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A THEORETICAL STUDY ON THE IMPLEMCNTATION OF ANALOG

AND SAMPLED DATA ADAPTIVE FILTERS

Faycz W. Zaki and 7Ychia M. 1. Cnab

Faculty of Engincering, Ll-Mansoura  University
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ABSTRACT
This paper explains the effects of nonideal circuit elements  upon the
performance  of analog and sampled data adaptive filters. [t is shown that ihe

effccts  in case  of analog  implementations differ significantly from that
encountered in idecal case. Moreover, il is shown that thc effects of nonzero
mcan errors, such as offsct voltages and nonlinearitics of the input
multipliers contribule  an  excess mean  square error  which  is  inversely
proportional 10 the step size which controls the stability and the rawe of

convergence of the wupdating algorithm. To overcome  most of thesc errors,
solutions are presented and discussed.

I-INTRODUCTION
An adaptive  filter s, in somc¢  sensc, a sell  designing (really  scif

optimising) filter [1]. In other words, it is a filicr whose frequcncy
ICSponse or tiransfer function is altered, or adapted, to pass without
degradation the desired  components of the signal and 1w attcnuate the
undesired or interfering  signals, or to reduce any distortion on the input
signal.

Although adaplive filtering techniques have bcen  reported in
literature for owver two dccades and have becn implemented for somc timg as
off linc proccssors [2). it is only the recent  advances in larpc  scale

intcgration  (LS[) and wvery large scale  integration  (VLST) circuit design
tcchnigues that have increascd the intercst  in  théir  hardware rcalisation.
The inlcrest  in analog and sampled data  adaptive Milters was  aided by the
advances in charge coupled devices (CCD) and bucket brigade devices (BBD) [3)
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and [4]. However, the performance of these analog filters is ultimately
limited by resirictions in dynamic range such as nonlincarities snd noise
effects, and this has f{ostercd the development of hybrid or fully digital
adaplive  [ilters., Therclore, it was felt that by providing information on the
sources  of errors  and  limitations  resuling from these errors as  well as
solutions, analog and sampled data  adaptive  {ilters might pgain greater
accepiance among  rescarchers.

The first known work to consider c¢omponent imperfections  was performed
in 1963 by Low [5). Ile proved that sysicms constructed with 1mperfect
compenents could be expecied to coaverge to a solution {f such a solution
exisled. Other previous work in adaplive filtering by Kaunitz [6] assumed an
added random noise. Widrow ¢t al [7] showed that the effect of an additive
zero mean noise  in the weight wvecior js an excess mean square crror which s
proportional  to the step size _u. This noise was sddcd to the weights to model
the errors caused by the estmation of the actual gradient of the mean square
crror  performance surface. Rosenberger [8] assumed that a zero mean  band
limited random process with a finite variance was added into the output of an
adaptive noise canceller before it was fed back 1w the weights. His resules
showed that the maximum  achievable echo  suppression, for this case, was
inversely  proportional 1o _u, i.e., the smaller the u the better the system
worked. Thomas [9] made the same assumptions as Rcsenberger, and showed that
the choice of u which allowed the most convergence  is the smallest  wvalue of
A Other papers [10,11,12] considering nonideal  multipliers  showed  that the
qualitative  bechaviour of adaptive filters, using nonideal multipliers s
simitar 10 that of ideal adaptive filters. These resulits  agreed  with the
gencral  belief that adaptive  filters can adapt around their own internal
errors. It will be shown in this paper that this is not the case when one
considers  the effccts of internal nonzero mean errars.

G-BACKGROUND

The basic form of a sampled data adaptive [Tilter is shown in Fig. 1.
1t consists of an adaptive lincar combiner [l] with variable weights Wi,
i=1,2,..M. These weights are coatroled by the Jeast mean square (LMS)
algorithm [1,2]. The algorithm attempts te minimise the mean square  efror
{(MSE) beiween the combiner oulput vy(t) and a rteference signal d{1). The way
in which this rcference signal is obtained depends on the application of the

adaptive  filter. %y (t) X, t) « 0

]

From Other
Elements

wit)

Fig. 1, Sampled Data Adaptive Filier Using LMS Algerithm
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[For an

