
Mansoura Engineering Journal Mansoura Engineering Journal 

Volume 21 Issue 4 Article 7 

12-1-2021 

Forced Convective Laminar flow in Elliptic Pipes of Different Forced Convective Laminar flow in Elliptic Pipes of Different 

Aspect Ratios. Aspect Ratios. 

Mohamed Mahgoub 
Mechanical Power Engineering Department., Faculty of Engineering., El-Mansoura University., Mansoura, 
mohamed_mahgoub@f-eng.tanta.edu.eg 

Mohamed Wasel 
Associate Professor., Mechanical Power Engineering Department., Faculty of Engineering., El-Mansoura 
University., Mansoura., Egypt. 

A. Kamel 
Mechanical Power Engineering Department., Faculty of Engineering., El-Mansoura University., Mansoura., 
Egypt. 

Mohamed Mousa 
Professor, Mechanical power engineering Department, Faculty of Engineering, Mansoura University, 
mgmousa@gmail.com 

Follow this and additional works at: https://mej.researchcommons.org/home 

Recommended Citation Recommended Citation 
Mahgoub, Mohamed; Wasel, Mohamed; Kamel, A.; and Mousa, Mohamed (2021) "Forced Convective 
Laminar flow in Elliptic Pipes of Different Aspect Ratios.," Mansoura Engineering Journal: Vol. 21 : Iss. 4 , 
Article 7. 
Available at: https://doi.org/10.21608/bfemu.2021.153135 

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been 
accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. 
For more information, please contact mej@mans.edu.eg. 

https://mej.researchcommons.org/home
https://mej.researchcommons.org/home/vol21
https://mej.researchcommons.org/home/vol21/iss4
https://mej.researchcommons.org/home/vol21/iss4/7
https://mej.researchcommons.org/home?utm_source=mej.researchcommons.org%2Fhome%2Fvol21%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.21608/bfemu.2021.153135
mailto:mej@mans.edu.eg


'i;)rl :!:')u r a En~l nt:erl n~ Jou r:1al IMEJ), 110 1. 2;, ;~o.4,Decemter 1996 :1,1 2 

:-" )l ;r-"';1 u.h r-< 

Forced Convective Laminar flow In Elliptic Pipl.."S or Difftl:cnl Aspect Ratios 

~, i.,)~ "<"7''-''I • .J .s~1 P ' :' ,,~,:u J' ... "" .. _1> 

]"1 Mahgoub, ;\1. G. Wasd., A. A. Kru;od, M. G. Mousll 
J'Lf!'Cilamcall'OWf: r £ngmeenng /Apartment. 
F(JcWoy of ~lneo!nng, MOJUOWt: Oruye~lty. 

~soura. igypt 

~t...; <......b ,i ~\ : ... "J~ y><\;~ <,/r"-I J,....o.I\:.......:...Ja. if c$~ \ J-,i.\ <.>' .;.;..;) ~r'J' wI;, ,.',,:........JII.i.o.,j ....... """ 

J...,...,,,..-JI""';"""""J ~ ..... ) C''''' J-- ~ '-<}'--II ;_')...>.lI oS' .41 ...... , I...,)o;,);~ ...... J.1i r--= J-olIu.....; .<1)I"J I ~ 

r= ...... ............JI..;....,,--...:..l'. \i.J. <---...,.....;. • .:...u.JI, tS)'1 ..;..'1.\. ..... ..; ;.,....""L1I, u....;....:...., ..;..lr..;.:..JI .r JS J...,,-L ;,,,-).., .;.u) 

c~ ("~~ li-,.. ;~ c---'Ll\J--'-'~ .)~..;,!..J;..,-I--J;;""""'~....-l'- ;;-:rl.o.S ~~....J ;~I-:' .;""'" 

: ... ,...l.....o.... '-!/~~ ~) ~.; .L....!..,..... . ~ 'c.-~....Jl"'...u..,...);"",........J :.r ?"-=-" -'r"'-< -,..-L.::/l e:-.J. ~ 

,:;'--.:.J.:,.,-.... 1-:) ..... ~ r .L-, ,.....> ....... ~~\ ) ............ ~.i-<"'!- ~~ .:.LJ'J <J)\~~,;J..;..L,..!:....L,...";""':""-; 

