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Forced Convection Heat Transfer In a Cylindrical
Porous Media exposed to Constant Wall Heat Flux
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Abstract:

Forced convection heat flow in a cylindrical packed bed is examined numerically.
The bed is filled with saterated spherical beads porous media and is exposed toa
constant wall heat flux. Besides the energy equation, the geperalized form of the
momentum equation including the non-Darcian effects such as the variable porosity,
flow inertia, and viscous friction is considered, and the finite difference method is used.
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The resuits have been obtained numencally for sphere beads (3 d < 8 mm diameter),
ratio of the particle diameter to the pipe radius 0.05 <D < 0.5, and nondimensional
pressure gradient B up to 108, The non-Darcian effects have a significant influence on

the behavior of the temperature, thermal entry length and Nusselt numher across and at

the channel wall. The channeling phenomenon near the walls enhanced the thermal
communication between the fluid/solid matrix compaosite and the walls. This fact yielded
an overall 2| percent increase in the value of the Nu in the fully developed region,
compared to the value predicted when the Darcy model was used. The resuits gives
complete information about the flow structure and heat transfer for the expressed ranges
of parameters. Also, useful correlations reporting the dependence of the thermal entry
length on the problem parameters (4 D, B ) were reported. A direct dependence of the
thermal entry length on Re exists and gives the same correlation that obtained for the
pure fluid flow case:
Xe = 0.1 Re

To verify the numerical results a2 comparison have been done with the numencal
results abtained by Poulikakos and Rerken (1 1], Kays and Crawford [26] and Petukhov
[27). The comparison shows a very good agreement for the presented results and proves

the validity of the model

1. Introduction

Fundamental studies related to thermal convection ir porous media have
increased significantly during recent years. This interest is due to the presence of
porous media in diverse engineering applications including geothermal systems, building
thermal insulation, enhanced recovery methods, nuclear waste disposal, packed bed
chemical reactors, and solid matrix heat exchangers. Most of these studies address the
problem of natural convection. The earlier investigations are based on the Darcy flow
model and comprehensive reviews are provided by Combarnous and Bones [1], Catton
[2} and ElKady [3). In contrast to rocks, soil, sand and other media that do fall in this
category, certain porous materials, such as foam metals and fibrous media, usually have
high porosities. In these media, the boundary and inertia effects, not included in Darcy’s
model, may alter the flow and heat transfer charactedstics. Therefore, lately, Non-
Darcy effects on thermal convection in porous media have been considered by several
investigators including Vafia and Tien 4], Poulikakos and Bejan [5], Kladias and Prasad
[6], Lauriat and Prasad [7], and Ettefagh et. al. [8] among others.

The problem of forced convection in porous media is mostly relevant in flow
through packed beds and the use of solid matrix heat exchangers. Koh and Colony 9]
performed a simplifies analytical investigation of the performance of a heat exchanger
containing a conductive porous matrix. However, the study was limited to very low
permeabilities for which uniform velocity was assumed across the channel. In 2 study
based on Brinkman-extended flow model, Kaviany [10] reported results for forced
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convection in a porous channel bounded by isothennal parallel plates. Poulikakos and
Renken [11] solved a similar problem but used a general flow model which inciuded the
effects of flow inertia, variable porosity, and Beinkman friction. Renken and Poulikakos
{12} conducted an expenmental study of boundary-layer forced convection from a flat
isothermal plate in a packed bed of spheres. El Kady {13] investigated numerically the
forced convection heat transfer and flow in an annular channel filled with porous media
taking into comsideration the non Darcian effects (flow inertia, variable porosity, and
Brinkman friction). Cheng, et al. [14] analyzed the forced convection in the entrance
region of a packed channel with asymmetric heating. Wang aund Du [15] analyzed
expenmentally the forced convective heat transfer in a vertical aonujus filled with porous
media. Amiri and Vafia [ 16] simulate numerically the forced convective incompressible
flow through porous media, and the associated transport processes. Kamiuto and Saitoh
{17] examined numencally the fuily developed forced-convection heat transfer in
cylindrical packed beds with constant wall temperatures. Most of these studies refate to
understanding the various physical phenomena which occur in existing porous-media-
related thermal systems.