Mth  order adaptive  [ilter, the inpul

defined  as

Xm) = { xy (@) xy{n) Apptn) 1T
T};e variable weight vector is defined  as:

¥m) = [ wiln) wylm) wag(m 17
The filter output is given by:

y) = ¥ Tmxm = XTm)wn)
therefore, the error signal e(n) is expressed as:

en) = d{n) - y(n)

= dm) - ¥ TXn)

or -
e(n) = d(n) - X (n)W(n)
The squared

value of e{n) is therefore,

¢2tn) = a2 - 24w Toxm) + W Tmxmx Ynywin)

The mean square error (MSE) or cost function g is delincd as:

S = Bie 21

= Bid 2(n)] - 2B[dm)X LW + W TmEXmX T(n)iw(n)

where E[.} denotes expectation operation. Define the <cross correlation
between  the reference  signal  d(n) and the vector X{n) as:
S(n} = E[d(n)X(m) (N
and the input correlation matrix as:
R = EX(mX T(n) (8)
Hence, the MSE §(n] al time n can be expressed in terms of S$(n) and R(n) as:
f(n) = Bld 2y - 28 Twem) » W T(RM¥(n) ©)
The MSE in Eq.{%) is a quadratic function of the weights W(n). Such =z
funciion has only one minimum. The object of the adaptive algorithm is to
adjust the wecights w;, i=1,2,.. M so that the minimum mean square point is
reached. Gradient methods arc commonly used for this purpose [1,2]. The
gradient  vector G(n} of the MSE can be obtained by differentiating Eq.(%)
w.ort W(n) as:
[~ S w ]
28 iy w, )

G = = 25(n) + ZR(n)W(n)

éS(ﬂ]/%WM (H)J

E. 83
signal  vecior may be
M
(2)
(3)
(4-2)
(4-b)
{5
(6

(10
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. L
For stationary input process, ihe optimum weight vector W can be obtained by
seiting  G(n) in Eq.(10) equal to zero, ie,

2 -2BY =0 an
and therefore,
w' = Rrlg (12)

MNote that R(n) and ${n) are replacced by R and 5 for stationary input process.
Eq.(12) is referred to as Weiner-Hopf equation [12]

OI-ADAPTIVE ALGORITHMS

The major task of the adaptive  algeorithm is to find a recursive
solution  to Eq.(12) avoiding matrix inversion. One way of doing this would be
to usc the steepest descent method [1]. In this method, the adaptation  staris
with an arbitrary set of inital wvalues, X(0), for the weights. An iterated
change in the weighting coefficients in the direction of the nepative
gradient of the MSE is performed until the minimum  point is reached.
Therefore, the stecpest descent updating algorithm  for the weights s
expressed  as:

W(n+l) = W(n) + p(-G(n) (13)
where _u is a positive constant . {slep size) which controls stability and the

rate of convergence.
The method of steepest descent described above requires the

determination of the gradient vector at successive points on the MSE
performance surface. In practice, the true wvalues of the gradient are not
available {the calculation of expectation is not feasible in  practice). Ta

Qvercome this  difficulty, the least mean square (LMS3) algorithm 1
determines a gradient estimate instead of the true gradient. This gradient
estimate  is obtaincd by considering the square  wvalue of the instantancous

error signal as an estimate of the MSE. Therefore, by differentiating  Eq.(5)
w.r.t W(n) vyiclds

[2e2m)fpwn) ]
22 (mpwotn)

al
G} = | e = - 2e(n)X(n) (14)

hnbcz(n)/"wa(n)J
Substituting  Eq.(14) into Eqg.(13) yields the LMS algorithm as:
Wn+l) = Wn) + 2 ue(n)X(n) (1%}

Sampled  data adaptive filters using LMS azlgorithm has been given
already in Fig. §. Although his was mainly intended to iliustrate
mathematical procedures  and basically a block diagram  representation of the
equations, it is probably the most efficient implementation in terms of
adaptation rate and quality of solution. It is also very expensive to
implement  {decmanding real tme¢ digital dasa throughout) and for practical
puUrposcs it is betier 1w adopt checaper methods cither anatog or hybrid
analog/digital  schemes  which have convergence rate penalty  but give just as
good as  solution cventually. fn many practical interfercnce cascs these
slower  implementation are enlircly adequate.
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Analog implementation of the LMS algorithm in Eq.(15), is done simply
by sctung [14]

