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FREE VIBRATIONS OF CYLINDRICAL SHELLS BY THE NODAL LINE
FINITE DIFFERENCE METHOD-PART I-THEORY

Usama M. N, Abo-Raya!, Ahmed A. Ghaleb? and Youssef I, Agag?
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1. INTRODUCTION

In this paper, the nodal line finite difference method (NLFDM) is extended to the analysis of a
thin circular cylindrical shell, as shown in Fig. 1, undergoing free vibrations [1]. The material
of the circular cylindrical shell is assumed to be linear elastic isotropic.

The complexity of a theoretical analysis of a vibration problem depends largely on the
number of deprees of freedom of the structural system in question. Since a thin circular
cylindrical shell is a continucus system it has an infinite number of degrees of freedom. The
NLFDM [10] transforms thi*. continucus system into a system having a finite number of
degrees of freedom. While carrying out the dynamic (or static) analysis by the NLFDM,
the number of degrees of freedom depends on the number of the used nodal lines.

The natural frequencies and modes are treated in more detail because they are basic to
understanding the dynamic response under any kind of excitation. It will be shown that the
number of natural frequencies ard that of normal modes, for axial wave number different from
zero, are each equal to three times the number of nodal lines used.

The orthogonality relationships of the normal modes cobtained by the nodal line finite
difference method are also included. It should be remarked that these relationships are slightly
different from those obtained by the finite element method; in fact the overall matrix of
coefficients replaces the stiffness matrix, and any two different mades are orthogonal with

respect to the unit matrix instead of the mass matrix.
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2. FORMULATION OF THE DIFFERENTIAL EQUATIONS OF MOTION

Dynamic loads are imposed on structural systems which already carry static loads (this refers
to the self weight of the system). Therefore, vibrations occur about the equilibrium position
that the system attains under the action of static forces.

Several approaches are commonly used to derive the governing equations of motion; e.g.,
Newton's second law of motion, D'lembert's principle and Hamilton's principle {12,13,16]. It
should be mentioned that using D'lembert's principle is much easier than applying Newton's
second law of motion to an arbitrary infinitesimal element of a thin circular cylindrical shell.

According to D'lembert's principle, dynamic equilibrium equaticns may be derived by
extending appropriate static equilibrium equations to include inertia forces. The inertia forces
acting on an arbitrary point of a circular cylindrical shell (or any thin shell of thickness h) are
given as follows

F¥=-phii
Ff=—ph¥ 8y,
F?=—phw

where, F;*,F’ and F? are the inertia forces and u, v and w are the displacements in the
directions of %, y and z axes, respectively. Moreover, the double dot denotes second
differentiation with respect totime, and denotes the density of the cylindrical shell material.
The minus signs appear in the relations (1) because the directions of the inertia forces are
opposite to those of the corresponding accelerations.

The equations of motion of a structure can be obtained from its equations of static
equilibrium by adding the inertia forces acting on it to their corresponding external forces. The
equations of motion of a thin circular cylindrical shell having a linear elastic isotropic material
will be presented in section 4 by the use of D'lembert's principle.

3. DISPLACEMENT EQUATIONS OF MOTION

According to Agag, [10] the exact differential equations of static equilibrium of a circular
cyiindrical thin shell can be written as

O S YONE

-

[0 (W), — 1“'7"104».”),z CVA(W), ] = —-’%x @

2

YA (), ]+["T"(1 PNV + (V] + [3—;‘11<7L2 (W) ~ (W) 1= —R?Y

1+
2

[
)

[0 () = kAW = VA 1+ PR (95 = (W) +

2

[N (W), + ZKA2 (W), + (W), +2k(W),p + (1 + k)W) = R?z 4)



Mansouira Engineering Journal, (MEJ), Vol. 25, No. 2, June 2000. C.3

in which the first subscript indicates the order of partial differentiation with respect to

EE= {-), the second one indicates the order of partial differentiation with respect to %, and

the number of dots indicates the order of partial differentiation with respect to time.

where t ‘ .
h2
k=——, 5
R
A=— 6
L (6)
and
Eh
= 7
1-v2 ™

By D'lembert's principle [16], the exact differential equations of motic 1 of a circular cylindrical
thin shell can be obtained from Eqs. (2) to (4) by adding the inertia forces, given by the
relations (1) to the corresponding external forces. This procedure leads to the following partial
differential equations [14, 15]

o220, [0, |

[kx’ =520, ), | - Sphie- ®

[I—*;—‘ix(u),l]+[-l—'59(l+3k)x’ o +(v)m:|+
R!

