the effect of both water temperature and side slope on sand bed channel geometry and longitudinal slope. The study has revealed no responses occurred for both mean width and water depth due to the
change in water temperature over 0 C for canal having median particle size ≤ 0.5 mm.

For canals having d_{50} \geqslant 0.6 mm, mean width decreased and water depth increased especially from $\vec{0}$ C to about 20 C.

Bed slopes decreased regularly with the increasing value of water temperature. Statistical analysis was used to fit this variation.

Both mean width and water depth decreased and bed slope increased with the increase of the channel side slope.

INTRODUCTION

The design of stable canal in alluvial material is the optimum aim of the irrigation engineer. Many different methods are given in literature, among these methods are the tractive force method, the regime theory and the live bed approach.

In contrast to the regime theory, Chang (1980) has proposed the minimum stream power concept. His method underpredict appreciably the mean width for large canals, but it provides representative answer to smaller streams(14). The designed bed channel is flatter than the actual bed, slope and the design bed level is generally below (3).

White st al (1982) stated that the mean width, water
depth and bed slope have adopted themselves so that the transport sediment is maximized. This hypothesis
equivalent to the minimum stream power concept, $\overline{18}$ 1^t underpredict the width of large canal but agreement is much better for small canal (14).

However an important objective in the channel design is to reach a hydraulic geometry that will minimize potential channel bed changes.

The live bed approach for the design of stable cross section wes used in this research work. Calculations were besed on Einetein-Brown's formula and liu-Hwang's equation.

Although lacey considered canals to be elliptical in
cross sectional shape, other hydraulicians assumed to be
parabolic in shape (4). Kennedy (1894), Inglis (1930) and
Blench (1957) confirmed that the regime section has a horizontal bed and steep side slope (14). However the
trapezoidal section is an appropriate representation. and
the value of side slope depends on he type of bank soil.

In this research work, trapezoidal section was considered with side slope (horizontal: vertical) 2:1, other side slopes were also considered for canal having $d_{50} = 0.05$ mm to show the influence of side slope on the section properties of channel in regime.

Ten values of actual discharge ranged from 0.15 m³/sec.
to 9.33 m³/.sec. and their corresponding mean width, weter depth were incorporated into the model these section properties having median particle size varied between 0.05 mm and 0.1 mm (very fine sand).

 ϵ , ϵ

Different degrees of sand bed roughness were also tried,
i.e. fine sand, medium sand and coarse sand (9). The actual mean widths and water depths were used as initial values for computations to get the designed mean width, water depth and
hed slope for every corresponding median particle size. For the study of water temperature sifect, the sediment concentration was considered to be 50 p.p.m.

THEORETICAL CONSIDERATION

Two equations were used in the design of stable cross
section as mentioned before, Einstein- Brown's formula (6) and Liu- Hwang equation (10,11). 1-Einstein- Brown's formula is given by:

ð $F \vee \frac{1}{7} g(Ys - 1) d_{s}$

in which;

= dimensionless measure of bed load; Ф. q_s = sediment discharge in volume per unit time and width; d_s = bed material size; γ = specific weight of water; Y_s = specific weight of bed material; and = settling velocity representation term which is given by:

 $\begin{array}{c|c}\n & 36 \text{ V}^2 \\
\hline\n-\sqrt{25.14 \text{ V}^2 - 1.148 \text{ V}^2} \\
y' & g d_{\epsilon} \, s (\frac{y}{\gamma} - 1)\n\end{array}$ $36 \mathcal{V}^2$ gd_s³ $(\frac{1}{7}-1)$ \ldots (2) 3

where, (ν) is kinematic viscosity of water and it is based on water temperature. Values of dynamic viscosity and specific weight of water decrease with the increasing value of water temperature.

 ϕ is related to the entrainment function Ψ , which is given by:

$$
\Psi = (-\frac{\delta_{s} - \gamma}{T_{a}}) d_{s} \dots \tag{3}
$$

```
where \sqrt{\tau} = average shear stress on the channel wetted
perimeter.
```
 (4) $\Phi = \mathbf{K}_1 \cdot \Psi^{-1} \mathbf{K}_2.$ K₁ and K₂ are constants to be determined from field data 2- Liu and Hwang's formula is given by:

 $V = C_n R^x S Y$ (5)

in which:

 $V = mean$ velocity of water in $m/sec.$; $R = hydraulic radius m;$ $S = non-dimensional slope; and$ C_a, x, y are coefficients depend on the median particle size of bed material and bed formation and are obtained from charts.