As an extension to these investigations, the present study performs a detailed
mumerical analysis of forced convection in a circular chaane! filled with spherical
identical beads and exposed to a constant heat flux using the general flow model which
includes the effects of flow inertia, variable porosity, and Brinkman friction. These non-
Darcian effects, though not important in low-porosity media, are shown to be very
significant in high-porosity media. A detailed information for these effects onthe
thermal entrance length, temperature variation in the channel cross section and the heat
flow characteristics in the form of Nusselt number is reported.

2. Mathematical Formulation

A schematic for the physical configuration is shown in Fig. 1. It is assumed that
the flow in the channel is steady hydrodynamically fully developed and a thermal entry
region. The channel is a honizontal circular pipe filled with porous medium and is under
uniform heat flux gy, on the outer surface. A saturated porous medinm packed bed
comsisting of packed spheres is used to illustrate the results. It is assumed that the fluid
and the solid matrix are in local thermal equilibrium. The thermophysical properties of
the solid matrix and fluid such as the viscosity, thermal conductivity, effective thermal
" diffusivity are assumed to be constant.

Under these assumptions, the energy equation and the improved Darcy momentum
equation including the viscous boundary friction and ipertia effects can then be written.

u T/ dx
vu/y+Au?

Qe . U/s 8/3r(rdT /o) o))
-1/ p.[6P/3x)+vir. [8/ dr (rdwar)] )
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where u, P, T, p, o, L are the velocity in the axial direction x, the pressure, the
temperature, the fluid density, the effective thermal diffusivity and the fluid dynamic
viscosity respectively.  y and A are the permeability and the inertia coefficient
(Forschheimer function) of the porous medium and are given for the porous medium of

identical spherical beads by

y =al 3/ [175(-¢) 3)
A=17501-€)/ [d €3] @)

where d and € are the spherical bead diameter and porosity, respectively. It is seen
that the second term on the night band side of equation (2)is an expression for the
boundary viscous drag which was introduced first by Brinkman, the first and second
terms of the left hand side are expressions for the Darcy frictional drag which is
responsible for the porous structure and inertia drag. The present approach using
equation (2) can be used from y ~» 0 (Darcian flow) to y —> o (Pure fluid flow).

Experimental observations of Benenati and Brosilow [18] indicate that the
porosity in a randomly packed bed is functionally dependent on the distance from the
boundary wall. A common practice is to consider an exponential decaying function to
approximate the porosity variation. This can be expressed mathematically in the
following form, which was used later by Vafia et.al [19], Poulikakos and Renken [11],

and Mularidhar and Kulacki [20]:
e=ge [I+bexp(-clty-rl/@)] (5

Where ¢ is the free stream porosity, and the empirical constants b and ¢ are dependent
on the particle diameter. The results will be illustrated by using spheres 3, 5 and 8 mm in
diameter. The constants chosen to represent the variation of €e , b, and ¢ are similar to
that used by Bepenati and Brosilow [18], Chandrasekhara and Vortmeyer [21] and the
Author [13]. They are €, =0.37,b=0.35,043,09andc=3,3,2 ford=3, S5, 8 mm

respectively.

At the outer radius there is a uniform heat flux q,, and no slip occurs At the channel
intet, the fluid has a uniform velocity u,, and uniform temperature T;p, i.e. the following

boundary conditions are applied:
q=qy and u=0at r=r,
T = Tjp , U =uyy at the inlet section where x = xj,.
In order to nondimensionalize the governing equations (1) and (2}, the following
scalings are used:
U=ufu,, R=r1/r,, D=d/r,
X=(x-%jn)/(to Pr) and 0 =(T-Tiy)/(qu.I/Ce)

-
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. The steady-state, dimensionless form of the governing equations (1) aud (2) now
! become:
U o8 /80X =[2/Re]. \/R .[8 /0R (R .58 /OR)] (6)
: U+C). [Re2].U2=BT.[2Re] +T/R[3/OR(R.JU/R)] (7
where, C;=0.01D/(1-¢),
T =y/rg? =D2e3/[175(1-¢ )2 ],

" Re=2uy.ry/v, aod
: B =-06P/dx.[r,3/pu?]
f

Uy, is the averaged fluid velocity including the solid and fluid regions and B is the

nondimensional pressure gradient,

The important heat transfer characteristics in a chaonel flow are indicated by the

Nusselt number and the thermally entrance length which characterize the developing

! flow. Nusselt number at the wall can be derived in the dimensionless form as [11]:
|

