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ABSTRACT

Closed die forging of spur gears is investigated using the slab method and the upper bound
techrique. The tooth regions are approximated by prismatic rectangular sections. The
velocity field comprising three unit deformation regions is used. A constant frictional
stress between workpiece and forging die is assumed.

The average punch pressure normalized by the flow stress of the gear material is
determined theoretically and compared with experimental results. The experimental work
is carried out on a commercial pure aluminum (Al 1100) at room temperature, The
forging process is carried out using one die geometry without using any additional blocker
(preform) dies.

The theoretical predictions of forging pressures and deformation configurations agree
fairly well with the experimental results.

INTRODUCTION

With the use of closed-die forging, complex shapes and heavy reductions can be made
within closer dimensional tolerances than are usually feasible with open dies. Closed-die
forging is adaptable to high-volume production, |mproved structure, good mechanical
properties and surface fiish.

In closed-die forging, a material must satisfy two basic requirements: low flow stress and
high forgability. The flow stress, which represents the resistance of the material to plastic
deformation, must be low so that die pressures are kept within the capabilites of practical
die materials. The ability of the material to deform without failure, i.e. its forgability, must
allow for the desired amount of deformation. For a given material, both the flow stress
and forgability are influenced by the metallurgical characteristics of the billet material and
the forging parameters such as temperature, strain, strain rate and stresses.

[n most practical closed-die forging operations, the temperature of the workpiece material
becomes higher than that of the dies. Metal flow and die filling are largely determined by
flow stress and forgeability of the billet material. Friction generally influences forgability,
metal flow, pressure distribution, load and energy requirements. Therefore, the friction
problem must be carefully dealt with by using an appropriate lubricant.
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The development of precision forging gear processes has got an area of increasing
activity in recent years., Precision forged gears are made from billets having almost the

gxact volume of the material required for the final size of the gears. No allowance is

needed for flash Jormation. Perform design problém in an axisymmetric disc forging where
it is required to produce a uniformly deformed flat disc under the presence of friction at
the die-workpiece interface had been carried out by Hwang and Kobayashi [1]. Yang and
Kim [2] used the upper-bound method to determine the forging load and the deformation
configurations during upset forging of elliptical disks. An analysis of comer filling
characteristics in precision forging considering the effect of different workpiece
geometries and lubrication was carried out by [bhandode and Dean[3]. The analysis
showed that the velocity field which leads to the best load prediction is not that which
most closely describes changes of geometry in a billet. Kim et al. {4] proposed some
appropriate velocity fields for the upsetting analysis of three-dimensional forging of
arbitrarily-shaped prismatic blocks. The analysis showed a good agreement of forging
load with their experimental results. Forging processes for heavy ingots by finite element
method had been analyzed by Sun [5]. Large deformation behaviour of aluminum and
“low carbon steel short oytimebers loaded axially in a simple compression test without using
any lubricant was examined by Gupta and Shah [6]. Their results revealed that the profile
of a deforming specimen can be approximated by an arc of a circle only after the onset of
folding.

Forging of spur gear forms and closed die forging of gear-like elements using the upper
bound technique have been anaiyzed [7,8). The assumption of no axial velocity in the
tooth region was shown to impose a very severe limitation on the validity of the analysis.

In the present work both the upper bound technique and the slab method have been used
to analyze the closed-die forging of a spur gear. Numerical calculations have been done to
study the effect of process and material variables on forging load estimation.

To determine the validity of the present analysis, an experimental program is carried out
on commercially pure aluminum (Al 1100) billets to forge a spur gear having twelve teeth.