:....... ........ :_ ..c- I; .. ,. __ .,I... .. i )I....,..:.?I,-:: i......4..., ..........J\ .. :.A ... ,·,)....J\ c-'\.:.-< <.,...)...,..l\ ~I....<J '.;;)..,;..... r.:,D..iS ) =-.t..........1'-, ........ ,-JoWI 

~ 0. t J! , ~. ( v~ ,,)\..-1' ~ :J.S) T'f. J!' . .. if j.ur'-<) ~) ,p .... ..;.s . 1, " , " '1"' , " ~ . .. , " {-t 
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Aiu! n~l In P' UCffi ...... ork. the ia.'TI ir,<!(' furced comeclive flow In elliptic pipes IS sw::!iec.. Tr.e flow I;) :...'1:::: 

!hcrmal CrKC~ce reglo!': ,=, cO!\i,derco aswmmg IJm It IS ,1-.yr .. odYIHmlcaJly, fully ?e"~lo~ed In thlO work (;,c 
[low In ? 'Pes is . .Moret[cally and experimenully, analyz",d COM'It'It heal. nu:c: 'I th~ walls of the pipt ;~ 
·.on!idcred. In :.hcornlc~1 'Iudy, ~ mdthem~tiC ,.1 model descrt'o ml! ~ flow [s sugges!ed Accord i f1~ 1.0 thIS 
:nodd the '.Jcpcocient. and i.OdepcndeOl. varillbles at' mom"ntum a.'lrl ene~sy l:Q,uali onii are rerkfined, :>'...leh that 
t.'le ~~ct 10.[10 il$ ~ paramelcr oi the prQblcrn i, c!"ninlll~ Consequently, the solut ion or thi1i model ;s no 
lonr,er dep.:ooCflI 00 the llOp ... Cl r..tlo and hence i~ valid for all eillpO.Lc pIpes. ~ c:r.perlmenlal work. a (cst riS i~ 

desu1;l1c,J and coru;tructed 1he "", lis orthc ttstcd pipe~ <lTe electrically healed to salilO f), L'-I~ CO;u;t.;rL heal flux: 
o;,UO!oary ~ond\lio n. A ccmp,Il"lSOfl b~lwcen the expenmnAAl end lh~oret\ca( rcsull.l is I';ltTied Olll ana . lie a 
cl)r:'1pOlri,on betwccn lJ\e5e remits and 1J\0 sc of previ O'-lS studies ;, O13Oc. PIpes of aspec t rr...t io. of 0 404, 
o 5")~, 0.636 dIld i. OO are exammed The cOfl'Ld~ed nnge of Reynolds- nt.II'J'lber is IGOO· 2200 l'he heal f\wc 
r.>fIge tK t..aken ~~ l'2 -1 ' 25 . .1. I:. Wfm~ 

1. lntrududjUI1 

The SlUdy of heal transfer process inside tubes is of yell importance from industrial 

3pp) ic31ion po int of VIew. The neal transfer from IlOri zontal tubes is studied, theonlticaJly and 
~xpcri!llcnlally, by many resear c hers. According to the available previous studies, the deep 
understanding of hydrodynamic and thtnnal developing forced convective .o.ow insidt:l tubes 
requires more investigations. 

Convective heat transfer in non"'circlll(i(" tub~ for fully developed flow was studied by many 
ioveSliS31.ors [1 ... ,S). Hcnry Barrow et a!. (IJ studied the flow and heat transfer iu dllcts of 
e lliptic cross"'$\,lctiO\l Waler (P r = 6.5 ) was leslerl ill tube\l ofaspecl ralio llf 0.316 and 
O.'l I.S. The r.mse of Reynoltls w:u; 1000 10 3000. J. Malak cl 11.1 . (2J studied Ihe effect of 
chaJlfJe) geometry on fiiction prer:;sure losses and hell transfer process. M . A. Ebadi an et al . 
p} studied the convective heat tr:lDsfer in rubes of elliptic cross"'seclion of COllslaili wall

