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Abstract: 

Forced convection heat flow in a cylindrical packed bed is examined numerically. 
The bed is fuled with saturated spherical beads porous media and is exposed to a 
constant wall heat flux. Besides the energy equation, the generalized fonD. of the 
momentum equation including the non-Darcian effects such as the variable porosity, 
flow inertia, and viscous friction is considered, and the finite difference method is used. 
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The results have been obtained numerically for sphere beads (3'5: d:s & mm diameter), 
ratio of the particle cfiameter to the pipe radius 0.05 'S. D ~ 0.5, and nondimeosional 
pressure gradient B up to 108. The non-Darcian effects have a significant influence on 

the behavior of the temperature, thermal entry length. and Nusselt numher across and at 
the channel wall. The channeling phenomenon near the walls enhanced the thermal 
communication between the fluid/solid matrix. composite and the walls. This fact yielded 
an overall 21 percent increase in the value of the Nu in the fully developed region, 
compared to the value predicted when the Darcy model was used. The results gives 
complete information about the flow structure and heat transfer for the expressed ranges 
of parameters. Also, useful correlations reporting the dependence of the thermal entry 
length on the problem parameters (d. D, B) were reported. A direct dependence of the 
thermal entry length on Re exists and gives the same correlation that obtained for the 
pure fluid flow case: 

Xe .=0 0.1 Re 

To veri:fY the numerical results a comparison have been done with the numencal 
results obtained by Poulikakos and Renken [Ill, Kays and Crawford [26J and Petukhov 
[27]. The comparison shows a very good agreement for the presented results and proves 
the validity of the model 

l. Introduction 

Fundamental studies related to thermal convection in porous media have 
increased significantly during recent years. This interest is due to the presence of 
porous media in diverse engineering applications including geothermal systems, building 
thermal insulation., enhanced recovery methods, nuclear waste disposal, packed bed 
chemical reactors, and solid Inat.rVt heat exchangers. Most of these studies address the 
problem of natural convection. The earlier investigations are based on the Darcy flow 
model and comprehensive reviews are provided by Combarnous and Bories [J J. Catton 
[2) and El Kady [3]. In contrast to rocks, soil, sand and other media that do fall in this 
category, certain porous materials, such as foam metals and fibrous media, usually have 
high porosities. In these media, the boundary and inertia effects, not included in Darcy's 
model, may alter the flow and heat transfer characteristics. Therefore, lately, Non­
Darcy effects on thermal convection in porous media have been considered by severa! 
investigators including Vafia and Tien [4J, Poulikakos and Bejan [5], KJadias and Prasad 
[6], Lauriat and Prasad [7), and Ettefagh et. al. [8] among others. 

The problem of forced convection in porous media is mostly reJevant in flow 
through packed beds and the use of solid matrix heat exchangers. Koh and Colony [9] 
performed a simplifies analytical investigation of the perfonnance of a heat exchanger 
containing a conductive porous matrix.. However, the study was limited to very low 
penneabllities for which uniform velocity was assumed across the channel. In a study 
based on Brinkman-extended flow model, Kaviany [I O} reported results for forced 

(-
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convection in a porous channel bounded by isothermal parallel plates. Poulikakos and 
Renken [11] solved a similar problem but used a general flow model which included the 
effects of flow inertia. variable porosity, and Brinkman fiction. Renken and Poulikakos 
[12] conducted an experimental study of boundary-layer forced convection from a flat 
isothermal plate in a packed bed of spheres. El Kady [13] investigated numerically the 
forced convection beat transfer and flow in an annular channel filled with porous media 
taking into consideration the non Darcian effects (flow inertia, variable porosity. and 
Brinkman fiiction). Cheng. et aI. (14] analyzed the forced convection in the entrance 
region of a packed channel with asymmetric heating. Wang and Du [15] analyzed 
experimentally the forced convective heat transfer in a vertical annulus filled with porous 
media. .I\miri and Vafia (161 simulate numerically the forced convective incompressible 
flow through porous media, and the associated transport processes. Kamiuto and Saitoh 
(17] examined numerically the fully developed forced-convection heat transfer in 
cylindrical packed beds with constant wall temperatures. Most of these studies relate to 
understa.nding the various physical phenomena which occur in existing porous-media­
related thermal systems. 

As an e1dension to these investigations, the present study performs a detailed 
numerical analysis of forced convection in a circular channel filled with spherical 
identical beads and exposed to a constant heat flux using the general flow model which 
includes the effects offlow inertia, variable porosity, and Brinkman friction.. Tbese non­
Darcian effects, though not important in [ow-porosity media, are shown to be very 
significant in high-porosity media. A detailed information for these effects on the 
thermal entrance length) temperature variation in the channel cross section and the heat 
flow characteristics in the form ofNusselt number is reported. 

