Mansoura Engineering Journal

Volume 22 | Issue 4 Article 3

12-1-2021

Stability of Frequency Control of Power Generating Systems Based on The Sliding Mode Technique.

F. Areed

Electrical Engineering Department., Faculty of Engineering., El-Mansoura University., El-Mansoura., Egypt.

Mohamed Salem

Electrical Engineering Department., Faculty of Engineering., El-Mansoura University., El-Mansoura., Egypt.

Follow this and additional works at: https://mej.researchcommons.org/home

Recommended Citation

Areed, F. and Salem, Mohamed (2021) "Stability of Frequency Control of Power Generating Systems Based on The Sliding Mode Technique.," *Mansoura Engineering Journal*: Vol. 22: Iss. 4, Article 3. Available at: https://doi.org/10.21608/bfemu.2021.150976

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. For more information, please contact mej@mans.edu.eg.

STABILITY AND FREQUENCY CONTROL OF POWER GENERATING SYSTEMS BASED ON THE SLIDING MODE TECHNIQUE

التحكم في تردد وإستقرار منظومات القوى الكهربية باستخدام نظرية الهياكل المتغيره

F. F. G. AREED

M. E. A. SALEM

Department of Electrical Engineering, Faculty of Engineering. El-Mansoura University, El-Mansoura, EGYPT.

ملخص البحث:

يقدم البحث دراسة جديدة عن كوفية التحكم في منظومات توليد القوى الكهربية حيث تم إقتراح خوارزم جديد التحكم في تردد المنظومة وخرجها وذلك باستخدام نظرية الهياكل المتغيره، وتتميز منظومات الهياكل المتغيره بخاصية الحركة الإنز لاقية التي تجعل المنظومة غير حساسة للإضطرابات الخارجية أو النغير المعاملات، والخوارزم المقترح لتصميم حاكم توافقي المنظومة الايحتاج إلى معلومات دقيقة عن المنظومة أو معاملاتها أو كوفية تغير هذه المعاملات ويكفي فقط معرفة الحدود القصوى والدنيا لهذا التغير.

وقد تم تصميم حاكم توظفي لمنظومة توليد القوى باستخدام الخوارزم المقترح ووظيفة هذا الحاكم هو ضبط خرج المنظومة وكذلك ترددها تحت ظروف الإضطرابات الدلخلية والخارجية. وتم تطبيق ذلك باستخدام مثال عددى واثبتت نتاتج المحاكاة فعالية الطريقة المقترحة وفعالية الحاكم المفترح تحت تأثير إضطراب خارجي فجائي.

ABSTRACT

In the present paper, a new algorithm for solving the control problem in electrical power systems, is introduced. This new algorithm is based on the sliding mode property existing in variable structure system (VSS). The resulting control law is discontinuous by its nature. However, it does not require accurate informations about the system parameters or its manner of variation. The only requirements are the maximum and minimum limits of variation for each parameter.

An adaptive controller is designed for an electrical power system, on the basis of that new algorithm. The main function of the controller is the frequency control of the electrical power system, meanwhile, it can be used for stability improvement.

Theoretical and computational results, using that controller insure the frequency control property in the electrical power system model. The adaptive property verifies under rapid and wide range of parameters variation and also, under the effect of a unit step external disturbance.

Accepted Dec. 13, 1997

1. INTRODUCTION

Control of electrical power systems seems to be a complicated problem if we tried to solve it using classical methods of control. This complication arises due to:

- 1- Lack of information about parameters variation.
- 2- Existence of external disturbances.

Discontinuous control methods such as self-oscillating adaptive control [2,9]; high gain co-efficient control and those methods based on the theorems of liapounov and hyper-stability criterion, can not overcome the parameters variation in wide range as well as the effect of external disturbances.

Variable structure systems [1] are able to solve this problem. This type of discontinuous control has an important property known as sliding mode [2]. Once in a control system a sliding mode is realized, the system becomes insensitive to parameters variation as well as, to external disturbances. For realizing sliding modes in control systems, a new general approach was developed [3]. This approach does not need any information about the parameters variation as well as, the level of external disturbances. Only, the upper and lower limits of these variations are to be known. On the basis of this approach, a new algorithm for adaptive control of electrical power systems, is developed.