3-v . R ..
[Tklz (W)y = (W j‘— ?ph\f:— YY (9)

[kl’ (u)so - I_TU kA(u),, —vA(u) lo] + [B_TD ka? (V)y ~(V)a ] +

R?
K

[loh® (W) + 2007 (W), + (W) + 2k (W) + (1 + K)w |+ S phiy = R?zz (10)

4, FREE VIBRATION EQUATIONS

Free vibration is the type of vibration which can occur in the absence of any externally applied
forces. Free vibration occurs because of the initial conditions of displacements and velocities. If
the terms representing the externally applied forces in Eqgs. (8), {9) and (10) are deleted, the
equations obtained are the equations of free undamped vibration for a thin circular cylindrical
‘'shell of a linear elastic isotropic material. These equations can be written as follows:
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[P 52000 || 5200 ]r

[kx’ (W= =KoY —ul(w)m]—%phﬁﬂ . an
[“T"x(u),,]+[l—'2-‘i(1+3k)x= (V) +(v)o,]+ [%kxz(w)ﬂ —(w)m] —Béphi'r -0
(12)

[kl’ W -“T"kk(u),2 -—nl(u),o]+[-3_Tuk?L’ o -(v)m]+
floh* (). + 26603 (W), +K(W)oy +2K(W)gg + {1+ K)W]+ R?zph\'ir =0 (13)

5. THE NODAL LINE FINITE DIFFERENCE METHOD

The continuous interest in improving the solution techniques used for the structural analysis of
two and three dimensional problems has led to the development of new semi-analytical
methods. The nodal line finite difference method can be considered as one of these methods.
The nodal line finite difference method (AGAG METHOD) has been established and
developed by Agag [3-10]. Up to now the method has been used for linear elastic analysis of
thin rectangular and circular plates, and thin circular cylindrical shells, The method treats the
governing partial differential equations aiming at transforming them into ordinary differential
equations, which can be solved numerically by the finite difference method.

The nodal line finite difference method (NLFDM) requires that a set of fictitious lines
normal to two opposite edges of the structure should be constructed on its intermediate
. surface, as shown in Fig. 2, and these fictitious lines are called nodal lines. The nodal line finite

“ifference method s based on expressing each of the displacement functions as a summation of

terms, and each of these terms is the product of one term of a basic function and a nodal line
parameter. It should be mentioned that the basic functions are those derived by VLASOV
(1949).

6. SOLUTION OF FREE VIBRATION EQUATIONS BY THE NLFD METHOD

6.1 Basic Concept
As it has been considered in static analysis [10], the thin circular cylindrical shell has an open
cross-section and it is simply supported at bath the curved edges, while the longitudinal edges
of the shell can be arbitrarily supported, For any natural vibration mode, each point of the shell
vibrates at the same circular frequency o, but with different amplitudes of displacements.

Using the nodal line finite difference method, the components of time dependent
displacement at a nodal line numbered j can be written as
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uj(x, p,t)=sin(ot + y) }i__‘,oum'j(tp)cos(mng) {14)
vj(x,9,0=sin{ot+ ) Z Vi, (@)sin(mnt) (15)
w; (%, ¢, t) =sin (mt + ) zowmlj(cp)sin(mng) (16)

where 1 denotes time, and y denotes the phase angle. It is obvious that the relations (14),

(15) and (16) satisfy the boundary conditions along the two simply supported curved edges.