SLAB METHOD ANALYSIS

A circular punch is used for forging cylindrical billets placed in a die having teeth cavities
on its periphery. The punch compresses the billet axially and as a consequence the
material flows outwards into the teeth spaces in the radial directions (see Fig. 1). In the
initial stage of the forging process it is assumed that the billet aiready closely fits the die
which has a diameter equal to the dedendum diameter and that the reduction in height
allows the material to flow in the tooth cavities. The deformation pattern of the material
of the billet which has a diameter equal to the root diameter of the gear is considered
axisymmetric. The tooth formation is constdered to take place as plane strain forging
process. Integration for plane strain forging of teeth and axisymmetric forging of billet
gives the complete solution of spur gear forging problem.
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The cylindrical and Cartesian coordinate systems acre used to carry out the analysis, and
are located as shown in Fig. 2. The axisymmetric state of stress of the billet and the state
of the tooth are alsq shownin Fig. 2. ,

By considering the equilibrium of forces in the x-direction, the plane strain condition, and
the Von Mises yield criterion, the following differential equation is obtained.

do |

S% v ou(=+2y 5, = 2 5 0
dx w h

V3w

4u
—_—
(43 h
If © isnota function of x, Eqn. 1 becomes
do

—&-‘— +¢ 0, =¢ 2)

where ¢ = Z.u(l + l), (3-2)
w h

and

LR (3-b)

- (4—‘“ +
: N V3w
The solution of Eqn. 2 is:

-Gy x

¢
o,=(—%)+oe Q)
G

where D is an integration constant which can be determined from the boundary conditions
g, =0 at x = ¢  (before complete filling)

Solving for D, we find:

<,
b= - (Sh)e )
<
From Eqns. 4 and 5, the stress o, is:
C, G -x) ‘
.= 2|1-¢" )
=2 ] ©

The axial stress, o, , can then be expressed as:

ay=%;{c[l—ec'”‘“]—l} N
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+2o (4 ®

1
. wh = (-~
where < (h T 0

The load required to forge the teeth at any stage of deformation can be obtained by
equating the external load to the internal resistance, that is:

¢
(oad)ieath = Pav (WE€) N = NIG,de ©9)
[

where N = number of teeth
Hence, the normalized average pressure required to forge the matenal in the tooth region

becomes:
[ ]M=%{[c—1+£ﬂ1—e°l’]] (10)

For the axisymmetnic part of the gear which is bound by the circle of radius r,. the force
equilibrium in the r-direction gives:

Q I[z'v

do 2u 24 -
—L +-" g ="a 11
dr h 7" h (tn

The solution of Eqn. 11 is:

g =e" [Ee“”" + Q] (12)

where Q is a constant which can be determined from the boundary condition

Then

o
|

= [—Cla EPCLE Zr] e” (13)
1
where by = 2ur,/h

From Eqns. 12 and 13, the stress in the r-direction becomes:

o = el {;elyrlh + [E}_ Q- &S Y- (_7] et } (14)

r
cl
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Using the axisymmetric condition &, = o, in Von-Mises yielding cnterion leads to:

a o, =0, —5’ » (15)

From Eqns. 14 and 15,

o, = RC LT ,:_C_;_(l _ ec‘t ) - ;_.J (16)

<
The forging load for the axisymmetric part of the gear is obtained as follows:

F, = JZ;rrdr o, (17-2)

= P, mrl (17-b)

ax

Also, F

By substituting Eqn. 16 into Eqn. 17-a, equating to Eqn. 17-b, and integrating, the
normalized average pressure required to forge the material in the axisymmetric part of the
gear becomes:

P 2 2 ct D
2 == |—=c(l-e*)-1|e"'l - 18)
|: o ]u rzz [ﬁ ( ) ] (
where
. _eD.r,[_'z_ . LZ] « L (19-2)
D, D) 03
b, = 2u/h (19-b)

The constants c, c,, and b, have been previously defined.
Eqn. 18 gives the normalized average pressure required to forge the material in the
axisymmetric part of the gear.

