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Optimum Dimensions of Concave Cable Roofs
By
M. Naguib , S. El-Bagalasy , and §. Selim .
Assistant Professors , Structural Engineering Dept.
EL.Mansoura Universtty
El. Mansoura , Egypt .
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ABSTRACT

The present work deals with the eleetion of the optimum dimensions of
concave eable roofs . In the stahc analysis, the energy method , based on, the
minimization of the totel potenual energy (TPE) ol struclural clemenls , via
Newton Raphson technique is used . The procedure is carried out by using the
iterative steps to acquire the final configurations taking into consideration the effect
of geometric nonlineantiy of the structure . Design parameters , such as both sag
and nise to span ratios , initial tension in cables , distance between vertical ties |
surface curvature, columns rigidity and their inclinations with horizontal , loading
and support conditions are investigated . Numencal analysis of different concave
cable roofs are performed . Finally the conclusions is outlined .

/- Iptroduction

The development of high tensile steel cable has made it possible to transmit
large axial forces in tension at a relatively low cost . Experience in this field has
shown that the cable roof structure is a theortically pleasing . Their use has often
result in attractive shape , with structures that are stable and efficient since a large
proportion of the main loads carrying members are in tension . A concave eable
roof comprises muin cable | rooling cable and suspenders is one of the
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most cotmmon types of roofs . Which used to cover large span areas as
independent structures or may be arranged in geometrical patterns to consist the
roof nets in rectangular , circular , trapczoidal and eiliptical in plane .

In structural analysis using the stiffncss method , the formulation of structurc's
stiffness matrix is required , whilst the analysis using the energy method doesn't
nred the assemblage of the structure's stiffness matrix . So that especially in large
structures , the later method s more advantageous to available personal computer .
The analysis is carried out by mimmization of the total potential energy of the
structure using iterative procedure . ‘Theoretically , this minimization can take place
along any defined descent vector . Mathematically,a number of options exist 1.2} |

To understand the static behaviour of concave cable roofs shown in Fig. (1)
, many design parameters are taken into consideration . Design parameters as
spacing between vertical ties , both sag and nise to span ratios , initial tensions in
cable elements, inclination of both suspenders and vertical colvmns and ngidity
of columns and their supports are taken into consideration . At first, a concave
cable roofl [or 30m span with and withoul diagonal members urrungement as
shown in Figs. ( 2a ) and { 2b ), respectively have been studied in order to
obtain the optimum dimensions taking inte consideration the above menticned
different design parameters . Then , with ophmum dimensions for design
parameters obtained for concave cable roof for 30m span, a complete analysis
for concave roofs with 60m and 90m spans is achieved .

Newton-Raphson or instantaneous stiffness matrix method [ 3, 4] ,which ,
converges more quickly in terms of iterations and gives a high degree of
accuracy 1s used . The success of this method depends upon :

a) The justification of ignoring the cubic and higher order terms in the

Taylor cxpansion scrics , and

b) The condition of the stiffness matrix for any displaced form of the
structure . '

More details about Newton-Raphson method using iterative procedure are
given by [3 . 6] . Finally , numercal analysis for all design parameters
mcluding the conclusions are reported .
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&~ Nenligesr response by mipimization of the lole/ potentis/ encrgy .

The Newtow-Raphson iterative technique [2 . 7.8.9,10] s reported for
nonlinear analysis . A method of nonlinear analysis using the Newtow-Raphson
technique 15 developed in this section .

2-1 Assumptions :

In the following development , it is assumed that { 7]

a) The cable cannot resist bending ,

b)The forces in the cable are of sufficient magnitude to prevent non-linear
load-extension curves of cable links due to their weight [ 111,

c¢) The elastic extensions of the cable are small compared with their lengths ,
and

d) The loads are applied at points of intersection of the cables .

2-2 The gradienl vector of the tolal polential energy al a stationary point in
displacement space :
Considering U s the elastic strain energy stored in structure's members and

V is the potential energy of the applied load system , the TPE , W ofthe
structural system is given by :

W-U+V (H
For constant loading , if the datum is taken as the unloaded configuration of
the system , equation (1) may be written asl 71 -

W= Z:L\ Up - 1Ry T (2)

Where

{F} = column vector of the external applied loads ,

{x} = column vector of the joint displacements ,

Up, = strain energy stored in any link m , and

M = total number of links or members .