The paper contains the development of a power system model. Then, the evaluation of VSS technique is presented.

2. MATHEMATICAL MODEL

Consider an interconnected power system comprising N subsystems. The block diagram, representing the jth subsystem is shown in figure (1). Where reheat turbines are considered. The transfer functions of the reheat turbines are given by:

$$G(s) = \frac{\Delta P_{gi}(s)}{\Delta X si(s)} = \frac{1 + sk_{ri}T_{ri}}{(1 + sT_{ri})(1 + sT_{ri})}, \quad i = 12.....N...$$

If $k_{ri}=1$; G(s) reduces to $\frac{1}{1+sT_{ri}}$, representing the transfer function of nonreheat

turbines. The shown controller, in conventional case, has the transfer function -k₁. However, the case of VSS control the controller is modified as shown in figure (2).

Suppose that the dynamics of interconnected power system is described by the state equation.

$$\dot{x} = A(x,t)x + B(x,t)u + D(x,t).F(t),; xR^n; uR^m, PR^i....(2)$$

where;

A(x,t) - (nxn) functional matrix of the state vector;

B(x,t) - (nxm) functional matrix of the controlling input;

D(x,t) - (nx1) functional matrix of external disturbance;

x - state vector; u- controlling input; F - external disturbance.

Matrix A(x,t) is in the form:

$$A(x,t) = \begin{bmatrix} A_{11} & A_{12} & A_{1i} & A_{1N} \\ A_{21} & A_{22} & & & \\ A_{i1} & A_{22} & & & \\ A_{Ni} & A & A_{Ni} & A_{NN} \end{bmatrix}$$

matrix B(x,t) has the form;

$$B(x,t) = [B_1 B_2 B_2 B_1]^T$$

and matrix D(x,t) is given by

$$D(x,t) = \begin{bmatrix} D_1 & D_2 & \dots & D_{t} & \dots & D_N \end{bmatrix}^T.$$

Considering the i th subsystem

$$B_i = \begin{bmatrix} 0 & \frac{1}{T_{i-1}} & 0 & 0 & 0 & 0 \end{bmatrix}^T$$
; $i = 1, 2, ..., N$;

$$D_i = [0 \quad 0 \quad 0 \quad \frac{-K_{p1}}{T_{p1}} \quad 0 \quad 0]^T \quad ; i=1, 2,...,N$$

And

	0	$\begin{array}{c} 0 \\ -\frac{1}{T_{gi}} \end{array}$	0	$\frac{v_i}{T_{gi} T_i}$	0	0
	0	0	0	$2\pi T_i \sum_{i \neq j} T_{ij}$	0	0
A _{ii} _	0	0	$\frac{-K_{\rho i}}{T_{p i}}$	- 1 T _{pi}	K pi	0
	0	0	0	0	$\frac{-1}{T_{ti}}$	$\frac{1}{T_{ii}}$
	0	$(\frac{1}{T_{i}}-\frac{K_{i}}{T_{j}})$	0	$\frac{-K_{ri}}{T_{gi}R_{i}}$	0	$\frac{-1}{T_{i}}$

where:

T_{ri} : = reheat time constant; k_{ri}: = reheat co-efficient;

Ti: = turbine time constant; v_i : = frequency bias setting; T_{ni}: = governor time constant; Kei : = power system gain;

T_m: = power system time constant;

Tij : = synchronizing co-efficient between subsystems i & j;

R_i: = speed regulation due to governor action;

3. STATEMENT OF THE PROBLEM

It is required to design a controller, which generates an actuating signal to control the frequency deviation Δf_i , as well as the tie - line power change ΔP_{tie} resulting from sudden changes in the load ΔP_{di} .

The following set of minimum requirements are stated [4] by the North American Power System Interconnection Committee;

- i) The static frequency error following a step load change must be zero;
- ii) The transient frequency swings should not exceed ± 0.02 Hz under normal conditions
- iii) The static change in tie-line flow following a step change in each must be zero,
- iv) The individual generators within each area should divide their loads for optimum economy.