The bed material d_x was considered to be the median particle size (dso), the model was based on lower regime (ripples and dunes), although ripples and dunes show some differences, but their geometric appearances show remarkable similarities (8). However there is still considerable interest in investigating the relationship between suspendid sediment and bed forms (1).

The two equations have provided simulated mean width, water depth and bed slope, for large extensive field data, to an acceptable degree of accuracy (12).

RESULTS AND ANALYSES:

Generally no responses occurred in both mean width and
water depth due to the change of water temperature over OOC for canals having $d_{50} = 0.05$, 0.1, 0.2, 0.3, 0.4 and 0.5 mm Canals having median particle size $d_{50} = 0.6$ mm and 0.7 mm showed no change in both mean width and water depth over 10°C for any value of water discharge.

Mean Width:

The minimum width of straight alluvial channel with or without sediment load is a function of the tractive force and sliding strength of the bank soil, i.e. it depends on specific weight of water and viscosity.

For $Q = 9.33$ m³/sec. and $d_{50} = 0.6$ mm, the mean width decreased from 10.26 m at 0°C to 10.01 m at 10°C (2.4 %). Canal having $d_{50} = 0.7$ mm with the same discharge, the mean width decreased from 12.26 m at 0°C to 12.01 m at 10°C $(2.1%).$

Canals having $d_{50} = 0.8$ mm and $Q = 8.5$ m³/sec, the mean width decreased from 11.26 m at 0°C to 11.03 m at 10°C (2.2 $\frac{1}{2}$ and at 50°C the mean width became 10.78 m (4.4%). For Q = 7.0 m³/sec, the mean width decreased from 8.75 m at 0°C to 8.5 m at 10°C (2.9 %) to 8.25 m at 50°C (5.7 %), and for $Q =$ 6.19 m³/sec. the mean width decreased from 7.14 m at 0°C $+ \circ$ 6.88 m at 10° C $(3.5 %)$.

Water Depth:

For $Q = 9.33$ m³/sec. and $d_{50} = 0.6$ mm, the water depth increased from 1.49 m at 0°C to 1.57 m at 10°C (5.4 %) for
 $d_{50} = 0.7$ mm with the same discharge, the water dapth increased from 0.94 m at 0°C to 0.95 m at 10°C (1.1%).

Canals having $d_{50} = 0.8$ mm, as the water temperature canals from 0°C to 20°C the water depth increased from 0.69 m to 0.71 m $(2 \frac{6}{9})$ for $Q = 8.5$ m³/sec., from 0.71 m to 0.74 m $(4.2 %)$ for Q = 7.0 m³/sec. and from 0.74 m to 0.76 m $(2.7%)$ for $Q = 6.19$ m³/sec.

No changes occurred in both mean width and water depth for canals having discharges less than 6.19 ms/sec. and median particle size > 0.6 mm.

It may be concluded that a decrease in mean width and increase in water depth occurred due to the increase of water temperature. However these changes in section properties did not exceed 6% for discharges and median particle sizes under study.

Bed Slope:

Bed slope decreased regularly with the increasse of water temperature for any value of discharge and median poarticle Specific function could be tried to fit this size. variation, logarithmic, polynomial from the first degree to the fifth degree, exponential and power functions were tried, using the statistical computer program "SAS". Polynomials
from the fourth degree and fifth degree were excluded from this analysis for providing parameters having $n₀$ significance.

For fine sand $(d_{50} = 0.1$ mm) cubic polynomial is not sultable to fit the data, its parameters have no significance seven discharge values out of ten, variation of bed slope with temperature, could not be fitted by this function. at Q = 9.33 m³/sec. prob > T = 0.1595 for X² and prob > T = 0.9052 for X^3 (X represent water temperature) Table (1). At Q = 0.15 m³/sec (minimum value) prob $2T = 0.0958$ for X^2 and prob > T = 0.2156 for X^j . Table (2).