temperature boundDry condition.. In theoretical lnalysis, the successive approximations 
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m~thod WII.9 employed u~ing ~l1iptic coordin'il1e~. Jalil Ounzz:m {4} studied the fuJly developed 
mixed cODvective flow between horizontal plates. He Uled the available daia for laminar 
forced convective 1101.11 in pipes to eXplore Ihe effect oflength l11d shape of the entrance 
section. M. KIlVl<lIlY {5] stlldied laminar combined cODvection in a nOrlzonlal annulus 
subjected to conSUlDt heal fiu;( inner wall and adiabati c outer wall. finite difference 
approxima!ioru; wert! appliod 10 anal)'UI the problem numerically. Heat traaafer in tubell 

with deformed inlier surface W\!S examined by many investigarors (6-8). R. M . Manglik et aI. 
(6] and S. W. Hong et 31. (7J studied laminar fl ow heal transfer in semi-circular tube w ith 
uniform wall temperature. The result define the lower bound ofheal tr.mster augmentation in 
circular tubes with twisted-strip inserts. C. Prakasb et aJ . [8] studie d laminar flo w and heat 
transfer in entrntlce region ofan internally finned circular duel 

Convective heallTanrler in enb-ance region were studied by many inveitigator [9-131-
O . .Butterworth e\ aI. (9] studied forced cOflvetlve IMtinllf flow helat transfer in the entrance 
region theoreti cally and experimentally. In this worit, beariflS was rotarted at different stages of 
flow de veloping. R. F. Babus 'Hag f lO] studied ,experimentally, stearly s{3le local heal 
IT'anSfer coefficient for laminar fl ow of air inside an e l~cuical ly healer! pipe. Q. M. Lei elt nl. 
r I 1J 9tudied_ numerically, forced convection oflhennall y developing laminar flow in circular 
sector duels. Hlan Quarmby et a.J. [1 2] the effect of fi oite length on forc~d convection heal 
transfer from cylinders. L. S. Yeo [1 31 studied Ule l:vninar fl ow cOllveclive heat transier in a 
channel and p;pcl. An an.'llyticru so lution of flow in !he entry region ofa healed vertical 
cha/Ule l is presented. 

lfI the presenl work, the heat transfer by forced cODvection for the case of the flow inside 
t ll iplic rubes IS studied experimeotally and theorerically. The case of Ihermnl ly deve loping 
flow is considered. The bOUIldary condition of uniform heat tlux at the pipe wall i~ e)t'amined 

2.. l :.:pmmcnto.J Work 
A IlI)'ou! of the tesl loop. used in this study, is shown in fisure(l). Water leaves the 

collecllfl!!; lank and !lows through the lest lo'$CI;OIl , where ;t is beated elecbic al ly by heatiflg 
co il . Then W'dler ,;fllers the iinell and rube heal exdlnngcr to decre;lSO illl lempe-rnture to !be 
original value (before entering the tt:.'st tube). Th~ water is cirC\Jbted through out the test loop 
by the circulating pump. 

Temperature al inlet- and outlet-erosfi iieclions ofttle test seclion;1; measw-ed by glass 
thermometer while !lIe v::uues of wall-temperature along the tested pipe w-e measured by 
copper-coostaatan thermocouple. Water flo w (ale is me<l£W'ed U.iDB c:.UibruJed orifice plate. 
The pressure drop across lhe lest section is; measured by U-tube m8Jlometer. Four rubes of 
al."PCCI r:uio of 0.404 , 0.505, 0.636 and LOO are tested. TIle dimensions o f Ute unreformed 
rube an:: 0.9 m long , 19.8 lrun outer dinmeter a(ld 0.4 rnm lhiclmeSll, Experiments are 
carried out for waicr flow rate range of 4-1 0 kgIbr. The applied power to the eleclTicaI hellting 
coil is c~cl1laled according to Ule rel aliolt; 

where V, w ' and l4. are the applied voltage. produced power and resistance of the hearing 
co;I , respectively. According to the toregni08 equation., one can calculu1e the net heat 
transferred to water through the pipe waJl as; 
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where Q.... and G_ are the net hear: tnmd'er to water and heat lOBS from insulation layer, 
reSpectively. Can$:~quenUy, !be heal Jlux can b'! abtained as; 