A
dw(y/dt = - uG(t}

= 2 pe()X() (16)
and solving Wwith a set of integrators, i.e.,
W) = W) + JJJ G(r) dt
ot
= WO) + 20 [ eOX(y) dt (7

Continuous  time (analog) implecmentation of the adaptive [ilter with the LMS
algorithm  in Eq.{17) is shown in Fig. 2.

xl(t) x2(t) o w o w s

R

1st b of 2nd., .
Multip N Multip.
From Other
Elements
L, ye)

Fig. 2, Analog Adaptive Filter Using Continuons Time LMS Algorithm.

IV-EFFECTS OF COMPONENT IMPERFECTIONS

For a opractical multiplier, the output will differ from the
theoretical  product of its inputs by an amount & , as defined by

Vo= KV 6V, (18)
Where Vo Is the muliplier output voitage, vV, and V,_ are the muluplier
inputs, and K;V,V, is the true multiplier product. The  error term can be
expanded  into {erm! dircctly related to the error sources in the multiplier
circuit [15]. In Fig. 2, each of the input multipliers has 1two inputs defined
as  x;(1) and 2 _ue(t), where i is the tap number. Therefore, the output
voltage of the ith first multiplier is given by

i
Voi = Kpllxi(t) + % )2 _ne(t) + y o) + 254
+ 1(x;(1),2_ae()] (1"
wherc the supcrscript 1 refers 1w first multiplier. The threc sources of d.c.

errors in an analog  multiplier arg: input offsets Kgg + Yog+ OuUtput offset
Zge» and nonlinearity fix;(1), 2_we(t)]. Hence, Eq(19) can be rowritten as
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Voi = 2_pulke(tx (1) + Ky x50y os * 2pe(Ux 4o * 24
¢ Koxi2() + k302 pe()) 2] (20)

If the multiplier is followed by a gain amplifier such that the true product
s 2)1:(1(\)::(!), then one can assume  that K=l This yields

Véi = 2}1&(1))( () + f(x i(l)yos + 2}uc([)x OS} g kzxiz(t)

+ k(2 pe(n) 2] @)

where xi(l)ym + 2 _pe(t)x os  aTe feedthrough tetms due to input offset
voltages, z,, is an output offset voltage independent of x;(t) and e(t), and

kzxiz{t) and k3(2_;1e(t)) 2 are nonlinear terms due {0 transistor  mismatch,  The
feedthrough terms can be neglected in high frequency applications (since the
output of the first moltiplier goes inte an  integrator), but rmust be

considered in low frequency applications. The term ij-lz(t) and ka{2 _ue(t) 2
result in a nonzero d.c. compenent being added 1o ths weights. he output
offset voltage 1z, is added to the 1tue product. The nonlinear ierms are
important  because  the wvaluc of their d.c. componemt is dependent on input
signal power. Therefore, although one could adjust the d.c. balance of the

multiplier  so that z.. + kzxiz(t) + k(2 uc(t))2 is zero for particular
values  of xi(t} and c(st), the balance wal be destroyed when one of the
signal power levels is changed.

The effects of component imperfections will be presented in four
parts.  First, the effects of input multiplier output offset voltages will be
explained; second, the combined effects of input multiplier output offset
voltages and nonlinearities wiill be prescnted; third, the effects of
inegrator  offset  wvoltapes and bias currents will be shown; and fourth, the
ather nonlinearilies will be considered.

a)The Effccts of Input Multiplier Output Offset Voltages

Assurming  that all of the circuil components used in the construction
of a sampled data adaptive  filter are ideal, except that an output offset
voltage error occurs in the first multipliers, the output of the first
muitiplier in the ith coefficicnt {tap) can be expressed as:

H
Voi (M) = 2 pe(ndx ;(n) + 2,4 {22)
Define the wvector
= T
Zos = l2gs1  Zgg2z - ZosM | (23)

whose elements  z,.; are the output offset volltages for the ith input
multiplier, where 2_.. 1s a random variable which can teske on a value between
zero and Zog {max.). These wvalues <can be obtained {rom manufaclurer’s data
sheets. The expected value of z,. is coosidered to be a constant d.c. vollage
for all time after the power swit& is turned on. Therefore,