Moreover, when they are substituted into the equations of free vibration they yield:
1. A system of three ordinary differential equations for the functions i (0) V(@) and

Wwo;(@), and this system exists for any value of the axial wave number m different from

zero (m = 0), The system will be transformed into nodal line difference equations.
2. One ordinary equation for u,;(¢) and this equation exists for only zero axial wave

number. The equation has a closed form solution, which will be given latter.
The system of ordinary differential equations, obtained for m =1 2,3, ..., can be written as

. 2
—dug;+d,u,; —dyv ;s Hdawn i+ dswn, —p]".R?mzuMj =0 (17)
r " ] Rz 2
dyup; —vi, +dgVp; +d,wh; —ph?m Vo =0 (18)
c:l‘,u:;_j + d_,,um_j —dyvi,; +dgwih -2 wi +d,,,wm'j
2
--[::h--l-{‘l(—m2wm_j =0 (19)

in which w_;,v,; and w,; are functions of the variable ¢, and the prime denotes ordinary

differentiation with respect to this variable. Moreover, the coefficients d, (i =12,3,...,,10) are
the same ones given by the relations
I-v
d,=

2

I-v

(1+k), d,=¥m’a?, d;= 1;vlmn,

kimm, d, = vimz + k¥’'mz?, (20)

d,=
J=v

dg = -1-'2—"(1+3k)d,, d,=1+>—2kd,,
dy =k, dy=k(d, ~1), dyg=I+k+kd|
For zero axial wave number (m=0), an ordinary differential equation is obtained and can be

. written as
2

d,u;,'J+ph&K-m’u(,_j =0 (21

6.2 Nodal Line Difference Equations

The nodal line difference equations corresponding to the system of the ordinary differential
equations (17), (18) and (19) can be obtained by replacing the ordinary derivatives in these
differential equations with their corresponding finite difference expressions. Using the central
finite difference expression corresponding to the derivatives of the first, second and fourth
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order, a system of three nodal line difference equations will be obtained for each nodal line
[10,11]. This system can be written in the following matrix form

[A]{S mj-2 } + [B]{5 m,j-1 } + [C][S m—i] + [B]T {8 m,j+ } +

[AT {8} - ph%‘s’m’{sm} = {0} _ (22)

where each of the matrices [A], [B] and [C] is a square matrix of order three, and these
matrices are the same ones given by the relations

00 0 -c, By €3 cg 0 ¢
[A]l=|0 0 0 , [Bl=[-c. -1 -cs  [C]=| 0 e O
00 ¢ €; €5 —C e, 0 ¢y

cl=d1,c,=d,A/2,c,=d4,c4=2d‘+d§, 23)
oy =dyA? = 2d,, 06 =d;8/2, 67 =2 +deA%, & =d, /A%,

6 =(4d,/82) + 2d,, 01p = (6d,/ A7) + 4dg +d A%, and A=A

Furthermore, the vectors {5,,,‘5_,],{am_l},{am_j-},{aw}, and {Sm'm] are defined as follows
{Sm}= [um‘kvmlwmlr,k=j—2,j—l,j,j+l, or j+2 (24)
It should be remarked that the elements of the matrices [A), [B] and (C] are functions of
Poisson’s ratio v, the ratio I—;-, the ratio r_nLE and Ag. This can be proved by making use of

the relations (20) and (23). In addition to that, both matrices [A] and [C] are symmetric,

The application of the matrix equation at each nodal line yields a system of 3N linear
homogeneous algebraic equations, where N is the number of nodal lines used. Then, the
homogenecus boundary conditions along the two longitudinal edges are transformed into nodal
line difference equations and are used of to eliminate the parameters of the exterior nodal lines
from the system. Finally, the following matrix equation can be obtained '

[kalfsn =i fre) @s)
wher the matrix [k,,] is the overall matrix of coefficients, and the vector {x_} is given by the
following relations

T .
) = [[sm]l[sm“ .................. [a,,,_,;]] , 26)
[Bmk] = [um_k_ Vink wm_k], k=123 cccc.s N :

It should be mentioned that the matrix [kn) is a square matrix of order 3N, where N is the

number of the nodal lines used. Furthermore, this matrix is symmetric if the boundary
conditions along the two longitudinal edges are identical.
Equation (25) can be rewritten as
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CIf

A @)

Qz=PR-2‘(é— U)m.z (28)
.then, Eq. (27) can be rewritten as

[kn]fxn}= 202’ {x,} 29)