The equilibrium position of a structure corresponds to & stationary minimum
point in the n-dimenstonal space of the TPE and occurs when x:

Wi ox={gi}=0,1=12—,f (3)
Where { is the total degree of freedom of all joints . Differentiating equation
(2) with respect to Xjj . gives
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W/ 055 = EE___\ {8Ujn/ oxji } - Fji {4)

Where N = number of links at joint j .
Considering the tensile force in any link be tjp and the elongation of the link
ein » then
{@Uin/ &x%;} ={ dUjn/ i }{ Oein/ Oxij } (5)
= tin { dejn / OXij }

Substituting in equation (4) gives :
8 W/ 3 xj; = E}L\ tin { ¢jn/ O%ji } - Fii (6)
let Lipg is the initial prestressed length of link jn, then ¢

(Lino * €jn)3 = 233\ (( Xai- X5 ) + (%ni - %51 )P 7

Dillerentialing equation (7) with respect o x,  and  subsuituting (o { 0
¢in / O%;; } in cquation (6) gives :

oW/ x5 = '£§=\ [ Xani - Xji )+ G - %51 )P/ ( Lino + ¢jn}] - Eji (8)
2-3 The Newlon—-Raphson melhod .

Let the change in the displacement vector at the end of the ki ireration be
Bxy and the gradient vectors al xy snd x+1 be respeciively -

g = 0W/O0xy and g1 = OW/Idx11 (9

Expanding the gradient at Xk wn terms of a Taylor series and ignoring cubic
and higher-order terms and remembering that the potential energy of the loading
is linear in X, the gradients are given as :

g+ = gy + (GHU Oy Oxy )by (10)

If it 1s now assumed that, gy+] is equal to zero , equation{10)reduces to :

- 8y = (2L By Oxy PO (11)

In which the Hessian matax (62Uf o, 0Owy) can be recognized as the
stiffness matrix at point ¥} in displacement space . The change in the
displacement vector at the end of the kth iteration is there fore, given by :

s, = KT g (12)
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and thus,
Xic+] = X T O%y (13)

For non-linear structures successive tterations are required and considenng
8xx as a descent vector along which is taken a step Si8xk to a point where the
TPE is a minimum . Then , the equation (13) can be written as :

Xjer | = %+ SV (14)

Where , The descent vecior Vi = dx;. (15)

The stiffness matrix Ky given in equation (12) for pinjointed pretensioned
link at the kth is given , ref. (8) as :

BA - Gt 1 T [T -l
Kg- L o \'c?{ deG’%" + T 16
-Gka Gka J 1 l (16)

Where , [isa unit matrix of dimension (3x3), T is the tension in link member,

and Gy = {1 man }T and I, m, n are the direction cosines of the member .
2-4 The stalionary condilion in the descent direclion .

The TPE be cxpressed as a fourth order polynomial in the steplength S tn the
form :
W=Cs84+C383+C82+CyS+Cp (17

The value of S can now be found from the condition that :
dw/ds =0 (18)

at the stationary point along the path of descent .
Differentiating equation (17) with respect to S and applying the condition given
by equation {18), yields :

4C483+3C382+2Cp8+Cp =0 (19)

Using Newton's approximation [ormula to gel Lhe slep-length as

o aWIaS 50
Sip] =8 - 8N (20}
L WISt

Where 1 is an iteration suffix and S;=( is taken as zero .
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The coefficients C4 , C3 . Cp, Cy are givein as :

Ca=EP | (EAa}2L3)n (2la)
C3=L® | (EAszayLy)n (21b)
2= I®_, (tgastEA(@} +22y0)2L3 n? 2L E% EVX Civgkgvp)y (210)

Ci= 23=\(taaz+EAaiaz)/La )n_,_}:i sil yil (xsksr“'r)n‘Z“ Fnvp (21d)

n=1 &=l Tr=d n=1
Where
a] = L2, (Xni Xji+0%ni %) X ko) (222)
8y = L2 (Kni- il Coni i) Vaivji) (22b)
az ~ E?ﬂ ‘;’z(vnj-vj'i)z (22¢)
Where

f= number of flexural members |

p = number of pinjointed members and cable links ;

kgr = element of stiffness matrix in global coordinates of a flexural member ;
tg = initial force m a pinjointed member or cable link due to pretension ;

x = element in displacement vector due to applied load ; and

Fy, = element in applied load vector .

J- Aalysis considerslions .

The analysis 1s carried out similar to the study of optimum shape of convex and
concave-convex cable roofs [ 12, 131 1( was achieved for 30m , 60m , and 90m
spans of beams with the unbalanced force vector is less than 0.001 of the initial
values . The cable end flexural members properties for all spans are given in Table
1 .The static analysis of the design parameters is carried out for the following cases
of loading including the sclf weight of structural elements .

Case 1 : uniformly distributed dead loads = 0.15kN/m2

Case2: uniformly distributed live load over full span = 0.55 KN/mZ .

Case 3 . uniformly distnibuted live joad on left half of the span .