4. A NEW ALGORITHM FOR REALIZING A SLIDING MODE IN POWER SYSTEMS

The vectorial control problem could be divided into m-scalar problems as follows:

From the state equation (2) we can write:

$$x = A(x,t) \cdot x(t) + b^{1}(x,t)u_{1} + b^{2}(x,t)u_{2} + \dots + b^{m}(x,t)u_{m} + D(x,t) \cdot F(t) \cdot \dots + \dots$$
(3)

where:

 $b^{1}(x,t)$; $b^{2}(x,t)$; $b^{m}(x,t)$ are the columns of matrix b(x,t).

Hence, a set of sliding modes could be organized simultaneously on the mbyperplanes

σ₁ , σ₂ ,....., σ_m

where :

 $\sigma_1 = C^{1T} \times ; C^1 - (n) \text{ vector column} ; x \in \mathbb{R}^n$

 $\sigma_2 = C^{2T} x^1$; $C^2 - (n-1)$ vector column; $x^1 \in \mathbb{R}^{n-1}$

 $\sigma_m = C^{mT} x^{m-1}$; $C^m - (n-m+1)$ vector column; $x^{m-1} \in R^{m-m+1}$

The elements of vector columns C^1 , C^2 , C^n could be determined using the standard coefficient method [5]. The necessary and sufficient condition for realizing a sliding mode on the plane σ_1 is σ_1 , $\dot{\sigma}_1 < 0$ [2]. To achieve this condition we shall require that the following conditions must be realized:

$$C^{1T} b^1 (x,t) \not\equiv 0......$$
 (4a)

$$C^{1T}$$
 $b^1(x,t)$. $\phi_1(\sigma_1) < 0$ when $\sigma_1 > 0$ (4b)

$$C^{1T}$$
 $b^1(x,t)$. $\phi_1(\sigma_1) < 0$ when $\sigma_1 > 0$ (4c)

$$\begin{aligned} & |C^{1T} \quad b^{1} (x,t). \quad \phi_{1} (\sigma_{1}) | < |C^{1T} \quad A(x,t).x(t) + C^{1T} \quad h^{2}(x,t)u_{2} + ... \\ & + C^{1T} \quad b^{m} (x,t)u + C^{1T} \quad D(x,t). \quad F(t) | \end{aligned}$$
(4d)

Condition (4a) could be realized if the following conditions were satisfied:

i) The element C_{n-n+1} in the vector row C^{1T} has a nonzero value, i.e. if C^{1T} had the form :

$$C^{1T} = (C_1, C_2, ..., C_{n-m+1}, 0, 0, ..., 0)$$
 (5a)

ii) The vector column has the form:

$$b^{l}(x,t) = [0 \quad 0 \dots b_{m} \quad b_{m-1} \quad b_{l}]^{T} \dots (5b)$$

Conditions (4b), (4c), and (4d) could be realized, if the function $\phi_1(\sigma_1)$ was chosen as a nonlinear multi-valued function having the following properties:

- a- multi-valued and limited;
- b- closed at $\sigma_1 = 0$ as a set and limited;
- c- semi-continuous at $\sigma_1 = 0$;
- d-values of σ_1 , σ_2 ,, σ_m in the neibourhood of $\phi(\sigma_0, t) \in \phi(\sigma_0)$.

The above mentioned multi-valued function is shown in figure (3). After satisfying conditions (4a), (4b), (4c) and (4d) we get;

$$\sigma_1 = C^{1T} \times .. \tag{6a}$$

$$\sigma_1 = C^{1T} \hat{x}$$

From (6a) and (6b) we have;

$$\sigma_{1} \cdot \overset{\bullet}{\sigma}_{1} = \sigma_{1} \cdot C^{1t} b^{1} (x,t) \phi_{1} (\sigma_{1}) + (\sigma_{1}) \cdot C^{1t} [A(x,t) \cdot x(t) + b^{2} (x,t) u_{2} + \dots + b^{m} (x,t) \cdot F(t)]. \qquad (7)$$

From (7) it is easy to show that the inequality σ_1 , $\sigma_1 < 0$ will be always satisfied; i.e. there will be a permanent sliding motion on the hyperplane σ_t .

