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FREE VIBRATIONS OF CYLINDRICAL SHELLS BY THE NODAL LINE
FINITE DIFFERENCE METHOD-PART II-NUMER ICAL EXAMPLES - _
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1. INTRODUCTION

The analysis of cylindrical shells for free vibrations using the nodal line finite difference
method has been presented in a companion paper (part I) [2). The reader may also refer to
reference [1] for some more details. In this paper the application of the nodal line finite
difference is verified by many numerical examples. In addition, the applicability of the nodal
line finite difference method for the analysis of thin plates by making use of the degenerate

theory developed by Gibson [4] is demonstrated.

2. NUMERICAL EXAMPLES FOR CYLINDRICAL SHELLS

Based on the formulation given in the companion paper [2] a computer program has been
developed in Quick Basic to compute the nondimensional frequencies of thin circular
eylindrical shells of an open cross section. The cylindrical shells are assumed to have simply
~ supported curved edges, but their straight edges are arbitrary supported. The program aiso
co'rﬁnputes the normal modes, which are corresponding to the nondimensional frequencies.
Using this program. some illustrative examples have been solved. The results are in good
agreement with those which have been obtained by Koumousis and Armenakas [3].

Before presenting the numeri‘cal' examples, the following remarks should be taken into

consideration:
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1. For given boundary conditions along the straight edges, both the nondimensional
frequencies and normal modes are functions of the quantities L/mR, R/h, ¢, and v;ie,
Q =F(L/mR,R/h,p,p) where
Q  the nondimensional frequency of the thin circular cylindrical shell,
L the length of the thin circular cylindrical shell,
R the mean radius of the thin circular cylindrical shell, "
h  the thickness of the thin circular cylindrical shell,
9, the total central angle in radians,
v Poisson’s ratio of the cylindrical shell material, and
m the axial wave number
2. If the thin circular cylindrical shell has identical homogeneous boundary conditions along
its two straight edges, then each of its normal moedes is either symmetrical or
antisymmetrical with respect to the axis of symmetry of its cross section. In this case, the

overall coefficient matrix [k, is a symmetrical banded matrix with a band width equal to

seven.

3. Only cylindrical shells with two symmetrical straight edges are to be considered because
the subprogram used for solving the eigenvalue problem of the matrix [k, ] is based on

Jcobi’s method [3,6], which is valid for only symmetrical matrices.

- 4. For a thin circular cylindrical shell with given boundary conditions, the nondimensional
frequencies decrease as L/mR increases on condition that the other parameters (R/h, ¢,
and v) remain unchanged [5]. ) )

Using the above mentioned program, the following numerical examples have been
solved. Furthermore, the results are compared with those obtained by Koumousis and

Armenakas [5].
Example 1 is a thin cylindrical shell with L/R=4, R/h=100, ¢o'=%n and v =03. The

cylindrical shell has becn assumed to have a hinged immovable' support at each of its two
longitudinal edges (see the companion paper [2]). Due to symmetry. only half of the
cylindrical shell has been considered and the problem has been solved twice; once for
obtaining the symmetrical modes and the other for obtaining the antisymmetrical ones.
Moreover, for both symmetrical modes and antisymmetrical modes the problem has been

solved twice: once using 46 nodal lines and the other using 58 nodal lines. The first six values




Mansoura Engineering Journal, (MEJ), Vol. 25, No. 2, June 2000.

C.21

of the nondimensional frequency which are corresponding to m=1 are contained in the

following table, namely Q11502 5,Q) 4, and Q¢

Table 1
Method [NLFDM)] [NLFDM] Reference [5]
46 nodal lines | 38 nodal lines
Ist mode | 0.0959028 0.09149 0.0857
2nd mode | 0.111889 0.105983 0.0964
3rd mede | 0.180293 0.1733 0.16278
4thmode | 0206773 0.203546 0.20656
Sthmode | 0.266661 0.26105 0.2687
othmode | 0.332755 0.3253567 0.31472

It should be mentioned that the first, third and six modes ae symmetrical ones, but the

remaining modes are antisymmetrical ones.

Example 2 is for a thin circular cylindrical shell with L/R=20, R/h=100, @, =3/3 and

v=03. The cylindrical shell has the same boundary conditions as the cylindrical shell of
example 1. Only half of the cylindrical shell has been considered, and the problem has been
soived twice; once for obtaining the symmetrical modes and the other for obtaining the
antisymmetrical ones. For both the symmetrical and antisymmetrical modes, 58 nodal lines
have been used. The first six valu.es‘of the nondimensional frequency which are corresponding
to m=2 are contained in the following table, mamely Q,,Q,,,Q,;,.... and Q- Forthe this
numerical example, L/mR=10 and R/h=100. it should be noticed that increasing the value of