The tooth length at any time during the forging process can be calculated using the
constant volume concept as follows:

ath, = x; h+Nw/ h

o

Hence, ¢ =r, ["To-l] (20)
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The total pressure needed to form the gear is assumed to be the sum of two portions. The
first portion is the pressure needed to deform the billet multiplied by an area factor f;. The
second portion is the pressure needed to form the teeth glultiplied by another area factor

f,. The area factors are: f; = ':—" and f, =‘1—""" where A, = A_ + A,
t t

Using Eqs. 18 and 10, the total average pressure (P,y) normalized by the flow stress of
the matedal & becomes

LBl w

where A, is the total cross sectional area of the gear

THE UPPER BOUND ANALYSIS

A cylindrical billet for forging a gear with N teeth can be divided into 2N deformation
units. One of these deformation units (as shown in Fig. 3) is bounded by the contour
OBCDEMO. The planes of symmetry OB and OME make an angle a between them and
separate the deformation unit OBCDEMO from the adjacent units. No metal can cross or
shear along a plane of symmetry. Therefore, the material in the unit, displaced by
downward punch displacement is forced to flow to form half a tooth. Each deformation
unit is divided into three regions of deformation designated (1), (IT) and (II) as shown in
Fig. 3.

Velocity and Strain Rate Fields '

Radial flow cannot take place in region I because of the constraint imposed by the die wall
BC (see Fig. 3). Therefore material flows tangentially from region I to region II as the
punch moves downward. As the deformation progresses, the material flows to the tooth
in region Ill. The velocity fields in each deformation region are discussed below.

Region I:

As mentioned above, there is no radial velocity, u, in this region and the axial velocity, w,
is given by:

w=-2U/t (22)
Where
z = the height of the tooth
U punch downward velocity

~
no

the billet thickness at any time during the deformation process
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Using the continuity equation in the cylindrical coordinates for the flow of the material,
the velocity component in the tangential dicection can be written as:

N V___-U(a-G)r‘

23
: (23)
The strain rates corresponding to the velocity components are:
é‘ = y = < = 0
‘ r 7T9 /tr (24)
g, = ~¢&, = U/t
The effective strain rate in this region becomes:
t= B+ E 405 (P4 v+ 7))
= V2 U/t (25)

The calculation of the loads needed to cause plastic flow of the metal is often difficult, if
not impossible. Exact solutions require that both stress equilibrium and geometrically self-
consistent pattern of flow are satisfied simultaneously everywhere throughout the
deforming body. The upper-bound analysis offers a technique which predicts a load that is
at feast equal to or greater than the exact load needed to cause plastic flow. Using the
upper-bound analysis, the external forces are calculated by equating the external work
with the internal energy consumption or dissipation. The rate of energy dissipation E can
be calculated based on the assumed velocity fields, as the sum of the energy rate for plastic

deformation, fip, the rate of energy dissipation due to the velocity discontinuity, E,, and
the rate of energy dissipation due to the friction between the deformed material and the

forming dies, E(. That is:

E=E +E, +E
= IEEdv+Idv'|ds+Im TV, ds (26)
The energy rates EP, E,,and E, in region I are calculated as foilows:

(2) Assuming that the material behaves according to Von Mises Yield criterion, then the
energy rate for plastic deformation in Region I is given by

E, = ‘/%_E J'J'J";—r dr d@dr = —% Sla- Pt} 27
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(b) The friction energy dissipated during the forging process is the sum of the friction
energy dissipated at the punch and counter punch/material interface, E, . and the

L ] w -
friction energy dissipated at the die wall/material interface, BC, E,, . The rates of
these energies, in region I, are expressed as:

5 2mUr ©
Ef.'.|x= —% GHV r dé8dr = ——T«ﬁ—l— (a_mz (28)

where m is a fiiction factor, and

mo mrnoU §
E, [1=—= [[av ndodz = —=— [1d¢ 29)
f Ji '” : 2-\/5t !;

where Avw is the relative sliding velocity which is the resultant of axial and circumferential
velocities at the interface, i.e.

w= ., = S @-o

and =t ,/r,’ (a-6)} +t* + cf(a-6In [t+,/r}(a—6’)’+ t? ]
- (e~ In[r,(a- 6]
The value of f;x d6 can be obtained by numerical integration. ‘

(c) The energy dissipation due to the velocity discontinuity in region I is zero.