2. Mathematical Formulation 

A schematic for the physical configuration is shown in Fig. 1. It is assumed that 
the flow in the cbannel is steady hydrodynamically fuUy developed and a thermal entry 
region. The channel is a horizontal circular pipe filled -with porous medium and js under 
uniform heat flux: qw 011 the outer surface. A saturated porous medium packed bed 
consisting of packed spheres is used to illustrate the results. It is assumed that the fluid 
and the soli.d matrix are in local thermal equilibrium. The therroophysicaJ. properties of 
the solid matrix and fluid such as the viscosity, thermal conductivity, effective thermal 

• diffusivity are assumed to be constant. 

Under these assumptions, the energy equation and the improved Darcy momentum 
equation including the viscous boundary friction and inertia effects can then be written. 

u aT I&.== ae . IIr a I Or ( r or lar) (1) 

u u I y + A u2 == -11 p .[ 8P I Ox] + U If . [8 I ar ( r Ou/ar)] (2) 
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where u, P, T, p. a.e" U are the velocity in the axial direction x., the pressure, the 
temperature, the fluid denslty, the effective thermal ditfusivity and the fluid dynamic 
viscosity respectively. y and A are the permeability and the inertia coefficient 
(Forschheimer function) of the porous medium and are given for the porous medium of 
identical spherical beads by 

y = d2 s3 / [ 175 0- t )2] 

A = 1.75(1-e)/ [d g3] 

(3) 

(4) 

where d and E are the spherical bead diameter and porosity, respectively. It is seen 
that the second term on the right hand side of equation (2) is an expression for the 
boundary viscous drag which was introduced first by Bri~ the first and second 
terms of the left hand side are expressions for the Darcy fiictional drag which is 
responsjble for the porous structure and inertia drag. The present approach using 
equation (2) can be used from y ~ 0 (Darcian flow) to y ~ 00 (Pure fluid flow). 

Experimental obselVations of Benenati and Brosilow [18] indicate that the 
porosity in a randomly packed bed is functionally dependent on the distance from the 
boundary wall. A common practice is to consider an exponential decaying function to 
approximate the porosity variation. This can be expressed mathematically In the 
following form., which was used later by Vafia et.al [19], Poulikakos and Renken [11]. 
and MuJ aridhar and KuIacki [20]: 

e = Ee [1+ b exp(- c [ro- r] I d)] (5) 

Where f;e is the free stream. porosity. and the empirical constants b and c arc dependent 
on the particle diameter. The results will be illustrated by using spheres 3, 5 and 8 rom in 
diameter. The constants chosen to represent the variation of ~e ' b, and c are similar to 
that used by Benenati and Brosilow [18], Chandrasekhara and Vortmeyer [21] and the 
Author [13]. They are ee = 0.37, b=O.35, 0.43, 0.9 and c== 3, 3,2 for d= 3,5,8 rom 
respectively. 

At the outer radius there is a uniform heat flux: qw and no slip occurs. At the channel 
inlet, the fluid has a uniform velocity um and unifonn temperature Tin, .i.e. the following 
boundary conditions are applied: 

q = qw and u = 0 at r = ro 

T == Tin, U = urn at the inlet section where x = xm. 
In order to nondimensionalize the governing equations (l) and (2) J the following 

scalings are used: 

U = U IUttJ> R =:: r If OJ D -= d If 0' 

X == (x - Xin )/(ro .PT) and 9:= (T -Tin )/(qw.To fue) 
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The steady-state, dimensionless form of the governing equations (1) and (2) now 
become: 

U De / ax = [2fRe].11R .[0 10R(R.06 lOR)] (6) 

U + C1. [ReI2] .U2:;= B r. [2IRe] + r IR[B / aR( R. au laR)] (7) 

where, Cl =: 0.01 D / (1- E) , 

r = y / r02 =.02 63 / [175 (l- e )2 ), 

Re .;: 2 Urn. r J u. and 

B = - oP / ax . [ r03/ p \)2 ] 

urn is the averaged fluid velocity including the solid and fluid regions and B is the 
nondimensional pressure gradient. 