Case 4 : Combination of case 3 and wind loads | 14 |
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Wind loads are treated according to " Egyptian Standard Specification *[15],

To election the optimum dimensions cf the coneave cable roof shown in Fig.2 ,
the analysis s eamed out for ditferent concave roots taking the following
assuinptions .

a) For initial tcnston in cables as a percentage of minimum breaking loads |, three
stages are considered as :

stage 1 : 20% and 10% for guys and other cable elements, respectively .

stage 2 . 20% and 10% for guys and rsing cable and sagging cable .

respectively .

stage 3 : 10% for all cable elements .

b) For sag and rise to span ratios , three options are considered as :

option 1 : rise to span ratio is 3% and the sag to span ratio is variable .

option 2 : rise to span ratio is 4% and the sag to span ratio is variable .

option 3 : both sag and rise to span ratios are variables .

£ Slalic apalysis of copcave cable besm .
4/ Farsmelric stodies
£ /.7 Spacigg belween verlica/ e elements

For a 30m span roof with option 3, both sag and rise to span ratios of 5% , and
stage 2, the analysis is carried out . The results are given in Figs. (4 to 7 ) . These
resufts showed that , case of loading 2 gave a maximum deflection at midspan
while case of loading 3 gave a maximum deflection at roof span's quarter . The
variation of spacing between vertical ties in the range up to 4m , has no significant
effect on the responses of the structure . Finally , from obtained results and upon
experience , it can be concluded that, the optimum spacing berween vertical ties

lies between 2 Lo 3m . In the following sludies the spacing belween vertical Ges 1s
considered as 2.5m .

4./.2 lmlis/ lension in cable elements .

Wilh both nise and sag lo span ratios of 5%, the resulls given in Figs. ( 8 to L1
) which are cartied out for three stages mentioned in ttem 3 showed that :

1) the deflection and tension in sagging cable decreases with increasing the
initial tension in al] stages and all cases of loading while the tension in nising cable
increases .

2) stage 2 which considered that the initial tension for inclined cables and other
cable elemcnis were 20% and 10% of minimum breaking toad gave a good results .

4./.7 both sag and nise lo span ralis -
With the obtained results in first two items and options mentioned in itemn 3 | the
analysis is achieved . The results are given in Figs. (12tol7 ) . The results
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demonstrate that , increasing both sag and rise to span ratios the deflections and
final tensions in sagging cable decreasing while the tension in nsing cable
increasing . So that , the best chotce for sag and nise to span ratios is option 2
which considered that these ratios are 5% and 4% for sag and rise , respectively.

/o lnchnalion of guy cable with horizonls/ .

The analysis of all proposed cases of loading is carried out and some results are
given in Figs. ( 18 to 23 ). 1t can be summarized that the optimum inclination of
the guys ranges between 30 and 50 degrees .

{15 lockipalion of colvmas on forizonlal

The analysis 1s carried out taking into consideration all the optimum design
parameters obtained from the previous investigations with guy inclination of 30
degree . The results given 1n Figs. ( 24 to 28 ) showed that the best angle of’
inclination for columns with vertical doesn't exceed than 15°

1.1.8 Hecl of disgons! csbles on lhe anslysis

The analysis 1s carried out for roof shown in Fig. (2b) considering vertical
columns , 45° as inclination of lower guy . stage 2 of initial tension and option 2
for sag to span ratio . Some resuits are given in Table 2 . [t can be noted that for
beam shown in Fig. (2b), the tensions forces in sagging and rising cables decrease
while in inclined guys increase . Also | the columns sway with beam

shown in Fig. (2b) is grcater than that for bcam shown in Fig. (22) . The significant
factor 1s the number of iteration required to get the specified accuracy feduced by a
considerably numbers in case of beam Fig. (2b) . So that . i1 isn't important to use
diagonal elements with light weight .

1.1.7 Rigidily of columps and (heir sypports {(ppe

With all assumptions given in item 4.1.6 the analysis is achieved and the results
are given in Tables 2 and 3 . It can be coucluded that , & hinged supports reduced
the bending moment in columns by about 10% and increased the final tension in
sagging , rising and upper guys by small values . Also, with increasing the rigidity
of columns all responses decrease .

17 4 complele sas/vsis of 60m snd 90m span beams .

‘the analvsis s achieved taking into consideration all the optimum values of
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studied parameters obtained for span of 30m . A sample of results are given tn
Table 3 .

3- Conclusions -

The general conclusions can be summanzed as :

(1) A Newton-Raphson method is appropriate for carrying out the analysis

of this type of structures .

{2} The number of iterations required to give the specified accuracy of

analysis decreases with the increase of the initial tensions in cables and

increase with increasing of loads , especially for case of unsymmetrical
loading . High dgidities columns with the arrangement of the diagonal ties in

the cable beam veduce considerably the number of iteration required for a

specific accuracy .