If Durbin-Watson statistic (d) is close to 2 the errors If Durbin-watson statistic (d) is close to 2 the errors
are uncorrelated i.e each error is not correlated with the
error immediately before it, (d) is used to test that the
auto-correlation is zero and good fit of the dat m³/sec. and Durbin-Watson (d) is close to (2). The
alternative function could be the logarithmic function it
has $R^2 = 0.9257$ for $Q = 0.15$ m³/sec. d = 1.628 and
 $R^2 = 0.8401$, d = 1.367 for $Q = 9.33$ m³/sec. Other exhibited smaller values of Durbin - Watson coefficients.

For medium sand $(d_{50} = 0.3$ mm), statistical analyses
showed that more than one value of water discharge, decrease of bed slope with temperature, could not be fitted by any of the statistical function under study. Four values of water discharge, variation of bed siope with temperature, could not
be fitted by cubic polynomial for providing parameters
having no significance. Quadratic polynomial, logarithmic
and power functions could be used, but logarith has higher values of R^2 and Durbin Watson (d) is close to (2) Tables $(3,4)$.

For coarse sand $(d_{50} = 0.5$ mm), statistical program SAS
showed, the change of bed slope with temperature, for two
values of discharge had poor correlation, using any of the functions under study. Cubic polynomial, quadratic polynomial, logarithmic and power functions could be used to fit the data, cubic polynomial had the biggest value of R? but logrithmic had the biggest value of (d) close to 2 for $Q = 9.33$ m³/sec. For $Q = 0.15$ m³/sac. cubic polynomial exhibited the biggest values of both R² and (d). Tables (5,6). It
seems suitable to fit the variation of bed slope and
temperature either by cubic polynomial or logarithmic function.

The logarithmic function is given by:

in which; $y = bed slope(S)$ and $X = water$ temperatur (T) it was found that there was no significant difference between

coefficient (a) and the bed slope at zero temperature degree centigrade, the error between (a) and S₂ decreased with the increase of median particle size, it reached a maximum value
of 7.7 % at d₃₉ = 0.05 mm and 3 % at d₅₉ = 0.5 mm. So equation (6) could be written as: (7) where, $b = coefficient$ depends on median particle size and water discharge and section properties. Values of (b) are given in Table (7). Quadratic polynomial is given by: $Y = a + b_1 X + b_2 X^2 \dots \dots$ (B) (9) No significant difference was found between bed slope at
zero degree and coefficient (a), equation (9) could be written as: (10) Coefficients b₁, b₂ depend on water discharge, median particle size and section properties. In the same manner cubic polynomial could be written as: $S = S_0 - b_1T + b_2T^2 - b_3T^3$ (11) Values of some polynomial coefficients are given in Table (8) Figs (1) through (6) provided logarithmic variation
between bed slope and water temperature for different values of median particle size under various values of discharges. The corresponding quadratic polynomial functions are given in Figs (7) through (12). Cubic polynomial variations are demonstrated in Figs (13) through (16). The figures on the
graphs are the discharge numbers, Table (9). These figures
show that quadratic polynomial is the best fit for d₅₀

Side Slope

for $d_{50} = 0.5$ mm.

For the same values of water discharge, median particle size $(d_{50} = 0.05$ mm) and water temperature (T = 20°C), side

0.05, 0.1 and 0.2 mm and the cubic polynomial is convenient

slope z = 2.0 could exhibit smaller Values of both mean width and water depth and bigger values of bed slope than the corresponding values at side slope $z = 1.5$ Table (9).

Figs (17) through (20) give the variation of relative bedslope S/S_o with temperature for different values of discharges, side slope z = 2.0 could provide higher values of $S/S₂$ than $z = 1.5$ for bigger values of discharge Figs. (17,18) Smaller values of discharge may exhibit the reverse answer Figs. (19) . However for some discharges, side slope has no effect on the variation of S/S_o with temperature Fig. (20). The rate of decrease of S/S_c decreased with the smaller values of median particle size Fig. (21).

Fig. (22) shows the influence of side slope on the relative bed slope S/S_{100} , in which S_{100} is the bed slope at sediment concentration $C_g = 100$ p.p.m., the difference between the two curves decresed with the decrease of discharge.

Type of Flow:

The flow was in subcritical condition, canals having
median particle size $d_{50} = 0.05$, 0.1, and 0.2 mm showed
negligible change in the value of Froude's number (F_r) with temperature. Other values of median particle size showed decrease in the value of F_r with temperature Table (10). The decrease of F_r due to the increase of temperature may make lower regime (ripples and dunes) to exist at bigger values
of median particle size. Simon and Senturk (1977), stated
that ripples do not form in sand bed sediments greater than
about 0.6 mm in diameter (7). However lower r exist at $d_{50} = 0.8$ mm with maximum value of $F_r = 0.37$. A review of the extensive literature on alluvial channels,
suggests that little is known about the transition from the lower flow regime to the upper (flat and antidunes) flow regime (2) .