where A. is the total surface area of the tube. To calculate the bulk tempertlll1J"e of water alons; 
lhe rube, ooe can divide the rube mlO a set of e lements aud carries oul a heat balnoce of each 
one. The bulk temperature 'ill: certain position can be deten;nincd using the following relation; 

where T,+! , T, ,m· cp ,z and I are the outlet tenlpernrurc from the element. inlet 
temperature to the d ement, mass flow tafe thraugh (.l:c tube, spedfic beat ofWaler, length of 
element and th~ rube length, respectively. 1bc mean. temperature ofrhe water T,~ of eaeh 
~Iement is estimaled by the relatio~ 

T. - (T,., +T,)1l 

Local heoJ. trunsfur coefficient.. local Nuss(..jt number ruld Peclel number are e valunhed 
according [0 the followiug relations; 

h! ;ql(T ... -T .... ); Nil, ~h!z l};" Pe, =-(pc"lIz )lk 
where 1;, p, and u are the !henna! conduclivilY ofw9ler, density of waler and menn velocity 
of water. 

3. Mylhcnmtical Mudei 

1n the following analysis, steady incompressible laminar tlow is considered. The tlow is 
:JSsumed 10 be, hydrodynamically, full y developed flow but. in the same time, it is thermally 
devtloping. According to the boundary layer theory, ttlls assumption appears to be valid for 
liquids of high values of Prtmdtl number (Pr > 1) since the hydrodynamic entry length is 
relati veJy very small. As sho·wn in tigure (2), cylindrical coordinate system (r, e, z) is used to 
expre~s the flow governing equations. In the preRellt analysis, Newtoni:l(l Wld constant 
properties tlu.ids :tre Considered The axial pressure gradient is assumed to be constant. Both 
axial heal. conduction ood viscous dissip:ltion are assumed to be very small. The huninar 
forced convective flow is described through ~e foll owing equations; 

a'u 
--- + 
,3 " 

,,'T 
-- + " " 

" u , U , 
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equation (1) is the momentum equation. wllere the; inertia terms are not Flppeared because the 
flow is assumed 10 be axial fully developed flow. In the energy equation, equation (2), the 
convective terms including tnngentinl aod radial components an! neglected. The energy 
di ssi pation lenn is assumed to be nil. Equations (1) and (2) must satisfy the following 
boundary conditions; 

8. 8T 
= 0..0. -- =-0.0 at r -=--0.0 

'" 8 , 

(3) 

8T q 
u (r.8) = 0.0 = . ar r == r • 8, k 

To elCprcss the. governing equoJ:ions (1·)) in suitable simpler fomt, one defines r in terms of 
aspect ratio of tube ero" section anci a as: 

..... here m IS the aspect raIio defined aG the ratio bef\4."een the minor Mis ( B ) and fhe major axis 
( A ) of the rube cross: section (111 =: 8 1 A ) nod r represents a.ny poinl on the ellipl!'1! of 
major axis a corresponding to r· & domain. Accordingly, Ole value of r corresponding 10 the 
tube wgJl ( r". ) is given by; 

(5) 

where A ill the major aris of rube cross section. To put the Oow describing equaliolls in 
dimensionless (Oml, one introduce lhe following definitions of the dependent and indcpcndeot 
variabJes as ; 

, 
Z=~ • = .-

A Jcos1 (J +m' sin' 8 A P, 

T. - T U=~ '" = (6) 

"" ! k u· 

u. == up A 2 I fJ 
C U·p A 

Pe. = ' d, k 
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wbere Pe .. is Peeler m.trnber based on the major axis (A) and Z is the dimen9ionlcu hor.z.Jiltlli 
diSlruI<;e. With the aid of the pr\'vious definitioo, and the goveming equations of the flow 
(equations 1-3), the dimensioniesil forms of momentum and energy ~quation!l and their 
bowld.'UJ' connitions can be derived as; 

d'U I d U 

d N' 
+ - • I 

N d R 

- iJ'~ 
+ 

8~ Uo ", 
8 R~ 

= 
R 8N dZ 

equalioD!> (7-8 ) mug! s3list:v the foll owing dimens ionless boundary conditions ; 