The important heat transfer characteristics in a channel.tlow are indicated by the 
Nusselt number and the thermally entrance length which characterize the developing 
flow. NusseJt number at the wall can be derived in the dimensionless form as [II]: 

Nu = aT /arlr=ro . 2 [ra / (Tw -TrrJ] (8) 

where the subscript w refers to the wall of the duct, T m is the mean fluid temperature 
defined in a manner similar to that for classical fluid duct flows: 

T m =0; (0 J ro puT dr ) / [p 0 J ro u dr ] 

The thermal entrance length was defined as the distance between the entrance of the 
pipe and the point at which the mixed mean fluid temperature 8m and the Nusselt 
number Nu became independent of the x-location. 8m can be defined as: 

3. Numerical Procedure 

Because the problem is symmetrical with respect to the centerline, only the top 
. half of the channel needs to be considered. An implicit finite difference method with 

variable grid in the X and R directions is employed- The R domain is discritized into 181 
grid points to get an accurate resolution of the important near-wall region which is used 
to obtain the momentum equation finite difference fonn. A vel)' fine grid size in the X 
direction near the channel inlet and coarser downstream is used. The grid size at the 
inlet is 0.0001 and increases gradually in the downstream direction. This is done to 
capture the steep changes in the temperature field ncar the entrance. 
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The momentum equation (7) was transfomted into algebraic finite difference 
equations by integration, following the procedure developed by Patankar (22]. Since 
equation (7) pertains the forced convection, it can be solved independently to get the 
velocity field. Both the first and second order derivatives in the momentum equation (7) 
were discretized by using central difference formulas [23]. The Forschheimer nonlinear 
term is linearized by guessing initial valued of the velocity field at all the grid points, 
and the nonlinear term was written as the product of the unknown veloclty and the 
guessed velocity. The difference algebraic momentum equation is solved using the 
Gauss-elimination method [22] to yield the velocity field. Utilizing the velocity 
distribution thus obtained, and after finite differencing the energy equation (6) using an 
implicit method, a system of tridiagonal algebraic equations for the nodal temperature at 
any given X position is obtained. The very powerful and convenient equation soLver 
mainly the Thomas algorithm (23] is used to solve the system of equations beginning at 
X=O and marching downstream. Once the temperature profile at each X position is 
known the local Nusselt number is determined from equations (8). When the local 
gradient of NusseLt number with respect to X is less than 0.00 1, a thermally fulJy 
developed flow is assumed and the entrance length is obtained. 

4. Results and Discussion 

On the basis of the present heat-transfer model, the effect of several system 
parameters such as d, D, B and Re on the entrance length, temperature profiles and heat 
transfer characteristics is examined. Also the effect of the non-Darcian terms in the 
momentum equation is examined on the temperature and Nusselt number. The present 
study covers the regions of 35. d ~ 8 mm, 0.05 ~ D $; 0.5, B S;1O& and Re :S;:104. 

4.1 Thermal Entrance Length 

when the tube surface is fixed by imposing either a uniform temperature (Tw =' 
cansO or a uniform heat flux (qw == cons~, the thermal entry lengtb. is the same [24]. 
From· this phenomenonthe work of Poulikakos and Renken (11] for the case of (T w = 
cons.) will be used here for the comparison and validation of the presented model. Fig. 
2 shows the dependence of the thermal entrance length on the dimensionless pressure 
gradient B for the case of d = 3 mm and D == 0.1. The logarithmic scale shows the linear 
increase of the entrance length with the increase oftbe nondimeosional pressure gradient 
B. It shows also the good agreement with the results ofPoulikakos and Renken [11]. 
Fig. 3 shows the dependence of the thermal entrance length on the dimensionless 
pressure gradient B for the case of d = 3 mm and ratio of the particle diameter to the 
pipe radius 0.05:-::;; D ::; 0.5. Fig. 3 shows also the case of the pure fluid flow. The 
logarithmic scale presents the linear increase of the entrance length with the increase of 
the nondimensiona1 pressure gradient B. It shows also the increase of the entrance 
length with the increase of the ratio D. Similar behavior to what was just described in 
conjunction with parameter B was observed when the dependence of the thermal entry 
length on the sphere-diameter-to channel radius ratio D figure 4 was investigated. With 
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the increase of the nondimensional pressure gradient B or the bead diameter d or the 
ratio D, Reynolds number increases [25). This means the increase of the mean velocity 
of the flow which in turns decreases the thickness of the !hennal boundary layer and 
Jeads to the increase of the therm.al entry length. Fig. 4 shows also the comparison of 
the results for B ::= 10j with the resuJts of the case (Tw = canst). which was obtained by 
Poulikakos and Renken [111. The results of this work show good agreement with the 
results of Poulikakos and Renken [11] and proves the validity of the model. The data 
points shown in Fig. 4 were correlated by the following equations: 