{3) The optimum values of the design parameters concluded from the present

work can be summarized as :

{a) The spacing between vertical ties ranges between 2 to 3m .

The inclination of columas about 15° with vertical decreases both sag and rise
to span ratios

(b) In order toensure that the all cable elements remain in tension for all case

of loading , the value of initial tension for inclined guys must be twice the

values of initial tension for all other cables .

{c) The sag and rise to span rattos are 3% and 4% , respectively .

(d) The inchnation of guys with honzontal ranges between 30° to 50° .

(e) The inciination of columns with vertical does not exeeed of 15° .

() In case of light loads , the arrangement of diagonal cable elements isn't

necessary .

(g) The hinged support for columns is better than the fixed support with

high initial tension in guys .
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Table (1) : Cables and stays properties for concave cable roof .

ltem [span|{ Type | Diameter, | Area,| Breaking | Weight | Modules,E
m cm em? | load (KN) | N’ KN/mum2
All | 30m | BS5896 1.8 2.23 380 17.17 150
cables of | 60m | spiral 331 6.78 910 54.8 169.7
beam | 90m | locked 4.8 153 | 20013 | 1257 158.4
Guy |30m | spiral 25 3.74 557.2 29.9 169.7
Stays | 60m | spiral 42 1033 | 15009 34.8 169.7
90m | locked 5.51 184 | 24525 | 1508 158.4

Flexural A=124.54cm? , ] =3419cm? , Ix= 11850cm? | Iy=1 1850cm? |
members E-21000KN/em? , Weight — 962N/m'

Table (2} : Some results {or cable roofs shown in figs. (2a and 2b }:

| Fixed supports Hinged supports
[tems r__Catse {2) Case (3) Case (2) Case {3}

| (Al | By | A1 B1 1 [A] | (B) | [A) [ [B]
r_Dcﬂ. atn,cm -183 [-921(-172] -74 |-193]-10.1| -18 | -8.04
[ Defl. at m, cm -23.8 |-24.1[-139|-13.9[-2581-2521(-14.8]-14.7
Defl. ato, ¢m -183 1 92 0.3771-351[-193]-10.1|-4.32| -3.97
Swayata, cm 061 | 1161036088 | 0.8 [ 1321049 | 0.99
Swayatbh, cm -0.61 |-1.16] 04 |-0221] -0.8 |-1321 -0.3 | -0.32

Max. sway , cm 17 1141 1531 12 | 24 | 2022131} 1.72
Tonsionin 1, KN | 103 [87.6 | 953 { 789 | 103 | 87.6 | 95.2 | 785 |
Tensionin2 KN | 124 | 137 | 118 | 130 { 129 | 141 | 121 | 133 |
Tensionin S KN | 148 | 66 121211406172 86 23 16.5
| Tensionin 6, KN | 697 [ 829 ] 71.8 [ 856 | 629 (769 | 65.4 | 803
N.F., KN 180 | 199 154 [ 175 [ 178 | 199 | 154 | 176
BM., KN.m 645 | 63 (551 ] 52 | 58 [57.1]498 | 469
[Ttcration number | 560 | 258 | 702 | 494 | 568 | 299 | 720 | 529 |
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Table (3) : Some responses for infinitely rigid columns beam :

Ypom | Yo om [ Yo, om | T, KN | To KN | Hteration
Case2 | Beam B 4 ~-16.85 4 91.2 | 2.15 46
| Case3 |BeamB | -3.3 -9.91 -1.41 81.2 | 603 84
Case2 | Beam A | -138 | -1837 | -i3.8 96 -1.48 14]
Casc3 | Bcam A | -14.2 -10.39 -2.32 ?_Lﬁ89 -0.11 253
Table (4) : Some responses for beams having span of 60m and 90m :

Yo, |Sway| Ty | T2 | Ts | Tq | NF. [BM.|

Beam A | Hinged | 39.7 3 219 392 36.3 T3 441 53

60m | BeamB | Hinged | 45.6 2.8 128 426 37.8 | 98.3 493 57

span |BeamA | Fixed | 38.8 | 2.41 | 228 | 387 | 344 | 829 | 443 | 668

Beam B | Fixed 44.9 | 2.24 | 227 421 | 358 108 494 | 684

BeamA | Hinged | 52.8 | 2.98 | 377 748 438 | 773 807 48

90m | BeamB | Hinged | 73.5 | 3.07 399 831 28.3 79 898 54

span | Beam A | Fixed 523 | 150 | 378 Td4 4.6 | 86.6 | 808 60

Beaa B | Fixed | 73.1 | 2.50 | 399 | 826 | 264 | 87.8 | 900 | 67.5
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Fig. (2b) :- Concave Cable Roof with Diagonals .
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