Nu = 6T /8rl=ry . 2 [0 / (T -Try) @)

where the subscript w refers to the wall of the duct, T, is the mean fluid temperature
defined in 2 manner similar to that for classical fluid duct flows:

T = (Ofropqur)/[p 0J‘mudr]

The thermal entrance length was defined as the distance between the entrance of the

pipe and the point at which the mixed mean fluid temperature 8, and the Nusselt
number Nu became independent of the x-location. By can be defined as:

Bp = Ty T)/ (TyTy)
3. Numerical Procedure

Because the problem is symmetrical with respect to the centerline, only the top
* half of the channe! needs to be considered. An implicit finite difference method with
vaniable grid in the X and R directions is employed. The R domain is discritized into 181
grid points to get an accurate resolution of the important near-wall region which is used
to obtain the momentum equation finite difference form. A very fine grid size in the X
direction near the channel inlet and coarser downstream is used. The grid size «t the

inlet is 0.0001 and increases gradually in the downstream direction. This is done to
capture the steep changes in the temperature field near the entrance.
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The momentum equation (7) was transformed into algebraic finite difference
equations by integration, following the procedure developed by Patankar (22]. Since
equation (7) pertains the forced convection, it can be solved independently to get the
velocity field. Both the first and second order derivatives in the momentum equation (7)
were discretized by using central difference forrulas [23]. The Forschheimer nonlinear
term is linearized by guessing initial vafued of the velocity field at all the grid points,
and the nonlinear term was written as the product of the unknown velocity and the
guessed velocity. The difference algebraic momentum equation is solved using the
Gauss-elimination method [22] to yield the velocity field. Utilizing the velocity
distribution thus obtained, and after finite differencing the energy equation (6) using an
implicit method, a system of tridiagonal algebraic equations for the nodal temperature at
agy given X position is obtained. The very powerful and convenient equation solver
mainly the Thomas algorithm [23] is used to solve the system of equations beginning at
X=0 and marching downstream. Once the temperature profile at each X{ position is
known the local Nusselt number is determined from equations (8). Wlien the local
gradient of Nusselt number with respect to X is less than 0.001, a thermally fully

developed flow is assumed and the entrance length is obtained.

4. Results and Discussion

On the basis of the present heat-transfer model, the effect of several system
parameters such as &, D, B and Re on the entrance length, terperature profiles and heat
transfer characteristics is examined. Also the effect of the non-Darcian terms in the
momenturn equation is examined on the temperature and Nusselt number. The present
study covers the regions of 3<d <8 mm, 0.05 <D <0.5, B 5103 and Re <104

4.1 Thermal Entrance Length

when the tube surface is fixed by imposing either a uniform temperature (Ty, =
cons® or a uniform heat flux (qy = cons®), the thermal entry length is the same [24].
From- this phenomengnthe work of Poulikakos and Renken [11] for the case of (T, =
cons.) will be used here for the comparison and validation of the presented model. Fig.
2 shows the dependence of the thermal entrance length on the dimensionless pressure
gradient B for the case of d =3 mm and 0 = 0.1. The logarithmic scale shows the linear
increase of the entrance length with the increase of the nondimensional pressure gradient
B. It shows also the good agreement with the results of Poulikakos and Renken [11].
Fig. 3 shows the dependence of the thermal entrance length on the dimensionless
pressure gradient B for the case ofd =3 mm and ratio of the particle diameter to the
pipe radius 005 < D < 0.5. Fig. 3 shows also the case of the pure flmd flow. The
logarithmic scale presents the linear increase of the entrance length with the increase of
the nondimensional pressure gradient B. It shows also the increase of the entrance
length with the increase ofthe ratio D. Similar behavior to what was just described in
conjurction with parameter B was observed when the dependence of the thermal entry
length on the sphere-diameter-to channel radius ratic D figure 4 was investigated. With
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the increase of the nondimensicnal pressure gradient B or the bead diameter d or the
ratio D, Reynolds number increases [25). This means the increase of the mean velocity
of the flow which in turns decreases the thickness of the thermal boundary Jayer and
leads to the increase of the thermal entry length. Fig. 4 shows also the comparison of
the results for B = 105 with the resuits of the case (T, = conss). which was obtained by
Poulikakos and Renken {11]. The resuits of this work show good agreement with the
resuits of Poulikakos and Renken [11] and proves the validity of the model. The data