x = 11 D2 e 

Xe:= 1l0D2 

for d= 3 rnm. B == lOS 

for d = 3 mm B == 106 , 

Fig. 5 pertains a heat transfer result of engineering interest, namely, the dependence 
of the thermal entrance length xe on Reynolds number. It is very interesting to notice 
that the various curves corresponding to the different cases expressed in figs. 2-4 
besides the two cases of d= 5, 8 mm and D = 0.1, i.~. cases for different values of bead 
diameters and the ratio of bead diameter to the pipe radius, coUapse on one curve 
coinciding with the case of pure fluid flow for laminar flow. The dependence 00. Re 
which is obtained here and was obtained by Kays et a1. [26] for pure fluid flow gives by 
the existing variables definitions the following correlation: 

Xe == 0.1 Re 

This fact means that for constant Reynolds number the entrance length 15 
independent on the bead diameter or the bead diameter to pipe radius ratio. By constant 
Reynolds number the mean velocity of the flow is the same, which gives the same 
thermal boundary layer and in turns the same entrance length. By increasing Reynolds 
number the flow becomes faster and the boundary layer thinner, which leads to higher 
values of the ~ermal entrance length. 

4.2 Beat Transfer (Nusselt Number Variation) 

Figs. 6 and 7 sbow the variation oftbe Nusselt number aJong the thermal entry 
region for a host of Reynolds number, D =: 0.1 and d = 3, 8 mm. As it was expected, Nu 
decays rapidly as the thermal boundary layer develops) until the constant value 
associated with fuUy developed conditions is reached. Increasing Re which means faster 
flow yields to higber values of the Nusselt number throughout the thermal entIy region. 

Fig. 8 represents the Nusselt number variation in the thermal entry and the fully 
developed regions for different bead diameters 3, 5 and 8 mm. D == 0.1 with constant 
Reynolds number Re = 50. Nusselt numbers are, in principle, infinite at X=:O and decay 
to their asymptotic (fully developed) values with increasing X. Higher values of Nusselt 
number exists along the entry and fully developed regioDJ with the increase of the bead 
diameter d. Increasing d means more channeling effects (faster flow) near the boundary 
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[25], which yields to relatively larger values of Nu throughout the thermaJ entry and 
funy developed regions. 

Fig. 9 aims to identity the contribution of the non Dardan effects included in the 
discussed general model on the Nusselt number. The figure pertains the Nusselt number 
variation with the horizontal coordinate in the thermal entry region for the case of Darcy 
flow model wbere y-;.O and the general model for d '= 3 mm, D :; 0.1 and 
nondimensionaJ pressure gradients B = 105 and 106. A noticeable increase of the value 
of Nu in the entry and fully developed regions taking into consideration the non·Darcian 
effects. The value of Nu in the fully developed region, including the effects of the 
Brinkman friction, flow inertia and variable porosity, is approximately 21 percent higher 
than the value predicted by the Darcy model. 

To vaJidate the existing heat transfer mode~ the pure fluid flow case is examined 
by assuming '( -;. 00 in the model and compared with. the results of the correlation 
obtained by Petuk"hov [27] after rewriting it with the existing variables definitions: 

Nu = 1.31 [XlRe}-lJ3 . [1+2X1Re] (9) 

Fig. 10 represents the Nu variation along the entrance region for the cases of pure fluid 
t10w ofRe:::: 50, 250, 500 and 1250 and the corresponding results obtained by equation 
(9). The comparison shows good agreement and validate the modeL 

4.3 Temperature variation 

Fig. 11 shows the nondimensional temperature distribution across the pipe half width 
at several downstream locations X = 2. :1, 3.66, 5, 8. 13, where, the entrance length Xe 
=3.66, bead diameter d= 3 mm, D = 0.1 and Re = 50. Typical temperature profiles are 
shown and characterized by a steep gradient at the wallowing to the effects of wall 
cbanneling. 

Fig. 12 presents the variation ofilie temperature across the pipe halfwidth at Ii 
location X= 3.66 for d = 3 rom, D= 0.1 and different values ofRe::: 50, 100,500. 
With the increase of Re the mass flow rate increases which decreases the 
nondimensional temperature e (the difference between the local temperature and the 
inlet temperature). Also, the increase of Re, i.e. faster flow, leads to thinner thermal. 
boundary layer which yields smaller temperature difference between the boundary and 
the core of the flow. 