Z= HZy ] (24)
Applying Eq.(23) inw the LMS algorithm in Eq.(15) yiclds
Wined) = Win) + 2 upe(n)X{n) + Z,, (25)

Substituting  for e(n} from Eq.(d-b), then



Mansoura Engineering Journal {MEJ) Vel. 18, No. 1, March 1993. E. 87

W) = W o+ 2 uXdn) - XTWm] ¢ Zy  (26)

Taking the expectcd wvalue of bolth sides of Eq.(256) and assuming Win} to be
fixed, then

Wined) = W) - 2 uBXmX TOIWm)  « 2 uEdmXm)]  + BlZ g )
=L -2 uR]W(n) + 2}15'_, + Z (27)

where 1 is an MxM wunit matrix and R and § are as defined before. As the
autocorrelation matrix R is positive definite, it can bt expressed in
normalised form as:

R=0Q71AQ (28)
where /) is a diagonal matrix of the cigenvalues of R. The matrix Q is a
square matrix called the modal matrix of R. Its columns are assumed 10 be
orthonormal  eigenvectors of R. Consequenily 11}

Ql-=1 and Ql=qT (29)

Now, let us study the transient response of Eq.(27). First we make a
rotation of coordinates {1] into the "primed” coordinates  system such that

¥in) = QW) (30)

This will cause a rotation of coordinates into the principal axis of R.
Substituting Eq.(28). (29), and (30) into Eq.(27) and premultiplying both

sides by _Q_T, Eq.(27) becomes

W) = {L-2 0410 +2 Q78 + QT2 (31
[s1 ]
52
s =qls - (32)

Define

and -

Z' = QT = | ... (33)

v
Thercfore, Eq.31) may be expressed as:

W) = [ -2pA)1Wn) + 2 55t » 2 (34)

The general solution  of Eq.{34) depends on the eigenvalues of the R matrix.
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A scalar expression  for each of the primed weights gcan be deduced from
Eq.(34) as:

winet) = (1 -2 pTptin) + 2 gty + 2y 35)
where ?‘i is the ith eigenvalue of R and s'; and z'y are the ith primed cross
correlation and offset wvollage error respectively. With initial weight wecter
W(0), o+l iterations of Eq(3$5) vield 3

] i + P e
win+) = (1 -2}1’)‘i)n+ wY 2}#129(1 2},1'_?5;1)‘“1
2> -2 68
e

If _uis made small enough so that the eclement (i -le?‘li‘_)&ms roagritude
jess than one, then as the number of iterations Ancreases,  the Losdz [16]

Lim (1 -2 p ™! — © G7)
n—wo0a
This requires '
I1—2’p?‘§l< i
or
0 < p < 1N (38)

Considering the second aopd third terms in the might hand side of EBqi38) when
M satisfics  condition {38) so that the dememt (I - 2_m ;) is less than
unity, it ¢can be shown by summing the prometric serfmes that

Lim 5 (A -2 pH) —— 172 7 39)

N—yag ™2y
Substiwtng  Eq.(37) and {39 imto Egi38) yiclds

pum, i) = 0w Sy » 2 pdy

or - :
whinel) = w (o) + 24200 . {40)
Hence for positive cigepvalue 7~ amd _m satisfies Bg(38), the effiect of fhe
input multiplier output offset vuf\tag: iz o alter the steady stake solution
of the weight by a value ecqual w0 z'y/2 9. On the other hand, if ) is
zero, the limit in Eq(39) tends 1o and ‘
b4

P @) = w @ z‘i_hz ™ =00 @an

= 1-]
Thus the input multiplier output offset voliages cauwse  the waights
corresponding to zero {or ncgative) cipenvalues W incosse nndafinitely.
Therefore, these weights never reach a steady stue  solution, they saturate
instead. Even those weights  corrcsponding W positive cigomvalues diffier
greatly from the ideal From Eq{40) it can oc seem that a5 _u approaches
zerg, w'; approaches infinity. This is 2 very interesting result  and
contradicts  all previcus rcsults assumimg  ideal case [1]. Let ws oxamine tus
result more closely. Applying Eq.l2) inte Bg{%), the minimum MSE in the
ideal case can be expressed aw