points shown ip Fig. 4 were correlated by the following equations: ‘

Xe= 11 D2 ford=3 mm, B=103
Xe= 110D2  ford=3mm, B=106

Fig. 5 pertains a heat transfer result of engineering interest, namely, the dependence
of the thermal entrance length Xe on Reynolds number. It is very interesting to notice
that the various curves corresponding to the different cases expressed in figs. 2-4
besides the two casesof d=5, 8 mmand D =0.1, i.e. cases for different values of bead
diameters and the ratio of bead diameter tc the pipe radius, collapse on one curve
coinciding with the case of pure fluid fiow for Jaminar flow. The dependence on Re
which is obtained bere and was obtained by Kays et al. [26] for pure fiuid flow gives by
the existing vaniables definitions the following correlation:

Xe = 0.1 Re

This fact means that for constant Reynolds number the entrance length is
independent on the bead diameter or the bead diameter to pipe radius ratio. By constant
Reynolds number the mean velocity of the flow is the same, which gives the same
thermal boundary layer and in turns the same entrance length. By increasing Reynolds
number the flow becomes faster and the boundary layer thinner, which leads to higher
values of the thermal entrance length.

4.2 Heat Transfer (Nusselt Number Variation)

Figs. 6 and 7 show the variation of the Nusselt number along the thermal entry
region for a host of Reynolds number, D = 0.1 and 4= 3, 8 mm. As it was expected, Nu
decays rapidly as the thermal boundary layer develops, unti! the constant value
associated with fully developed conditions is reached. Increasing Re which means faster
flow yields to higher values of the Nusselt number throughout the thermal entry region.

Fig. 8 represents the Nusselt number variation in the thermal entry and the fully
developed regions for different bead diameters 3, 5 and 8 mm, D = 0.1 with constant
Reynolds number Re = 50. Nusselt numbers are, in principle, infinite at X = 0 and decay
to their asymptotic (fully developed) vatues with increasing X. Higher values of Nusselt
number exists along the entry and fully developed regions with the increase of the bead
diameter d. Increasing d means more channeling effects (faster flow) near the boundary
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[25], which yields to relatively larger values of Nu throughout the thermal entry and
fully developed regions.

Fig. 9 aims to identify the contnibution of the non Darcian effects included in the
discussed general mode!l on the Nusselt number. The figure pertains the Nusselt number
variation with the horizontal coordinate in the thermal entry region for the case of Darcy
flow model where y—0 and the general model for d = 3 mm, D = 0.1 and
nondimensional pressure gradients B = 103 and 106. A noticeable increase of the value
of Nu in the entry and fully developed regions taking into consideration the non-Darcian
effects. The value of Nu in the fully developed region, including the effects of the

Brinkman friction, flow inertia and variable porosity, is approximately 21 percent higher
than the value predicted by the Darcy model.

To validate the existing heat transfer model, the pure fluid flow case is examined

by assuming ¥ — co in the model and compared with the results of the correfation
obtained by Petukhov [27] after rewriting it with the existing variables definitions:

Nu = 1.31 [X/Re]"13 . [1+2X/Re] (9)

Fig. 10 represents the Nu variation along the entrance region for the cases of pure fluid
flow of Re = 50, 250, 500 and 1250 and the corresponding resuits obtained by equation
(9). The comparison shows good agreement and validate the model.

4.3 Temperature variation

Fig. 11 shows the nondimensional temperature distribution across the pipe half width
at several downstream locations X =2, 3, 3.66, 5, 8, 13, where the entrance length Xq
=3.66, bead diameter d=3 mm, D= 0.1 and Re = 50. Typical temperature profiles are

shown and characterized by a steep gradient at the wall owing to the effects of wall
channeling.

Fig. 12 presents the variation of the temperature across the pipe half width at a
location X= 3.66 for d = 3 mm, D=0.1and different values of Re = 50, 100, 500.
With the increase of Re the mass flow rate increases which decreases the
nondimensional temperature 6 (the difference between the local temperature and the
inlet temperature). Also, the increase of Re, i.e. faster flow, leads to thinner thermal

boundary layer which yields smaller temperature difference between the boundary and
the core of the flow.