Existence of a sliding mode on the plane σ_1 means that the motion of system (3) can be described by the following equations:

$$\mathbf{x} = \mathbf{A}(\mathbf{x}, t). \ \mathbf{x}(t) + \mathbf{b}^{2}(\mathbf{x}, t).\mathbf{u}_{2}. + \dots + \mathbf{b}^{m}(\mathbf{x}, t).\mathbf{u}_{m}$$
$$+ \ \mathbf{D}(\mathbf{x}, t). \ \mathbf{F}(t) + \mathbf{b}^{1}(\mathbf{x}, t).\mathbf{\zeta}_{1}.\dots$$
(8a)

$$C^{1T} x(t) = 0$$
(8b)

where:

 ζ_1 = a single valued (scalar) function or the first component of the nonlinear predetermined vector function - (additional controlling input) and is given by:

$$\zeta_1 = [C^{1T} \ b^1 \ (x,t)]^{-1} \cdot \{-C^{1T} \ [A(x,t).x(t) + b^2 \ (x,t).a_2 + ... + b^m \ (x,t).u + D(x,t).F(t)]\} \dots (9)$$

Similarly, it is possible to establish another sliding modes on the hyperplanes σ_2 , σ_m using the same technique. The multi-valued function could be generated using a multiplier as shown in figure (4).

A flow-chart for a computer program to carry-out the suggested algorithm is shown in figure (5).

In the flow chart, the following symbols are used

- i) Ao and Bo are the steady state matrices for the controlled system.
- ii) w₀ : = a scalar which determines the response speed of the controlled system at steady-state [6].
- iii)NT : = number of computation points;

NK1: = number of points from starting till applying the change external disturbance

NK: = number of points from starting till applying the adaptive control vector;

NST: = additional variable cycle.

iv) $e_i = x_i - x_{ei}$ - error between the state vectors of the system under consideration and its steady-state values.

5- EXAMPLE

Consider an interconnected power system consisting of two subsystems (identical steam plants). The case of nonreheat turbines will be considered.

For comparison purposes, The same values of the system parameters contained in [7] are used;

The system matrices are given by;

$$B_1 = B_2 = [0 12.5 0 0 0]^T$$

 $D_1 = D_2 = [0 0 0 0 0]^T$

Consider two different control schemes, where no physical constraints are imposed on the system variables.

i) For conventional control, the control laws are assumed to be [7];

$$u_i = -0.7x_{i1}$$
, $i = 1, 2$ (10)

ii) For VSS control, using the new algorithm we obtain; The switching hyperplanes are given by;

$$\sigma_i = C_i^T \cdot x_i$$
, $i = 1,2$, where;
 $C_i = [0.082 - 33.2 \ 0 \ 6.02 \ 33.3]$

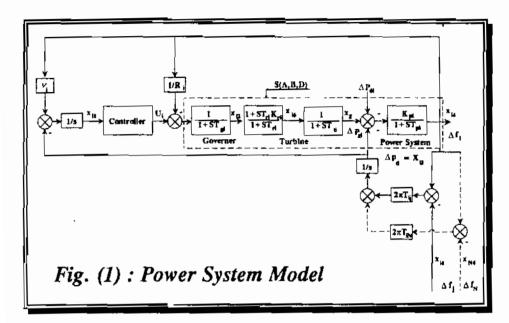
Figure (6) shows the simulation results of ΔF_1 , ΔP_{gi} ,, ΔP_{be} , ΔF_2 , ΔP_{g2} when subsystem 1 is subjected to a step load change of 0.01 p.u. Results using conventional control are also included for comparison purpose.

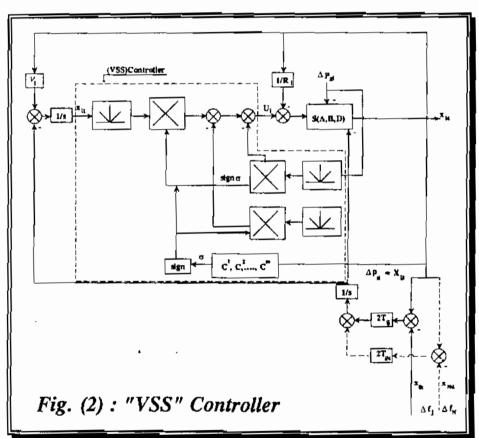
6. CONCLUSION

Controller for an electrical power system is suggested, using the main property of VSS-(sliding modes). This controller insures the adaptive control of the system and its invariance to the external disturbance. Design of this controller does not need information about either the system parameter or external disturbance variation. It is required only to know their upper and lower limits of variation.