U ~ O. O 

8U 
-- - GO 
aN 

~ - 10 

8 ", 
- - - 0.0. 
8 N 

a,t the wall (R""J.O) 

tlI the (lIQe center ( fJ. .... 0, 0) 

(7) 

(8) 

(9) 

EquatioDS (7-9) arc the dimensionless form of the governing equal ions. Due to the 
transformalion of dcpendenl and independent variables, this derived dimensiooless form of 
governing equations describes an axisymeu-ic fi ow, see the modified system of coordimue(R, fl 
and Z ) in figure (3). Solving equations (7-9), velocity distribution across the tube and the 
temperature distribution across the tube at different positions aJong the lUbe can be predicted 
Accordingly, the physical qU9Jlt ilies o f the now such lIS the heat transfer coefficient. Nusselt 
Olunber ~d coeffi CIent of fri ction can be determined. Nussel! number and coefficient of 
fr icti oll, are defined UU'ough the following f'61a1ions; 

hA 
Nu ~ Cr ~-- (JO) 

k p t'//2 

where lVu ami q. are locaJ Nussell number and local cofficient offrlclion, respectively. h 

and ~ are the local heat tTanlifer coefficient and shear stress at the tube wall. respectively. 
They 3fe defIned according to the following relalions; 

q 
h--__ 

( T • • T. ) 

d" 
<.~u-) 

. d,. .. 
(11) 

Wilh Ule aid 01' cql1.'ll.ioll (6) and equations (10,11 ), 0111) cau define Nusseh nUll'lber and 
coefiicicnt ofmction in torms ofdimensionles8 variables as; 
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C, R.e = 
dU 
dR )R ~ 1.0 (11) 

Average Nussett number can be determined a!I; 

- I J' Nu = - Nu dZ 
Z . (13) 

Momeotum equation (tqo. 7) and eoergy equation (eqn. 8) are solved., numerically. Uliing 
finite divided difference technique. Accordins 10 this tecboique the governing differential 
equations (7-8) are lransferre:d to two sets of linear algebraic equatioO!l as ; 

.4 U. .. , + a. u.. -+- G UI _ I = D (14) 

Al, fIJi'" + 81, fIJi + el, fP .. 1 :z Dlo. (IJ) 

where the coefficieolJO OfeqUatiORS (14-15) are' defined through the followi08 express:ions; 

Ai =2 1\, +a R B,-- l,'l.J· 

C, = 2 R, - tJR D, - 2 (dR)' R. 
(16) 

Bl, =-{.s R • .dZ+2 Ui (t1R/ R.j. 

Cl,=2R,£Z - .dR..dZ DI. = - 2 U<I.P~' R. Ip . 

Since the momenrum equation is an ordin1lr)' second order differential equalion, il is enough 10 
solve it along the co-ordinate R (&om R.. -0.0 to R=/.O), as it ]s illustrated in figure (4). 
Bec(U.l.Se the energy equation (eqn. 8) is a partial dilfercnliaJ equation ofsecood order:and of 
parabolic type, it is con'renlent to solve it, for certnin value of Z, along the vector R (from R 
-1.0 to R- 0.0) and then the solution is carried oul in a repetitive Olanner along d'le rube axis 
(al different vaJUI!~ oi Z),see figure (4). A computer program is desi!91ed to solve the 
previoUlily describe theoretical model to analyze such present flow. 