Fig 13 pertains the variation of the nondimensional temperature 6 across the pipe half
width for different bead diameter d=3, 5, 8 for constant Re = 50, Fig. 13 shows that
with the increase of the bead diameter d the nondimensional temperature 8 near the
boundary, i.e. at the thermal boundary layer, decreases while it increases in the core of
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the flow. This is because of the increase of the channeling effect in the boundary layer
and the more fluid flowing in it than that flowing in the core [25).

The temperature variations in two sections in the developing and fully developed
regions where X=1 and 4 arc shown in Fig 14, while Fig. 15 presents the invariant
mixed mean temperature varation Oy in the fully developed region for =3 mm, D=
0.1 and B=106. In the same figures, the temperature and mixed mean temperature
variation obtained based on Darcy flow mode} are reported. Since the Darcy flow
model daes not satisfy the no-slip condition and since it assumes constant porosity (€¢),

it yields a uniform slug velocity profile. Therefore, the general flow model yields 2 more

effective thermal communication between the fluid and the solid boundary compared
with the Darcy model.

5, Conclusions

Forced convection heat flow through 2 circular pipe filled with saturated porous

media and exposed to a constant heat flux has been numerically simulated. Both the
energy equation and the peneralized form momenturn equation including the non-
Darcian effects such as the vanable porosity, flow mertia, and viscous friction are
considered, and the finite difference method technique is used. The effect of the system
parameters @, D, B and Re on the entrance length, temperature profiles and heat transfer
characteristics were studied. Also the effects of the non-Darcian terms on the
temperature and Nusselt number is examined. The present conclusions weveobtaiped:

» The entrance length increases

linearly in the loganthmic scale with the

nondimensional pressure gradient B or the sphere-diameter-to channel radius ratic D.

Also, the entrance length increases with the bead diameter o for constant pressure

drop.

» The thermal entrance length X, increases linearly with Reynolds number, ie. for
constant Reynolds number it does not depend on either d, or D or B and the direct

dependence on Re gives the same correlation that obtained for the pure fluid flow
case:

Xe = 0.1 Re
» Taking into consideration the non-Darcian effects, a noticeable increase of the value
of Nu was found in both the entry and fully developed regions. In this case, the value

of Nu in the fully developed region is approximately 21 percent higher than the value
predicted by the Darcy model.

s Due to the channeling effects near the wall, steeper temperature gradieats at the wall
exist. With the increase of the bead diameter 4 the channeling effects lead also to
more fluid flowing in the boundary jayer than that flowing in the core which yields
lower nondimensional temperature § near the boundary, and higher one in the core of
the flow.
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s For constant 4 and D, the increase of Re, i.e
nondimensional temperature 8 (the difference between the local temperature and the
inlet temperature) and leads to thinner thermal boundary layer which yields smaller

M.S. El-Kady

temperature difference between the boundary and core flows.

s The general flow model yields a more effective thermal communication between the
fluid and the solid boundary compared with the Darcy model which assumes uniform

slug velocity profife.

6. Nomenclature

O

m g Q(E-(Mé’f"daﬁ Cﬂﬂg—!;-—???’é"‘;’? wgu&_@wp';p

5@ méﬂ

v C

Forschheimer inertia coefficient of the porous medium, equation 2
constants, equation 5

nondimensional pressure gradient , equation 7

dimensionless coeflicients, equation 7

sphere diameter, mm

" dimensionless sphere diameter = d/r,

Nusselt cumber, equation 8

pressure, Pa

the mean wall heat flux.

radial coordinate

pipe radius

dimensionless radial coordinate

Reynolds number based on the tube diameter = 2 ug, /L
temperature, K

temperature at the inlet section x = X

average temperature, equation 8

wall temperature

field velocities in the x direction, m/s

Local averaged fluid velocity including the solid and fluid regions
nop-dimensional field velocity in the X direction

axial coordinate

chaonel inlet axial distance

dimensionless distances in the x axis = (X - Xjp) / (15.Pr)
the thermal entry length

effective thermal diffusivity of the porous medium, m?/s
permeability of the porous layer, equation 2, m?
dimensionless coeffictents, equation 7 ‘
porosity of the porous medium

free-stream porosity

non-dimensional temperature = (T -Tip)/ (Gw . T/ e )
invariant mixed mean temperature = (Ty-T )/ (Tg-Tp)
kinematic viscosity of the fluid, m?/s

fluid density, kg/m3

faster flow decreases the
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