Reynold's frictional number R_f increased with the increase of water temperature Table (10), when R_f (5 the bed is described as hydraulically smooth when R_f > 70 the bed is described as hydraulically rough and the mobility of
sediment particles becomes independent of Rf (5,15). The increase of R_f may change the condition of flow from smooth
turbulent to transitional turbulent $R_f > 5$ < 70 for very fine, fine and medium sand and from transitional turbulent to rough turbulent condition for coarse sand.

CONCLUSIONS:

Water temperature may have no effect on mean width and water depth of canal established in, very fine, fine and medium sand.

Increase of water temperature could decrease the mean width and increase the water depth, especially from OOC to about 20°C for canals having median particle size $d_{50} = 0.6$, 0.7 and 0.8 mm (coarse sand). These changes of section
properties could be of a *mugligible* influence.

Bed slope decreased regularly with the increasing value of water temperature. Quadratic polynomial was found to fit
this variation for very fine and fine sand, while in coarse sand cubic polynomial was the most convenient. However It was found that logarithmic function could be suitable to fit the variation of bed slope with temperature for the different degrees of median particle size.

Side slope has an effect on a channel in regime, the bigger value of side slope (horizonatal : vertical) may give smaller values of both mean width and water depth and higher values of bed slope.

Increase of water temperature decreased the value of
Froude's number and increased Reynold's frictional number. The decrease in Froude's number could give a chance to lower regime (ripples and durnes) to exist for canals having bigger median particle size. The increase of Reynold's
frictional number could change the condition of flow from smooth turbulent to rough turbulent condition.

It is hoped that the analyses presented in this work are of some interest to researchers in the same field for developing a more comprehensive study.

REFERENCES

- 1 Asseda, T. et al, Sediment Entrainment in Channel with Ripple Bed", Journal of Hydraulic Engrg, ASCE, Vol. 115, No. 3 March 1989 pp 327-339.
- 2 Brownlie, W.R., "Flow Depth in Sand Bed Channels", Journal of Hydraulic Engrg, ASCE, Vol. 109, No. 7 July 1983, pp. 959-990.
- 3 Change, H., "Hydraulic Design of Erodible Bed Channels",
Journal of Hydraulic Engrg, ASCE, Vol. 116, No. 7, Jan. 1990 pp. $87-101$.
- 4 Chow, V. T., " Open Channel Hydraulics" McGraw Hill Book Company Inc., London, 1959.
- 5 Dargahi, B., "Controlling Mechanism of Local Scouring",
Jounral of Hydraulic Engry, ASCE, Vol. 116, No. 10, October 1990, pp 1197-1214.
- $M.H.$ "Hydraulics of Sediment Transport", $6 -$ Graf. McGraw-Hill Book Company, London, 1971, pp 84-159.
- 7 Griffiths, G., 'Form Resistance in Gravel Channels with
Mobile Bed, "Journal of Hydraulic Engrg, ASCE, Vol. 115, No. 3, March 1989, pp 340-355.
- 8 Haque M. and Mahmoood K. "Geometry of Ripples and Dunes, Journal of Hydraulic Engrg, ASCE, Vol. 111, No. 1, Jan. 1985, pp 48-62.
- 9 Jensen, M.E.," Design and Operation of Farm Irrigation Systems", An ASAE Monograph No. 3, ASAE, 1980, p 48.
- 10- Leliavsky S, "River and Canal Hydraulics", Constable. London, 1965., p 84.
- 11- Liu K. and Hwang, S.Y. "Discharge Formula for Straight Alluvial Channels, Journal of Hydraulic Engrg, Vol. 85, No. 11, Nov. 1959, pp. 65-97.
- 12- Saleh, M.M., "Design of Stable Alluvial Channels, " M.Sc. Thesis, Civil Engrg Dept., Cairo University , 1984.
- 13- SAS Institute, "Statistical Analysis system", SAS User Guide Statistics, Cary, NC : SAS Institute Inc, 1982, p 62.
- 14- Stevens, M.E., "Widths of Straight Alluvial Channels", Journal of Hydraulic Engrg, ASCE, Vol. 115, No. 3, March 1989, pp. 309-325.
- 15- Whiting, p. J. and Dietrich, W.E. "Boundary Shear Stress and Roughness over Mobile Alluvial Beds", Jounral of Hydraulic Engrg, ASCE, Vol. 116, No. 12, December 1990, pp $1495 - 1509.$