4. Results And Discussion! 
Although four pipes of different aspect ratios at different flow rates and h.eat fluxes are, 

experimentally. examined; some results of the test of the pipe of aspect r.uio 0. 636 are 
presented io this paper. Temperature distribution alODS the pi.pe length is shown in f..gw-es 
(S-6). The lemper.ilDJr"e of ~r increases as either mass flow nlte or h.eat flux decrease. 
Nussc!t number venw Peclet number is presented in figures (7-8): It is c lew thaI. NUSfIllilt 
number has a highest value at the inlet of Iile tube and then it decreases rnpidly in the 
oeighboring part of the pipe. Then it decreases slowly Wltil it reacheB an asymptotic value. 
This asymptotic value teemll to be the same for all values ofmQSII flow ratel. 
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In th~ following figures the results obtaioed by solving the mathematical model are 
presenled. Figure(9) sbows velocity profile. As :1 result of the definition of the dimensionless 
variables of the problem, single velocity profile !latis::fies all hydrodynamic fully developed 
now, whalever the aspect ratio is. an the other hand, figure {IO) shows the dimensionless 
temperabJre ·digtrjbutioo along the pipe leogth at different dimensionless positions Z. As it is 
mentioned before, thue temperatlJre profi les are valid for all pipes of different aspect rarios. 
At every position along the pipe, the temperature has the maximwn value allbe wall and then 
it decreases rupidly near the wall and beneath this region it decnases, relatively, slowly till 
it reaches its minimum value at the center of Ule pipe. As it is expected, the lemperarure 
increases in the down stream direction. Fioure (II) shows local Nusselt number aloog the 
pipe. AI the entrance of pipe, Nusselt ownber goes to ioIltiity thea it decreases rapidly nearby 
the entrnncc erOS!! section. Then it ciccrcases slowly going 10 WI asymptotic vaJu~ of4 .385. A 

comparison between the experiment:LI and theoretical present work is MOwn in fi gure(12), As 
it is dear, the deviation beC\veen the experimental :rod theoretical results is smaJler as the 
value of !lspect ratio increases. Also a comparison between prescnt and previous work is 
prescnted in the sMle figure. The validity of lheoretical model is .:l ear in this figure. A 
corre[lUion for avernge Nllsse!! cumber ~ a funclion of aspect ratio, Pr.lIIdtluumbel' and 
Reyoolrts number is made. This correlntioo and the C:lrTtsponding experimeolal result are 
shown in figure (13), This derived correlation can be wntt.en as; 

5. Conclusion 
in IDe present work a theorelicai Inodel is proposed to analyze the JOi'ced convective 

tamiMr flow ia pipes of different aspect ruios. This mouel is valid for all pipes, whatever 
the aspect ratio is, A series ofexperiroents are calTied out, !OUch thallhey I;ovcr tho now In 

pipes of wider l1Illgo of aspect rauo compared with the previous available works. A 
correlation for average Nusse!t number 38 a function of the flow parruneten is derived. 

Nomenclature 
A 
A, 

B 
C, 
D 
0" 
h 
k, 

m' 
m 
p 
Q 
q 
R 

Major axis ofthe elliptic crrrss section of the pipe, m 
Surface area of pipe , m1 

Minor &xis of the elliptic cross section of the pipe, m 
Specifi c heat offluid, k.J ! kg °c 
Diameter oflhe tube. m 
Hydraulic diameter ofllie rube , m 
Convective heart transfer coe fficient, W ! m1 "c 
Thermal I;onductivity ofw31cr , W! m·C 
Length of the pipe, m .. 
Mass now 0\16 . kg ! Ii 
Aspect miio 
Pressure, N I m2 

Heal rate , W 
Wall heat flux , W! m1 

Radial Coordinate, m 
Eledric resistance oftbe heater, 0 
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R.. outer tube radiw , m 
T TelOper.m..u-e, °C 
T... WaJl ternper.:thlre. ·C 
U Dimensionless axial velocity 
U· Characteristic axial velocity. m I s 
u Axial velocity, m I s 
Z DimensionlesS' axial coordinate 
Z Axial coordinate. m 

Creek Symbols 
e Angul,ar position. rod. 
p Densily . kg 1m! 
J..l Dynamic viscosiry. N s I m2 

<p Dimension/etls temperature 
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Figure ( I) Schematic Drawing of Experimental Test Rig 
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Figure (2) Actual Tube Configuration Using Cylinderical 
Coordinate System 

Figure (3) Transformed Tube Configuration Using Transformed 
Cylinderical Coordinate 
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F'igllrC (4) Tube Oiscretiz:lLion Used in Nwnerical Solwion 
a) Num",rical Marching Schem e Ul Axial Directioo 
b) CJ1)ss-$r.dion Discr"uz;).tion 
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