L/mR has result in tower values for the nondimensional frequency.
Table 2

Method (NLFDM] Reference [3] Type of mode
58 nodal lines

Ist mode 0.060307 0.054349 symmetrical
2nd mode 0.076544 0.076519 antisymmetrical
3rd mode 0.119941 0.119206 antisymmetrical
4th mode .0.167914 0.157014 symmetrical
5th mode 0.242093 0.233241 antisymmetrical
6th mode 0.323103 0.312582 symmetrical

Example 3 is for a thin circular cylindrical sheil with L/R=4, R/h=100. 0, =2% and

v=03. The two straight edges of the cylindrica! shell have been assumed to be clamped
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(rigidly fixed). The axial wave number has been assumed to be equal to one; i.e., m=1. The
nondimensional frequencies and the corresponding norimal modes have been computed using
58 nodal lines. The following table contains the first six nondimensional frequencies and their

corresponding values obtained by Koumosis and Armenakas [5]

Table 3
Method [NLFDM] Reference 5] Type of mode
58 nodal lines :

1st 0.098419 0.091898 symmetrical
2nd 0.118267 0.110511 antisymmetrical
3rd 0.201662 0.192755 symmetrical

4th 0.203633 0.210338 antiymmetrical
5th 0.294052 0.295252 antisymmetrical
6th 0.367050 0.358362 symmetrical

For this example, L/mR=4, R/h=100 and v = 03 . These values are the same one of example
1. Comparing the results of this example with those of example 1, it can be remarked that a
circular cylindrical shell with clamped straight edges has natural frequencies higher than the
natural frequencies of a circular cylindrical shell with immovable hinged supports aleng its
straight edges on condition that the two cylindrical shells have the same values for the
quantities L/mR, R/h, ¢, and v. The first six normal modes of the above thin circular
cylindrical shell are shown in Fig. 1.

It should be remarked that the results obtained b): Komuousis and Armenakas [5] are
sometimes upper bounds and sometimes lower bounds wnh respect to tﬁe results obtained by
the nodal line finite difference method. This is due to the approximations made in Jacobi’s
subroutine [3,6).

Example 4 is for studying the effect of the value of the central angle (¢,) on the
nondimensional frequencies. For this purpose, athin circular cylindrical shell with L/R=4,
R/h=100,0=03 and different values for ¢, has been considered. The cylindrical shell has
been assumed to have simply supported longitudinal edges, and the axial wave number has
been assumed to be equal to one. The central angle (g,) has been assumed to have the
following values: 30, 40, 50, 60, 80 and [20. The following table contains the first six
nondimensional frequencies corresponding 'to each value of the central angle. Accerding to
the resulis contained in table 4, it can be concluded that increasing the value of the central

angle leads to [ower nondimensional frequencies. The relationship between the
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nondimensional frequency and the central angle for the first three nondimensional frequencies

are shown in Fig. 2.

Table 4
angle in 30 40 30 60 g0 120
degree Ap=1 Ap=1 Ap=1 Ap=1 Ag =] Agp =103

Istmode |0.42529 |0.25133 [0.18038 |0.15287 |0.13772 (0.09149
2nd mode [0.78416 |0.49629 |0.32596 (0.23074 |0.14616 |0.10598
3rd mode |1.08007 10.93621 |[0.60495 |0.42535 |0.25341 |0.17330
4thmode [1.64678 [0.95512 |0.86007 |0.6358% (0.36679 |0.20355
Sthmode [2.5561 [1.47075 |1.03428 (0.9363 |0.53369 [0.26105
6thmode |[3.62801 [2.07400 |1.33933 (0.96370 (0.70848 |0.32557

3. DEGENERATE SHELL THEORY FOR PLATES

After an extended theoretical and computer investigation Gibson {4] concluded that shell
theory could equally well predict the structural behavior of plate structures. Thus in the case
of cylindrical shell theory, by introducing an infinite value for the radius into the stress
equilibrium equations they immediately reduce to those equilibrium equations relevant to
plates. It would follow that a program developed for analyzing cylindrical shells should be
equally capable of analyzing plate structures by introducing an infinite radius into the input
data. The introduction of an infinite radius into the input data is ¢learly impossible but the use
of a large radius coupled with a switably modified central angle, readily demonstrated that
. Pplates_could be analyzed by this method, termed by GIBSON the Degenerate Theory. It forms
the link between shells and plates as far as computer methods are concerned.

Gibson [4] has concluded that a program developed for analyzing cylindrical shells can be

used for analyzing a flat plate of width C by using the following input data:
the central angle (¢,)=2"
the radius (R)=C/(2sinl®)
The exact nondimensicnal frequencies of the plate have been determined by using the
following relation:

LR (=R a'ni(m? +atY?
L m.n( ) =T: h (n: :i':‘ ) , man=i23.....
) E 192R " sin” 1°

[¢1
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where P, is the natural circular frequency of the plate and Q,, is the nondimensional

frequency of the plate. The above relation can easily be proved by making use of the following

relation [7]:
1, y?
Piﬁft‘(m—}'"—J (RJ, m,n=123,....
' a- ph
Eh’

>y

a=2Rsini’
where a is the length of the plate side, h is the plate thickness, and p is the density of the plate
material.