NOTATION

The following symbols are used in this paper:

- $= coefficient;$ \mathbf{a}
- $b =$ mean width;

Mansouro Engineering Journol (MEJ) Vol. 17, No. 3, Sept. 1992.

```
b_1, b_2, b_3 = coefficients;
    C_3 = coefficient;
    \mathtt{C_{s}}= sediment concentration p.p.m;
    C
        = degree centigrade;
       = water mean depth;
    D.
    d = Durbin - Watson statistic;d_{\epsilon} = bed material size;
    d_{50} = median particle size;
    \mathbf F= settling velocity representation term;
    \mathbf{F}= statistical parameter F - test;
    F_r = Froude's number;
        = acceleration of gravity;
    Œ
K_1, K_2 = constants;
        = water discharge;
    Q
        = sediment discharge in volume /unit width;
    \alpha_{\rm x}\mathbf{R}= hydraulic radius;
    R_f = Reynold's number of friction;
    R^2 = multiplecorrelation coefficient
                                                       of
            determination,
R^2 adj
        = adjustable
                          multiple
                                       correlation
          coefficient of determination;
    s
        = non-dimensional slope;
    S_{\circ}= bed slope at zero temperature degree;
        = statistical parameter t-test;
    T
        = temperature;
    т
    v
        = mean velocity of water;
    x
        = parameter = temperature T;
        = coefficient;\mathbf{x}Y
        = function = S;
        = coefficient; and
    у
        = side slope (horizontal : vertical);
    z
Greek letters:
    Υ
        = specific weight of water;
        = specific weight of bed materials;
    γε
    \gamma = kinematic viscosity of Wa<br>\tau_o = average bed shear stress;
        = kinematic viscosity of Water;
    Φ
        = dimensionless measure of the bed load; and
    U
        = entrainment function.
```
 $C.21$

Zidan, Abdel Razik Ahmed $C. 22$

Mansoura Engineering Journal (MEJ) Vol. 17, No. 3, Sept. 1992.

 $C.23$

Mansoura Engineering Journal (MEJ) Vol. 17, No. 3, Sept. 1992.

 $C.25$

C.28 21dan, Abdel Razik Ahmed

Table (1) Statistical analysis, "SAS" program

Table (2) Statistical analysis, "SAS" program
 $Q_{n1n} = 0.15$ $\approx 7/380^\circ$. $d_{50} = 0.1$ mm

Function			Analysis of variance		Parameter estimate		$Durbln-$	Jst order	
	F	$prab$ F	RХ	$R \nmid$ adj			prob(T)	Watson (d)	auto∸cor∽ relation
Logarithmic	125.676	0.0001			$0.9332(0.9257)$ lntercep LN (X)	-	74.157.0.000111.379 11.21110.00011		(1.221)
Exponential LN (Y)	67.140	0.0001			$0.881810.8687$ [Intercep -746.430 0.0001 1.207 x	-	8.19410.0001		0.100
Polynomial lst degree	56.410	0.0001			0.8624 0.8471 (Intercep) х	$\overline{}$	74.438 U.0001 1.157 7.511 0.0001		0.117
Polynomial 2nd degree	62.801	0.0001	0.9401	0.9252	Intercep x χz	$\overline{}$	79.61210.00011 5.945 0.0003 3.222 0.0122	1.871	-0.071
Polynomial 3rd degree	46.952	0.0001			.9527 0.9324 Intercep x xz x_{3}		70.118 0.0001 3.883(0.0060)1.973 1.92410.0956 1.36110.2156		-0.052
pover LM(Y)	101.938	0.0001			0.9189 0.9099 Intercepi-582.974 0.0001 1.242 LN(X)	-	10.096 0.0001		0.278