The parameter O is related to the circular frequency o by the relation (28), and it is called the
nondimentional frequency of the thin circular cylindrical shell,

6.3 Eigenvalue Problem
The matrix equation (29) represents a set of n algebraic homogeneous linear equations
involving n unknowns, where n is equal to three times the oumber of nodal lines used. This set
is equivalent to the set

(n]- 2402 {xa}= {0} (30)
i3

p=AD? ) (31
then, Eq. (30) can be rewritten as

(ka]- 1) {xa} = {0} 32)
where the matrix [I] is the unit diagonal matrix of order n.

Matrix equations having the same form as equation (32) are referred to as eigenvalue

preblems. Equation {32) can have non-zero solutions if and only if the determinant of the
matrix ([km]—p[l]) vanishes. Thus, the following equation is obtained

|[ka]-e{t]i=0 (33)

The expansion of equation (33) leads to an n th order polyromial equationin . Then
100tS Py,Bssnereenrnnne,B, Of this polynomial equation represent the eigenvalues of the matrix
[ka]. Because of the relation (31), the nondimensional frequency Q also has n values; these
values can be referred as £,,Q,.ccevveunes ... Furthermore, the relation (28) means to that the
circular frequency has n values; these values are referred to a8 ©,,0;,. e, @ .
Conseciuently, solving the ecigenvalue problem of the matrix [km] results in n eigenvalues, n

nondimensional frequencies and n circular frequencies.
Since the eigenvalue problem of the matrix [k,] must be sclved for each axial wave

number different from =zero, then it is better to refer to the a circular frequencies as
© 1@ masseeeenenes® mp - The circular frequencies are generally arranged in ascending order

with @, being the lowest or fundamental circular frequency.
Corresponding to each distinct circular frequency @, (or eigenvalue B; ), there will be a

set of amplitudes or eigenvectors {Xf,f’} . These amplitudes are obtained by substituting B; for

B in the matrix equation (32). Since the matrix equation (32) represents a system of algebric
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homogeneous linear equations, then only relative values or ratios of the amplitudes may be
found. One of the amplitudes may be taken equal to unity, and then the remaining values are
determined.

The eigenvector {Xﬁ{’} is referred to as the j th normal mode of vibration. It is obvious

that the number of the normal modes, as well as the number of the circular freqﬁencies. equal
to three times the number of the nodal lines used.

6.4 Orthogonality of Normal Modes
The two longitudinal edges of a thin circular cylindrical shell having simply supported curved
edges are assumed to have the same bourdary conditions. Therefore, the matrix [km] isa
symmetric, and the eigenvalue problem related to this matrix can be solved by Jacobi's method.

The eigenvectors or normal modes obtained from the free vibration problem satisty certain
relationships known as the orthogonality conditions. These conditions greatly facilitate
computing the response of the thin circular cylindrical shell when undergoes a forced vibration
motion. A derivation of the orthogonality relations follows.

A solution to the matrix equation (32) was found to be

{Xa}={x%} ' (34)
Equation (34) represents the relative values of the amplitudes of the j th normal mode.
Substituting this equation into equation (32) gives

By{x0} = [k, ) (35)
Similarly, for free vibration motion in the i th mode,

BfxD} = [k, Ifx¥) (36)
Premultiplying Eq. (35) by the transpose of {Xf,‘,’} , the following eqﬁation is obtained

{60 (2] 0 e ) o
Premultiplying equation (36) by the transpose of [Fa] yields '

) (x0) = fxY I fxe) G8)

Making use of the symmetry of the matrix [kn] and the reversal law of transposition, the

transpose of the equation (38) is

ERT SN (9)
Subtracting equation (39) from equation (37) yields

br-p)fey e} oo 0
Hence for distinct eigenvalues Bi=B,, the following relation must be satisfied

O {x0) =0 @1)