_ 2 t‘T - _Tl
§Mn‘ﬂd (m) + W 'R¥W -8 W

= B¢t -sTw @)
Now, rclurn to the problem of calcufating the MSE whoen the imput
multiplier has a nonzero output offset voliage and recall from Bg(40) that
the weight wvector was suboptimal.  We thercfore, want a mcans of expressing
its deviation from optimum and the resulting increase in M3SE. Define en wrror
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YeCIQT  as:

V() = W) - W' (43)
Substituting  this wvalue for W(n) in Eq.{9) yields

j- frmin + W@ - ¥R - %) (49)

When R is nonsingular, the weighls approach a steady statc soluden which s
found by substituting (§ + Z/2 u} in Eq.(27) for § in Eqg.{l2), therefore,

wo=w 2 mrz (45)
Hence the effect of the input multiplier output offset wvoltage is to shift

the weights from their optimum point by an amount (1/2/.1}3-12. From Eq.(45),
we have .

w-%' =(/2uR 72 (46)
Substituting  Eq.(46) into Eq.(44) shows that the steady state MSE will be

e 25To-!

§ss = fmm * {12 )*Z°RZ . (47)
Eq.(47) reveals that the input multiplier output offset voltages increase the
mean square  error by an amount [1/2_}1)2_2.:1-_&"1; over iis optimum  value.
Therefore, even when R is nonsingular there is an extremely large increase in
MSE, which is inversely  proportional to the square of _u. This result
contradicts Widrow's theory [1,7], which states that the excess MSE is
directly proportional  to _a.
b)The Combined Effects of Input Multplier Nonlinearites and Offsect Voltages

Consider  the input multiplier nonlinearities and assume all other
circuit elements are idcal, therefore, BEq.{21) can be reduced to

1
Voi = 2 pelmx j(m) + kyxiF(m) ky(2 pe(n) 2 (48)
Define
fin) = kyx;2(n) + ky(2_pe(n)) 2 (49

As the nonlinear terms jumped together, then combining Eq.(22) and FEq.(49)
gives the output of the ith multiplier as:

t
Voi = 2 pe(n)x i(n) + O (n) (50)
where %i(n) represents the noise in the multiplier outpui, i.e.,
%i(“} =z,

Define the wvectlor és as:

A - HS,® HOMI .. HOym T (51)

si * fin)

Following the same procedure as in the previous section, it is easy to obtain
the steady state  weighling  vector as

Wee =W« (172 uR7IA (52)
and
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fss = j&min * (lfzﬂ)zésrrﬁ_lés {53)

c)Bffccts  of Imtegrator Offset Voltage and Bias Current

It is easily shown [12] that the integrator ertors due  to  offset
voltages and bias currents can be grouped together such that the steady state
weight wvector is piven as:

Ve =¥ Vg (54)
where

Yo =[ Blvogp] Elvgpd - Evogy 11T
and v__. i§ the integrator error duc to offset wvoltage and bias current at
ith weight. Substituting  Eq.(54) into Eq.(43) yieids

S= fmin ¥ Vos Tﬂ\ios (55)

That is, there is alsc c¢xcess MSE duc to the integrator offset wvoltages and
bias currents.

d)Summer Nonlinearitics

The summer used to form the output of the adaptive fiher can possess
an offset wvoltage. This offset wvoltape will affect the stcady state  solution
of the weight wvecior and MSE. In this case, the adaptive [filler output will
be given by

yo) =y m + Y (56)

L - s - .
where vy (n) is the. output of an jdeal summer, and Yls a random  variable
representing the offset error. Therefore, the weight vector is expressed as:

Winel) = W) + 2 pX(n)d(n) - X (W) - ] 57
Taking the expectations and rcarranging terms  yields

Winel) = (1-2 R W) + 2 nS +[) (58)
where -

T=BXn{ ]

Following the same procedure given in section IV part (a), it is easy 1o show
that

W =¥ «R7p (59)
and X -1

ﬁss =§min + IR E (60)
V-S0LUTIONS

" This section presents (wo lechniques  which offer promise in solving
some of the problems  resulting from adaptive filter internal circuit e¢lement
imperfections.

a)Differential Intcgrator

A leaky integrator with & resistor added in the feedback loop in
paralic! with the integration capacitor provides a feedback path which may
reduce the drift errors  associated with the standard integrators. But this
circuit still has two drawbacks; 1)the drift errors are not completly
climinated, and 2)the added vesistor  causcs the integrator to have a finite
memory. A better solution, known as differential integrator, is shown in
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Fig. 3. This circuit ¢an be used 1o minimisc the effccts of bias currents and
offsct voltages for an analog integrator.