Function			Analysis of variance			Parameter estimate	Durbin Watson	ist order auto-cor-	
	F	prob>F	RZ	R^2 adji			prob>T	(d)	relation
Logarithmic	164.964	0.0001			0.9483 0.9425 Intercept LN (X)	259.615 0.0001	12.84410.0001	1.628	U.067
Exponential LI(Y)	50.810	0.0001		0.8495 0.8328	x	$Intercap[-1967.819]0.0001]0.585$	7.128 0.0001		0.446
Polynomial lst degree	48.751	0.0001		0.8442[0.8268]	Intercep ı	225.841 0.0001 0.582 $\overline{}$	6.821 0.0001		0.445
Polynomiai 2nd degree	139.187	0.0001		0.972110.9651	Intercep ı X2	376,423 0.0011 10.01 6.05	0.0001 0.003	1.274	0.230
Polynomial 3rd degree	313.315	0.0001		0.992610.9894	Intercep X2 Xэ	588.914 0.0001 -	11.937 0.000112.862 6.280 0.0004 4.41110.0031		-0.452
power LT(Y)	154.729	0.0001			LT(X)	$0.9450 0.9389 $ intercep $-2106.334 0.0001 1.60$ ÷	12.439 0.0001		0.078

Table (3) Statistical analysis, "SAS" program
Q_{max} = 9.33 m³/sec. d₃₀ = 0.3 mm

Table (4) Statistics: analysis, "SAS" program
Quin = 0.15 m³/sec. d₃₀ = 0.3 mm

			Analyais of variance			Paremeter estimate	Durbin-	lst order auto-cor- relation	
Function	F	prob>F	RZ edi R2				prob >T		
Logarithmic	173.866	0.0001			$0.9508 0.9453 $ intercepi LM (X)	261.65 13,1861	0.0001 0.0001	1.370	0.191
Exponantial LN(Y)	53.268	0.0001				$0.8555 0.8394 $ intercep(-1922.877) 7.290	0.0001 0.0001	0.455	0.492
Polynomial lst degrae	51.02	0.0001	0.85011	0.8334	intercepl	226.249 0.0001	7.143 0.0001	D.461	0.488
Polynomial 2nd degree	334.159	0.0001	0.9882	0.98521	intercep! x χz	568.802 0.0001	15.75810.0001 9.665 0.0001	0.924	0.324
Polynomial 3rd degree	3467.6B1	0.0001		0.999310.9990	Intercepi χï Xч	1918.09910.0001	36.76010.0001 17.28510.0001 10.777 0.0001	1.425	0.162
pover LN(Y)	162.996	0.0001	0.94771	0.9419	Intercep LN(X)	-2067.276 0.0001	12.676 0.0001	1.345	0.201

 \sim \sim

C. 30 Z习dan, Abdel Razik Ahmed

Table (5) Statistical analysis, "SAS" program
Qmax = 9.33 m³/8ec. d₃₀ = 0.5 mm

Table (6) Statistical analysis, "SAS" program

Qain = 0.15 m³/sec.
 $\frac{d_{30} = 0.5 \text{ mm}}{100}$

0 m ³ /sec $9.33(8.507, 0016.1914.6612.7112.3311.3510.610.15)$ nean ld ₅₀ prom						value
0.05			2.05 2.78 2.14 2.92 2.77 2.34 3.61 3.48 3.82 3.61 2.95			
0.10			$\left[1.99\right]2.69\left[2.42\right]3.57\left[2.68\right]2.21\left[3.30\right]3.47\left[3.86\right]3.13\left[2.93\right]$			
0.20			$1.5833.1212.6322.243.1112.9013.8111.823.6913.812.87$			
0.30			$2.30 0.71 3.23 1.22 1.31 2.87 3.88 4.54 3.75 3.87 2.77$			
(1.40)			$\left\{1.77\right\}2.37\right\}0.80\left\{2.47\right\}2.66\left\{2.27\right\}1.62\left\{3.49\right\}2.86\left\{2.91\right\}2.32$			
0, 50			$3.78\substack{15.001}$ $2.93\substack{15.201}$ $5.21\substack{14.681}$ $6.44\substack{17.271}$ $0.03\substack{16.191}$ 4.67			

Table (7) Values of (b x 10*) In the equation
 $S = S_0 - b \text{ LN}(T)$

 $M.B.$ for $d_{50} \le 0.4$ the mean value of (h) decreased with the increasing value of median particle size.