7. REFERENCES

- UTKIN, V.I., "Variable Structure Systems with Sliding Modes", IEEE TAC, Vol. AC-22, No. 2, 1977, pp. 212-222.
- KAUTSKY, J, NICHOLS, N. K. & DOOREN, P. VAN "Robust Pole Assignment in Linear State Feed-back" International Journal of Control, 41, 1985, pp. 1129-1155.
- YOUNG, K.K.D., "Design of Variable Structure Model Following Control Systems", IEEE TAC, Vol. 23, No. 6, 1978, pp. 1079-1085.
- FOSHA, C.E. & ELGERD, O.1., "The Megawatt-Frequency Control Problem; A New Approach Via Optimal Control Theory", IEEE Trans, 1970, PAS 89, pp. 563-577.
- AMIN, M. H. & HASSAN, M. M. "A Decentralized Compensator for Load Frequency Control", Journal A., Vol. 28, No. 1, 1987.
- WATH-CHUN CHAN & YUAN-YIH HSU, "Control of Power System Using the Concept of Variable Structure, Proceeding of The First Symposiumon Electric Power", Taiwan, 1980, pp. 19-37.
- NANDA, J. & KAUL, B.L., 'Automatic Generation Control of An Interconnected Power System", IEE, 1978, Vol. 125, No. 5, pp.385-390.
- GUTMAN, S., "Uncertain Dynamical System A Liapunov Min Max Approach, IEEE TAC, Vol. AC-24, No. 3, 1979, 437-443.
- WANG, Y., ZHOU, r., & WEN, C., "New Robust Adaptive Load Frequency Control with System Parametric Uncertainties", IEE PROC. 141, pt. D., 1994, 3, pp.184-190.





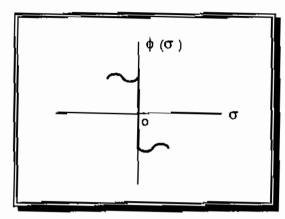


Fig. (3): Multivalued Function.

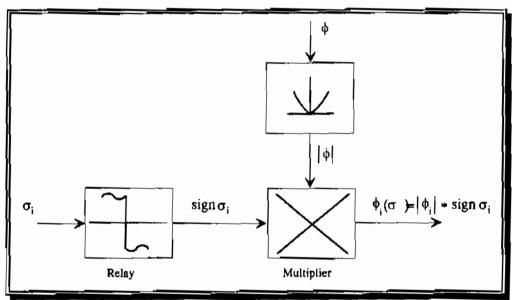


Fig. (4): Generation Of Multivalued Function.

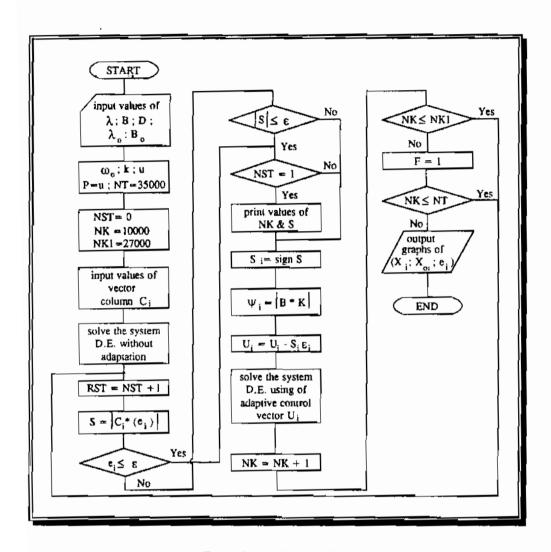


Fig. (5): Flow Chart



Fig. 6 Simulation Results

(c)