Region 11
Region 11 is defined by the boundary OCM in Fig. 3.
The tangential velocity varies from maximum at the boundary OC, @ = B, to zero at the

boundary OM, 8 = 0. Using the incompressibility condition along with the boundary
conditions, the velocity components in region II can be written as:

Uar
u = Y (30)
v = _Ula-p 6r an
tg
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w=-—1z2 (32)

The strain rate field is determined from the velocity field (Eqns. 30, 31 and 32) as:

g =Ual2tpP
5, =UQB-a)/(2th)
£ =-Ult (33)

}'la=}'01=}'n-=0

The effective strain rate in region II is determined from Eqns. 25 and 33 as:

%= U J(a*- zaﬁ+ 44) 1 (2t f) (34)

Substituting the effective strain rate ?2 (Eqn. 34) into Eqn. 26, the energy for plastic
deformation in region 11 is:

" ? G [[[Zrdr dodz

2UV3 512 - 2ap+ 4f (35)

The frictional energy dissipated at the punch/material interface is due to the sliding
velocity v which is the resultant of the radial and the tangential velocities at the interface.
This is given by:

E

ve = N D)

Ur ] 1
= — +4 (a- & 36
gV ri@p (36)
Therefore, the frictional energy dissipated is given by:
E, = 2M2 [[v. ra6ar
e f“3 > r
om 54 U ur -
= —_ + 4 -8 & rdrdd
'\/-3. ‘!‘ > 2t B ‘/a (@-h
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— 2 2
- mo U r, cos ’BI G7)

2

. 238 .

h
Theintegral 1, = [{4(a- )} & + a’ sec’ §d6 is to be evaluated numerically.

The shear energy due to velocity discontinuity at the surface OC is due to the difference in
radial velocities in regions [ and I, This is:

Ua
v, = r

T2t B

Therefore the shear power dissipated at surface OC is given by:

_ —
Ed=%jj‘v,drdz - —%2a (38)

a3 g

Region IT1

This region is defined by the boundary CDEM in Fig. 3. The tangential velocity in this
region is assumed to be zero. The admissible velocity field is found by considering the
velocity field at any point on the surface of the velocity discontinuity CM such as point g,
wherer = r,.

From Eqns. 30 and 31, the velocity field at point q is given by: '
g = dan (39)
e 2t p
Ur, (a-
and v = __(__ﬂ (40)

N t

The incompressibility condition in cylindrical coordinates is expressed by zero volumetric
strain rates, i.e.,

@_+E+lﬁ+a_w. =0 (41)
gt ot réé oz
The radial velocity in region III is determined by using Eqn. 41 as follows:

r k
u= [Z_t + TJU (42)
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Atpointq, r =r, ,u = U, and the constant k becomes:

u r.
k:r,-[—;‘—ﬁ. N (43)

M.43

The velocity discontinuity at CM is due to the tangential velocity at the surface in region II

relative to that at the surface in region III. The velocity discontiunity is given by:

M + 20 8 (44)

vdz—U\:
tf8 2(p

Hence the strain rate components are:

e,:U-l—-—k~
2t «?
. 1 k
£y = Ul — +—
’ [2t e] ' (45)
) U
£, = -—
t
}‘(lﬂ:é92=:gll=0

The effective strain rate becomes:

f 05
< 3 2k’
&= U{—s+ — 46

’ {Zt’ r* } “6)

The plastic deformation energy in region III is given by

Epm = E_’ o jjz‘(l} B drdz

rzs

2 w3 2kr]”
- f? rthUaL {i?"LT} dr (47)

The frictional energy at the punch/material interface in region I11 is given by:

Er.;..tm s v ﬂa‘[(r; ‘:t r{) + k 0[5-]:; (48)

V3 r



M.44 A. El-Domiaty, M. Shabara, M. El-Ansary

The frictional energy dissipated at the die/material interface CD is due to the resuitant
.velocity along CD which is given by: .

ulfr kY ®
v=—<L£+ t—-] + 2‘} (49)
t 2 r
Therefore the fiictional energy dissipated at the die/material interface CD is given by

jvdr dz (50)

Er‘,,l ' "

o
N
where

v is the sliding velocity given by Eqn. 49.