Substituting the equation (41) into equation (37) yields
OV k. x2} =0 (42)
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Egs. (41) and (42) represent the orthogonality relations which the normal modes satisfy.
Equation (42) indicates that the normal modes {Xf,?} and {Xf,{’} are orthogonal with respect

to the matrix [k,,,] » but equation (41) indicates that they are orthogonal with respect to the unit

diagonal matrix of order n.
If i and f refer tothe same mode, so that B, =P;, then the left hand side of Eq. (41) is, in

general, a nonzero constant. This constant is denoted by M j» thatis

{xey {x@}=o0 (43)
Substitution of Eq. (43) into Eq. (37) gives, for the case of i=f,
XOV [k, ){x0} =M, (44)

If {XL{’} represents the jth column of the so-called “modal matrix" [Xa], the

orthogonality conditions may also be written as
[%a] [*a]=[%n]
[%a] [Ka Jfxm][¥a (45)
where the matrices [X,,] and [Em] are diagonal ones and the elements of which are defined as
X, (LD=M,
KnGi=BM, . j=123......... ,n (46)

6.5 General Solution of Free Vibration Equations
Because the normal modes have the property of orthogonality, they represent n independent
solutions, where n is equal to three times the number of the nodal lines used. Therefore, the
general solution to the problem of free vibration is a linear combination of all these modes. The
general solution can be written as follow

Uioet)= = [EUEL’,- Cone SI(® o 1+ W) Jeos(mnE) 4+ U, o (@, 0)

Vi@t)= £ [ ZVE Cp sin@ L4 v, Jsinmet)

Wilxet)= T [5 WEC,,, sinfe ,,t+ v, ) |sin(maz) @7
where UL, VY and WL} denote the relative amplitudes of the axial, tangential and radial

displacements, respectively, at the jth nodal line when the r th mode exist. Moreover, the
underlined term is the function repressenting the axial displacement corresponding to zero axial
wave number, The explicit form of this function will be given in section 7.6.

The relation (47) contains 2n arbitrary constants CrtsCatsnCrns Yot WamzrsWmas
for even terms of series, which can be completely determined from the prescribed initial
condition. Therefore, the number of the initial conditions must be equal to 2n (six time the
number of the nodal line used),

Expanding the initial displacements and velocities in Fourier series with the fundamental
period 2L, the following relations are cbtained
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Uo;= T Uo,,; costmnt) , Uo;= 3 Uo,,; cos(mnz) (48a)
Vo;=Z Vo, sin(mnz) , Vo,= % vonj sin{mmn£) (48b)
Wo;= F Wo, . sin(mnz) , Wo,= 3 Wo_, ; sin(mng) (48¢c)

where Uo;,Vo j and Wo, denote the initial displacements of the nodal line numbered j, and

Uo;, Vo ; and Wo, denotes the initial velocities of the same nodal line,

Applying the relations (47) after putting t equal to zero at each nodal line and mzking use
of the relations (48), the following matrix equations are obtained for each axial wave number
different from zero

{pon} =fx..]{a) (49)
{éom} =[%,] {oB} (50)
where

{60,,,}=[Ucm., Voo  Wop e Ut Vo, u Wom_N]T,
[Som } =[U0m V0,01 WO oo, Uo,p Vo x WombN]T,

{a} =[Am1Am2AmN]T (51
{»B} = {m I ,,,_3Bm_g.;.........................,.‘..mm.NBm,N ]T,
A, = Cox sin(wm), B, = C.. cos(y,, ), r=12,..... ,n,

where N is the number of the nodal line used, n =3N.
Solving the matrix equation (49) and (50) for the arbitrary constants gives

A} =] {po,} (52)

{0B} =[x, ]'l{éom} (53)
Taking into consideration the relations

An, =C.. sin{y,, ),B,., =Corcos(y, ) r=12_.. . R ] (54)

the general solution can be rewritten as follows
Uitz = [% {a.., cos(o 0+ By Sin(0,,, 1) } US Joos(ma)
+ Um:o {[PJ E t)

Vie.0= 2 [2{a,., cos(@,,1)+B,_, sinfa e}V Jsin(rnnt) ©3)
m={ =t

Wion= 3 [£{a,, cos,,+B, . sin(a ) JWE Jsin(maz)
mal =]

The 1th mode, for example, represents the relative values of the parameters of the nodal lines
when this mode exists; therefore, it is given by the relation

(2 {UR VAW oD VW T (56)
N=the number of nodal lines used.