Fig i3 pertains the variation of the nondimensiooal temperature e across the pipe half 
width for different bead diameter d= 3, 5,8 for constant Re:: 50. Fig. 13 shows that 
with the increase of the bead diameter d the nondimensional temperature e near the 
boundary, i.e. at the thermal boundary layer, decreases while it increases in the core of 
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the flow. This is because of the increase of the channeling effect in the boundary layer 
and the more fluid flowing in it than that flowing in the core [25]. 

The temperature variations in two sections in the developing and fully developed 
regions where X=l and 4 are shown in Fig. 14. while Fig. 15 presents the invariant 
mixed mean temperature variation em in the fully developed region for d =:: 3 mID, D = 
0.1 and 8=106. In the same figures, the temperature and mixed mean temperature 
variation obtained based on Darcy flow model ate reported, Since the Darcy flow 
model does not satisfY the no-slip condition and since it assumes constant porosity (eJ, 
it yields a uniform slug velocity profile. Therefore, the general flow model yields a more 
effective thennal communication between the fluid and the solid boundary compared 
with the Darcy model. 

5. Conclusions 

Forced convection heat flow through a circular pipe filled with saturated porous 
media and exposed to a constant heat flux has been numerically simulated_ Both the 
energy equation and the generalized form momentum equation including the noo­
Darcian effects such as the variable porosity. flow inertia, and viscous friction are 
considered, and the finite difference method technique is used. The effect of the system 
parameters d, D, B and Re on the entrance length, temperature profiles and heat transfer 
characteristics were studied. Also the effects of the non-Dar-ciao terms on the 
temperature and Nusselt number is ex.amined. The present conclusions wtwtobtained: 

• The entrance length increases linearly in the logarithmic scale with the 
nondimensional pressure gradient B or the sphere-diameter-to channel radius ratio D. 
Also, the entrance length increases with the bead diameter d for constant pressure 
drop. 

• The thermal entrance length Xe increases linearly with Reynolds number, i.e. for 
constant Reynolds number it does not depend on either d, or D or B and the direct 
dependence on Re gives the same correlation that obtained for the pure fluid flow 
case: 

Xc = 0.1 Re 
• Taking into consideration the non-Darcian effects. a noticeable increase of the value 

of Nu was found in both the entry and fully developed regions. In this case, the value 
of Nu in the fully developed region is approximately 21 percent bigher than the value 
predicted by the Darcy model. 

• Due to the channeling effects near the wall, steeper temperature gradients at the wall 
exist. With the increase of the bead diameter d the channeling effects lead also to 
more fluid flowing in the boundary layer than that flowing in the core which yields 
lower nondimensional temperature e near the boulJdary, and higher one in the core of 
the flow. 
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• For constant d and DI the increase of Ret i.e. faster flow decreases the 
nondimensional temperature a (the difference between the local temperature and the 
inlet temperature) and leads to thinner thermal boundary layer which yieJds smaJler 
temperature difference between the boundary and core flows . 

• The general flow model yields a more effective thermal communication between the 
fluid and the solid boundary compared with the Darcy model which assumes uniform 
slug velocity profile. 

6. Nomenclature 

A 
b,c 
B 
C1 
d 
D 
Nu 
P 
qw 
r 
ro 
R 
Re 
T 
Tm 
Tm 
Tw 
u 

Urn 
U 
x 
xin 
X 

Xe 
(J. 

y 
r 
€ 

Ee 
a 
am 
t) 

p 

Forschheimer inertia coefficient of the porous medium, equation 2 
constants, equation S 
nondimensionaJ pressure gradient J equation 7 
dimensionless coefficients, equation 7 
sphere diameter, rom 
dimensionless sphere diameter = dlro 
Nusse(t number, equa.tion 8 
pressure, Pa 
the mean wall heat flux. 
radial coordinate 
pipe radius 
dimensionless radial coordinate 
Reynolds number based on the tube diameter == 2 urn.rdu 
temperature~ K 
temperature at the inlet section x xm 
average temperature, equation 8 
wall temperature 
field velocities in the x direction, mJs 
Local averaged fluid velocity including the solid and fluid regions 
non-dimensional field velocity in the X direction 
axial coordinate 
channel inlet axial distance 
dimensionless distances in the x axis == (x· xm) I (ro.Pr) 
tbe thermal entry length 
effective thermal diffusivity of the porous medium, m21s 
permeability of the porous layer, equation 2) m2 

dimensionless coefficients, equation 7 
porosity of the porous medium 
free-stream porosity 
non-dimensio.oal temperature == (T -Tin> / (q" . fO I Cle ) 
invariant mlxed mean temperature = (T w· T ) I (T w· T nJ 
kinematic viscosity of the fluid, ml/s 
fluid density, kg/m3 
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