The shear energy dissipated at the die/material interface CD is due to the resultant velocity
along CD which is given by:

E,, = % Hv‘ r, d@ dz

~ | n(a-0) __fiz_
ta{——;—-—-ﬂ B e, cosﬂ} (51)

where v, is the velocity discontinuity given by Eqn. 44. y

The total energy dissipation for the complete region is obtained by summing up all the
energy components in the three deformation regions, i.e.,

E=E +E, +E, (52)
where

E, =E, + (Er,,.|r + E'.,“_],) for region [

E, =E,_+E +E, for region 11

= E . +(E pm)m + Evom|u) +Euin for region [

For the complete gear, the energy required for forging is:
E,=2NE

The punch moves down with a velocity U applying a force P. Hence, the external power
consumed in the forgingprocess= P U =P,, x A x U = E
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where:
A = area of the deformed gear normal to the average applied pressure [Py ] by the

punch.

[ 2 - -

By equating the external power to the internal power required for forging, we obtain:

E,=2NE=P_ AU

P,=E/AU
P.| _EJ/T (53)
7| AU

EXPERIMENTAL WORK

Cylindrical billets of 32-mm diameter and 14-mm thickness made of commercially pure
aluminum were closed-forged in a special die which has twelve cavities which form the
teeth of the gear. The specially destgned die and the associated tooling are shown in Fig.
4. Prior to the forging process, compression tests were carried out on the cylindrical
specimens to obtain the flow stress of the material at room temperature. During the
forging process, the load-punch travel curve was recorded by the testing machine. Both
the compression tests and the forging process were carried out at the same temperature
and head speed of the testing machine.

RESULTS AND DISCUSSION

Fig. 5 shows the cylindrical billet and the formed gear. The calculated progressive
increase of tooth length , Eqn. 20, is plotted against the reduction in billet height h as
shown in Fig. 6. The numerical values of the relative average punch pressure, P,y / o, are
determined for twelve teeth gear with root diameter of 32 mm by using the slab method,
Eqn. 21, and the upper bound technique, Eqn. 53 and are shown in Fig. 7. These resuits
are obtained for a constant value of the coefficient of friction 4 = 0.3. It is clearly
demonstrated in Fig. 7 that the relative average punch pressure, P,y / o is increasing in
an exponential form as the reduction in height of the billet increases,

The experimental results of the closed die forging of the gear element are obtained in the
form of load versus reduction in height as shown in Fig. 8. These results are transferred to
be in the form of relative average pressure versus reduction in height (see Fig. 9) to make
possible the comparison betweea the theoretical resuits, by both slab and upper bound
method, and the expenmental results. In order to transfer the expenmental results, the
flow stress of the matenal must be known as a function of the reduction in height. This
function is determined by simple compresston test at room temperature and the results are
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shown in Fig. 10 and Fig. 11. From the resuits in Fig. 9 and Fig. 11, the experimental
values of (P,/ @) as a function of reduction in height are obtained and shown in Fig. 12.
L 3 3 B

A comparison between the experimental and the theoretical result are shown in Fig. 137 It
is possible to see from the results shown in Fig. 13 that the slab method over- estimates
the values of (P,y / @ ) for smalt values of reduction in height while it gives very close
values to the experimental values for high values of reduction in height. Also from the
results shown in Fig. 13 it is shown that the upper bound technique gives very close values
for (Pay / o ) for high values reduction in height. This means that the upper bound
technique underestimates the values of (P, / ¢ ) before the complete filling of the die
corners, while it gives very close values of (P4, / o ) during the filling process.

CONCLUSION:

The theoretical predictions for the relative average pressure (P, / o ) needed for forging
of a spur gear hy using the slab and upper bound techniques are introduced. These
predictions are in good agreement with the experimental results which are obtained for
forging a twelve-teeth aluminum gear.
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fig. 4 : The closed die forging tools.

in initial and final form after ferging.

Fig. S : The aluminum billet
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Load KN
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versus displacement obtained from
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Fig.(12) The experimental results of normalized
average pressure versus reduction in height
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Fig.(13) Comparison between the experimental
and the theoretical resulis
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