Once the natural frequencies and the normal modes are determined, the values of the
arbitrary  constants AL LA A B Br2revn, By, can be completely

M2 e, hmas m,l>
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obtained from the relations (52) and (53). Then, substituting these values into the relations
(55), the values of the displacements at any point belonging to each nodal line can be obtained.
It should be mentioned that the velocities in the directions of x, j and z axes, at any point
belonging to each nodal line, can be determined from the relations (55) by differentiating these
relations once with respect to time. Moreover, the accelerations can also be obtained by
differentiating the same relations twice with respect to time.

6.6 Natural Mades for Zero Axial Wave Number

For zero axial wave number (m=0), the natural modes are purely longitudinal
(W,;=V,,=0 and U,;j#0). These modes can be obtained by solving the homogenous

ordinary differential equation (21). The closed form solution of this equation will be derived

below,
The ordinary differential equation (21) can be rewritten as follows
4, U (p)+ Q*U(p) = 0 7))
where
l-v 2 l-u 2 2 2
- = 8
==, Q' = pR% (58)

Dividing each term of the above ordinary differential equation by d, , the following ordinary
differential equation is obtained

U"(@)+£7U(g) = 0 (59)
where

2 _07 60

2= . (60)

Eq. (59) is an ordinary differential equation of the second order, which has the following
general solution

U(g)=C, cos{f) + C, sin(fip) (61)
where C, and C, are two arbitrary constants which can be determined from the boundary

conditions, .
One of the following 2 sets of boundary corditions must be satisfied along each

longitudinal edge of the circular cylindrical thin shell
Ulp) =0 N (9)=0 (cr U'(g)=0) (62)

m=o tmeo m=o

Assuming that each of the two longitudinal edges has a zero axdal displacement boundary
conditions and letting the angle ¢ be measured as shown in figure (3), the following relations
can be cbtained

C,=0 and C, sin{fipo)=0 (63)
Since C, must not be equal to zero (in order to obtain a nontrivial solution), then

sin( fipo) =0 (64)
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Upon solving the trigonometric equation (64), the following relation is obtained

Fm s £ =123 mmemersernnns
O

(65)

The relation (65) indicates that f has an infinite number of values. Therefore, it is better to
write this relation as

£, 12123 i, (66)
O

Making use of the relation (60), the nondimensional frequencies corresponding to zero
axial wave number can be given by the following relation ‘

=S 123 (67
eV 2
where O, denotes the nondimensional frequency of the r th mode for zero axial wave number

(m=0).

The relation (66) gives the eigenvalues of the homogeneous ordinary differential equation
(59), and the corresponding eigenfunctions can be written as

U@ =sin=2), £ =123, 68)
meo po
The eigenfunctions, which are given by the relation (68), represent the axial modes for zero
axial wave number (m=0). It should be noted that these modes are the cnly ones corresponding

to zero axial wave number. furthermore, these modes satisfy the following relation
TUOUD dp=0,r=s (69)

§ m=o m=o
The relation (69), which can be obtained by direct integration, indicates that any two different
axial modes corresponding to zero axial wave number are orthogonal to each other,

Since the eigenfunctions (or the axial normal modes), which are given by the relation (68),
are orthogonal to each other, they represent an infinite number of independent soluticns to the
ordinary differential equation (59). Therefore, the general solution to this ordinary differential
equation is a linear combination of these eigenfunctions (or the axial normal modes). Making
use of the relations (14) and (68), the axial displacement part corresponding to zeroaxial wave
number can be written as

U(x,0,0)=U(p,1) = £C,, sina,, t+ wo,,)sin(%) (70)
r=1

The relation (70) can be rewritten in the following form
UG, = T {A,, cos(o,,1) + B, sin(o )} sin(*-2) (71
23] Ppo

m=a9
Differentiating each side of the above equations with respect to the variable t, the following
relation is obtained