The operation of the circuit shown in [Fig. 3 is as follows: Assume the
output of the top intcgrator s vy and the ouiput of thc boltom  inwcgrator
i5 v4. Since the input 1o the botiom integrator 15 zero, its output will only
be the error terms duc to bias currents  and offset  wvoltages.  The output of
top  intcgrator will be wi(l) plus  these  same error  terms. For identical
OpAmps {a matched pair on a single  integrated circuit), and identical
resistor and capaciter  values, the error lerms f{rom top and bottom
integrators should be identical. After subtraction, the desired quantity
wi(t) is left free of error terms and with infinite memory.

C

T

wl(t)

j=a]
1

Fig. 3, Diffcrendal Integrator

b)Distributed  Loop Gain Multiplice

The effects of the most dangerous errars, those caused by the input
multipliers, are configuration dependent. Therefore, a modification in the
standard  configuration can reducc these errors. The new configuration  called
"distributed loop gain  multiplier™ s shown in Fig. 4. In this figurc the
noise is reduced by an amount K while the requircd output sipnal remains the
same. The output from Fig, 4 is given as:

dw /dt = 2 p/KHKe®x (0] + (2 p/K)z o + kx2(©
+ kq(Ke(®) %) (61)

xi(t) Noise Due to Offset
and Nonlinearity

e(t) . dw. /dt

Fig. 4, Distributed Loop Gain Mudtiplicr
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The first termm on the rght hand side of Eq.(6i) represents the required
output signal and the second term rcpresenis the noise duc to output  offset
and nonlinearities. This term will be referred to as:

DD = @ pKlegg + kyx) + Ky(Ke() 2 ]
= (2 pfKiz g *+ KoxiZ(D) + 2 uk 3Ke2(n) (62)
As K-!—O,"_éi &0, because  of the first two terms, and a5 K —» 02
D inp— %o, because of the last term. Therefore, there must be some value
of which is oplimum for this configuration, i.e., optimum in the scnse that
it teduces the effects of the errors. To find this wvalue of K which minimiscs

the noise power, first square and take the expectations of both sides of
Ea.(62), therefore,

—
B O ipM] =2 p/KPEz o + kyx2(012 + E(2_pk yKe2(1)?
¢ 8 p2kgEle 2z o *+ Kpx;2(0)]

Taking the derivative of the above equation w.rt. K and setting the result
equal to zero yelds

2
DHDpVIK = 0 = (-8)12/K)1_3[z°si + k2xi2(1}]2 + 3)12]‘3}(5[@4(‘))
Therefore, the optimum value of K is given as
K = (I/k3) ;/E{z osi * k2xiZ (1% /Ele ] (63)

For this configuration, the weights approach a steady state solution given by

w=v"+wKRMAp (64)
and the steady state MSE is
where § = foim » a8 pTR7A (65)
AL=[ES|p) HBp) - A ppl 1T

Comparing Eq.(53) and Eq.(65), it cgn bczscen that the distributed loop gain
configuration reduce the MSE by (K /2}.1) over the standard con{iguration.

VI-CONCLUSIONS

This paper presented an analytical study on the implementation of
anzlog and sampled data adaptive LMS f{ilters. kR was shown that for the
standard  configuration, imperfections of the input muluplier conuibute an
extremely large MSE to the adaptive system anl the excess MSE is inversely
proportional  to the square of AL

The MSE coniributed by the bias currents and offset voltages found in
the weight integrator was found 1o be substantial A differential  integrator
configuraion was presented 1o solve this problem.

The equations for the weighis are dependent on the eigenvalees of R.
Those weights  corresponding to zero eigenvalue  will saturate  and  will not
provide a minimum MSE. The distributed loop gain configuration was introduced
to overcome these problems. -
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