 \bar{z}

C. 32 Zidan, Abdel Razik Ahmed

							$S = A - b_1$ T + b_2 T' - b_2 T'							
Q	\blacksquare	b.,	b,	\mathbf{a}	b ₁	b ₂	\mathbf{a}	b,	۱b۰	h.	\mathbf{a}	b,	b,	h_1
$m \frac{1}{2}$ 96C	× 10>	×	$\boldsymbol{\mathsf{x}}$ 107 107	\mathbf{x} 105	\mathbf{x} 107	$\boldsymbol{\mathsf{x}}$ 10*	x 105	\mathbf{x} 107	\mathbf{x} 10 ⁴	$\boldsymbol{\mathsf{x}}$ 1011	× 105	\mathbf{x} 10 ^T	× 107	× 1011
	9.33 19.48 1.91 1.31			56.01					4.06 2.79 19.51 2.54 3.35	1.69	$58.08 - 5.4$		7.12	3.56
	8.50 25.98 2.54 1.75			76.64	5.37		3.69 26.02 3.39		4.46	2.23	$[76, 74]$ 7.1		9.41	4.71
			7.00 23.78 0.09 -0.596						$74.40 10.25 10.65 23.64 - 2.52 - 9.02 - 6.93 $				74.02 2.9 - 13.08 - 19.47	
			$6.19\{27.12\}2.66$ 1.63	79.69		5.58 3.83 27.17			3.55 4.69	2,36	79.79 7.43		9.80	4.91
			4.66 27.03 2.96 2.13	80.631		4.95 3.01 17.1			4.31 6.49	3.591	80.72[6.74]		8.801	4.77
			2.71 24.89 2.44 1.67	71.75		5.02 3.45 24.93			3.25 4.29	3.15	71.84 6.68		8.81	4.41
	2.33 33.11 4.35		3.96										98.80 $\{6.92\}$ 4.75 32.44 - 8.49 - 37.46 34.09 98.92 9.20 $\{2.11\}$	6.06
			1.35j38.23j3.75j2.57	111.45 7.80 5.36 38.29 4.99 6.58									3.30 111.58 10.4 13.67	6.84
			0.60 31.34 3.07 2.11			90.82 11.67 14.96 31.39 4.09			5.40	2.71			$90.62 \mid 7.68 \mid 2.10 \mid -10.59 \mid$	
			0.15 31.94 3.13 2.15			$94.91 \mid 6.65 \mid 4.56 \mid 31.99 \mid$		4.17	5.50	2.76			$95.03[8.84]$ 11.62	5.81

Table (8) Conted. Values of polynomial coefficients

					aide alope z = 3:2 = aide alope $z \approx 2$:1		
Disch. No.	Q m+/sec metrs metrs x 10>	в	IJ	s	в	Ð metre metre x 10>	s.
7	9.33	11.50	2.01	1.94		9.51] 1.85	2. OB
2	8.5	7,78		1.0013.01		7.7811.00	3.04
з	7.0	10.00		1.7412.10		6.25 1.53	2.36
4	6.19	6.64		1,17 2.84		5.93 0.97	3.20
5	4.66	8.11		$1.42 \mid 2.35$		4.86 1.12	3.03
6	2.71	7,031		1.1617.84		6.53 1.24	2. 5B
7	2.33	6.35	1.071	2.97		3.60 0.82	3.59
8	1.35	4.57		0.66 3.82		4.57 0.66	3.86
9	0.60	4.621		0.7513.60		3.87 0.87	3.47
10	0.15	4.33		0.7013.74	3.581	0.82	3.59

Table (9) Effect of side slope (2) on section properties.
d₁₉ = 0.05 mm, C_c = 50 p.p.m, T = 20 C
side slope 7 = 3.2 side slope 7 = 2.1

Table (10) Neximum and minimum $(F_r$ and R_f) due the change
in water temperature

id se	10.051	0.01	0.3	0.3	0.4	0.5	0.6	0.7
mm								
F _r max	0.111	0.13	0.16	0.191	0.221	0.34	0.29	0.321
F _r min	0.111	0.13	0.16	0.181	0.20	0.23	0.261	0.30
$at \circ c$	0.811	2.17	6.63	113.21 19.08 41.27				66.30 86.06
$R_{\ell a}$ at BO C	2.401					6.71 $\{21.46 \mid 43.29 \mid 62.86 \mid 101.30 \mid 219.47 \mid 280$		