Example 5 is for analyzing a thin square plate with 3 meters length, 0.08 meter thickness
and =0.15. In this case, R=3/(2 s5in1°) = 85,948 meters. The plate has been assumed to be
simply supported at its four edges. Due to symmetry, one half of the plate has been
considered. The nondimensional frequencies and normal modes have been computed using 20

nodal lines. The following table contains the first six nondimensional frequencies computed

by the program and their corresponding exact values,

Table 5

Method [NLFDM] [Exact] Mede Type
1st mode 4.44723 4353340 symmetrical
2ndmode | ~ 10.8752 10,883350 antisymmetrical
3rd mode 21.6770 21.766699 symmetrical
4th mode 36,7153 37.003389 antisymmetrical
5th mode 55.8925 56.593418 syminetrical
6th mode 79.0897 - 80.536787 antisymmetrieal

Table 6 contains the relative values of the first mode and the corresponding exact relative

values. The exact modes can be determined from the relation [71:

W= sin(rnﬂ) sin(m«)cos(Pm_nt); mon=125_,
a a

The nodal line number 0 coincides with one edge of the plate, while the nodal line number 20
coincides with the axis of symmetry parallel to this edge as shown in Fig. 3. It should be
mentioned that the exact relative values contained in the above 1able have been determined by

multiplying sin(my/3) by 81.5233, where y is the distance between the nodal line and the
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plate edge. The first six normal modes have been computed by the program and are shown in

Fig. 4,
Table 6
Nodal Line No. W [NLFDM ] W [ Exact ]

0 0.000000 0.000000
1 +0.638100E+01 | +0.639626E+01
2 +0.127236E+02 | +0.127531E+02
3 +0.189894E+02 | +0.190313E+02
4 +0.251402E+02 +0.251921E+02
5 +0.311381E+02 | +0.311977E+02
6 +0.369466E+02 +0.370109E+02
7 +0.425300E+02 +0.423959E+02
B +0.478536E+02 +0.479183E+02
9 +0.528839E+02 +0.529433E+02
10 +0.575892E+02 +0.576458E+02
11 +0.619401 E+02 +0.619909E+02
12 +0.659096E+02 | +0.639539E+02
13 +0.694733E+02 +0.695102E+02
14 +0.726089E+02 +0.726380E+02
15 +0.752965EH02 | +0.753179E+02
16 +0.775191E+02 | +0.775334E+02
17 +0.792625E+02 +0.792710E+02
18 +0.805160E+02 +0.805198E+02
[} +0.812713E+02 +0.812722E+02

- 20 +0.815235E-+02 | +0.815235E+02

4, CONCLUSIONS
On the basis of the present work. the following conclusions can be drawn:

1.The technique of the nodal line finite difference method deals directly with the governing
differential equations of thin circular cylindrical shells and does not require any
assumptions or approximations which may affect the generality of these equations.
Moreover. the technique is simple in concept and easy to program. When simple harmonic
- functions are used as basic functions, they uncouple the governing partial differential

equations of thin circular cylindrical shells so that a system of three ordinary differential
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equations can be obtained for each temm of these basic functions. Thus, a term by term

analysis can be carried out.

2.For symmetrical boundary conditions along the two straight edges of a thin circular
cylindrical shell with an open cross-section and simply supported curved edges, the nodal
ling finite difference method yields a symmetrical banded matrix with a band width equal

to seven.

3.Unlike the solution obtained by ‘the finite element method, the solution obtained by the
nodal finite difference method satisfies the exact partial differential equations of
equilibrium of thin circular cylindrical shells; therefore, compatibility and equilibrium are
satisfied at each point of each nodal line,

4.The orthogonality relationships, which are satisﬁeﬁ by the normal modes, obtained by the
Nodal Line Finite Difference slightly differ from those obtained by the finite element
method. The overall coefficient matrix [km] of the developed solution technique [2]
replaces the stiffness matrix, and any two different modes are orthogonal with respect to
the unit matrix instead of the mass matrix.

5.Thin circular cylindrical shells with different dimensions and with the same values for
L/mR,R/h,e, and v have the same natural frequencies and the same normal modes on
con_dition that the boundary conditions along the straight edges remain unchanged.

6.For a thin circular cylindrical shell with an open cross-section, the frequencies decrease as
the central angle increases on condition that the parameters L/mR, R/h and v remain
unchanged.

7.The nedal line finite difference method can be used for the analysis of thin plates by

making use of the degenerate theory, developed by Gibson [4].
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