U0, = To,, {-A,, sinf0,,1) + B,, c0s(©,, )} sin(—-2) (72)
=1 o

m=a
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The relation (72) represents the axial velocity part corresponding to zero axial wave number
(m=0). .
Expanding the initial axial displacement as well as the inittal axial velocity in Fourier series

with the fundamental period 2L, the following relations are obtained
X

Uo(x,¢) = £ Uo(g)cos(mnt), Uo(x,9) = I Uo(g)eos(mnt), &=T (73)

. m= m m L
Upon substitution for t = 0 inEgs. (71) and (72) and making use of Eq. (73), the following
relations can be obtained
Uo(g) = £A,, sf(Z2), Uolyp) = Zo, B, sin(=2) (74)
m=0 1=l Ppo tal 1]

It should be observed that the left hand sides of the relations (74) represent the initial axial
displacement part and the initial axial velocity part, respectively, correspanding to zero axial

wave number.
Formulas (74) are expansions of the Fourier series in sines . the interval [0,¢o]; therefore,

the coefficients A, and B,, canbe obtained from the following relations

A= -Z_?UO(‘P)SE(%;E)CI‘P, r=123...... (75)
B,, =—2—TUo(@)sin(=2)dg, 1 =123, (76)
mu,[m p =0 (w

Upon the determination of the coefficients A, and B, (=1.2,..), the axial displacement part
as well as the axial velocity part corresponding to zero axial wave number can be determined at
any point of the circular cylindrical thin shell.

It should be observed that the axial displacement part and the axial velocity part
corresponding to zero axic| wave qumber are each independent of the axial coordinate (x-
coordinate). Moreover, for free vibration motion, if both the initial axial displacement and
velocity at each point of the circular cylindrical shell are equal to zeto, the axial displacement
part and the axial velbcity part corresponding to zero axial wave number do not exist. In such

. . cases, there is no need to determine the axial modes corresponding to zero axial wave number.

7. BOUNDARY CONDITIONS

The boundary conditions along the two longitudinal edges of a thin circular cylindrical
shell, may be static, kinematic or mixed, depending on the method of supporting these edges.
The boundary conditions along a free edge are static, and the boundary conditions along a
rigidly fixed edge are kinematic.

Consider a thin circular cylindrical shell with an open cross section and simply supported
curved edges. If this circular cylindrical shell has identical boundary conditions along its two
longitudinal edges and is symmetrically or antisymmetrically loaded, then half of it is
considered and only four boundary conditions along the longitudinal edge of the considered
half are needed in structural analysis. This property has been used to reduce the number of the
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nodal lines used while carrying out the static analysis of a thin circular cylindrical shell by the
nodal line finite difference method [10],

For a thin circular cylindrical shell of an open cross section, it should be remarked that if
each two opposite edges have the same boundary conditions, then the natural modes of
vibration are either symmetric or antisymmetric. In such cases, half of the circular cylindrical
shell is considered, and each type of the natural modes is determined alone. This property is
utilized to reduce the number of the nodal lines used while determining the natural modes and
the corresponding frequencies by the nodal line finite difference method.

There are 16 sets of boundary conditions, one of which must be satisfied along each
longitudinal edge of a thin circular cylindrical shell with an open cross section [14,15)]. Some
well known sets of boundary conditions will be described below. One of these sets may exist
along a longitudinal edge:

I. Freeedge

N, =0,M, =0,N, =0,0, + (M), =0 77
where the first and second numerical subscripts indicates the order of partial differentiation
with respect to the variables x and ¢ respectively.

2. Clambed edge (rigidly fixed edge)

u=0,v=0,w=0,(w),j=0 (78)
3. Edge with hinged immovable support

u=0,v=0,w=0M_=0 (79
4, Edge with hinged movable support in the normal direction

u=0,v=0,0, + (M), My =0 (80)
5. Edge with hinged movable support in the direction of ¢ -axis

u=0,N, =0, w=0,M, =0 @

6. Edge with hinged movable support in the tangent plane
Ny =0, N, =0,w=0,M, =0 ' ' (82)

7. Edge with hinged movable support in the direction of x-axis and the normal plane
Nee=0,v=0,0,+(M_ ), M, =0 (83)
It should be mentioned that the displacement functions given by the relations (14), (15)

and (16) satisfy the boundary conditions along the simply supported curved edges. For a thin

circular cylindrical shell with an open cross-section and simply supported curved edges, the

following stress resultant displacement relations hold.

N, =§sin(mt +y) .}:1 N () sin(mnt)

N, K=Y inot+w) 5 N, () cos(mat)
R 2 Z (84)

M, =- %sin(mt + ) ’EI M () sin(mng)

D . .
Q.+ (M), = —E;'sm(mt +v) E=t[n$(¢)]ar sin(mn§)
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where
NG (@) =—vh u_ +vi —w,_ —k(w, +w")
Nal@)=uy, +h v, +k{ut, -4 wi)
M2(@) =w + (1-vAi)w (85)

(95 @Mar = (g, - XD, (12202, + 002w+ w

where the prime denotes ordinary differentiation with respect to the variable ¢, and
X, =Amnr,

Solving the free vibration problem of a circular cylindrical thin shell by the rodal line finite
difference method requires expanding the initial displacements and velocities into Fourier
series. The natural frequencies and their corresponding modes are determined feor each term of
these expansions or for each value of the axial wave number m. Therefore, the houndary
conditions along each longitudinal edge of the circular cylindrical shell must be formulated for
each value of the axial wave number.

For each axial wave number different from zero, some well known cases of boundary
conditions will be given below, One of these cases may exist along a longitudinal edge

1. Free edge
NG (@) =0, M () =0, N (@) =0, [Q7 (], =0 (86)
2, Clamped edge (rigidly fixed edge)
u, =0v, =0 w_=0w,=0 (87)
3. Edge with hinged immovable support
u,=0,v,=0,w, =0, MZ(¢g}=0 (88)
4. Edge with hinged movable support in the normal direction
cug =0,v, =0, [0 @)] 4 =0, M7 (p) =0 (39
5. Edge with hinged movable support in the direction of ¢ -axis
T U, =0, NJ(p)=0,w_=0,MJp)=0 (90)
6. Edge with hinged movable support in the tangent plane
N;;((P)=0: Nz‘(tp)—_'o!wm:m M$("P)=0 (9])
7. Edge with hinged movable support in the direction of x-axis and the normal plane
NI (@) =0, v, =0,[Q7 ()] = 0, M3 (9} =0 (92)

For zero axial wave number, one of the following two sets of boundary conditions
must be satisfied along each longitudinal edge of the circular cylindrical shell

. u(p)=0; N, (@) = 0 (oru'(p) = 0) (93)

Making use of the relations (85), the boundary conditions along each longitudinal edge can

be expressed in terms of the parameters of the edge nodal line (u(y), v(p} and w(g)) and
m, e i, edge m, e

their derivatives. The derivatives are not suitable for the nodal line finite difference method,
and they must be converted into nodal I'me difference expressions. Then, the boundary
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conditions along the left longitudinal edge are used for eliminating the parameters of the left
exterior nodal lines. The same procedure must be carried out for the boundary conditions along
the right longitudinal edge.

The parameters of the exterior nodal lines can easily be eliminated from the nodal line
difference equations of free vibration motion. For some well known cases of boundary
conditions, Agag [10] has expressed the parameters of the exterior nodal lines in terms of
those of the corresponding edge and those of its two adjacent interior nodal lines.

8. CONCLUSION

In this paper, the nodal line finite difference method has been extended to the analysis of a thin
circular cylindrical shell of linear elastic isotropic material, undergoing free vibrations. The
method has been applied and verified with many examples in a complementary paper [2]
published in the same periodical.
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10. LIST OF SYMPOLS
The following sympols are used in this paper

FX,FY, EF = inertia forces in direction E = modulus of elasticity
of X, y a_nd z respecﬁve[y h = thick.ﬂess Of She"
p = material dens.ty R = radius of shell
u,v,w = displacements in direction L = length of shell
of X, y and z respectively o = natural circular frequency
- m ] = phase angle
m,v,w = accelerations in direction .
: m = number of axial waves
el .
ofx, y and 2 respectively Q = nondimensional frequency

v = Poisson’s ratio
- parameter
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