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REDUNDANT PATH ELIMINATION: AN EFFICIENT
TIME-COST TRADE-OFF OPTIMIZATION MODZL
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ABSTRACT

Time-cost trade-off is a decision making problem in construction menagement Numerous
optimization models have been developed to sclve this problem .alnost all of them are not
applicable fcr even small-sized projects, because of the unmanageable required number of
variables and constrzints, The proper sequence (logic) of activities can be naintained by allowing
for one constraint for each possiblc path. In practice, only small number of paths are doininant,
while the others are redundant. In this paper, an eflicient time-cosl optimization model, which
minimizes project cost, s developed depending on eliminating redundant paths. Precise activily
time-cost relationship s used and overlapping between consecutive activities is permitted. The
model is formulated in the form of zero-one programming, The model constraints include zero-
one constrainls and network logic constraints. In formulating network logic constraints, only
dominant paths are considered. Redundant paths are eliminated and consequernly unnecessary
decision variables are excluded. The modcl guarantees the optimal solution. The model is entirely
formulated by interface with computer subroutine. The model requircs as input: precedence
relationship between activities, overlap values, and discrete utilily data for project activities. The
model efficiently reduces the problem size and can be used for large-sized project nelworks
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C.2 Mohammad A. Ammar
INTRODUCTION

The time and cost parameters of a construction project have been identified as major
factors of the decision making process. In Critical Path Method (CPM) analysis, the objective is
to estabiish a minimum project cost by making use of time durations of each activity at minimum
possible cost. The primary impact of timing is money. Time is thus an equally essential factor.
Therefore, construction management must focus on minimizing overall project cost with
reasonable time schedule based on realistic assumptions. Since cost is actually a function of time,
it is necessary to determine the project time-cost trade-off curve, which gives the minimum
possible cost for completing the project within a specified completion time,

The project time-cost problem has an infinite number of solutions, because so many
combinations of alternative ways for performing project activities are possible. If time is of no
concern, each activity could be performed at its lowest possible (normal) cost. If cost is of no
importance, each activity could be speeded up 10 be completed in the least {crash) time. Between
these two limits lies the best {optimal} solution, but to find it, it requires consideration of complex
collection of concurrent, interrelated, and overlapping activities (Antill and Woodhead, 1982).
Time-cost trade-off problem has been traditionally solved by two distinct approaches;
mathematical optimization and heuristic methods. Mathcmatical modeling of the problem requires
large number of vartables and constraints for even medium-sized construction projects. This
research introduces an attempt to reduce significantly the problem size.

In this paper anew optimization model for solving project time-cost Lrade-off problem is
presented. The discrete activity time-cost relationship is considered. Overlapping between project
activities in the form of FTS is allowed. The model is formulated in the form of zero-one linear
programming problem which minimizes project cost in a general form. The model constraints
include zero-one constraints and network logic constraints. The general model is, then,
reformulated to eliminate those unnecessary decision vanables as well as redundant paths
constraints. Network logic constraints are formulated only for dominant paths.

TIME-COST TRADE-OFF PROBLEM

Mathcmatical optimization and heuristic methods are the two major approaches used to
solve the lime-cost {rade-off problem. Recently, other lechniques have been introduced (o solve
the same problem. These include Genetic Algorithms; GA, (Li and Love 1997) and Neural
Networks (Adeli and Karim 1997). Mathematical methods convert the problem into standard
mathematical programming models and then use linear, integer, or dynamic programming to
obtain the optimal solution of the problem. However, formulating the objective function as well as
the requircd conswraints of the problem is time-consuming and prone to errors (Liu et al 1993).
Heuristic methods provide a way to obtain gu.u solutions but do not guarantee optimal solutions.
However, they require less computational effort than mathematical methods.

In developing project time-cost curve, the scheduler should rely on realistic assumptions.
Many forms of activity time-cost reiationship have been assumed. They include linear, nonlinear,
piece-wise, and discrete point relationship. They are shown in Fig.1. The least direct cost for
carry.ng-oul an activity is called tire normal cost (NC}) and the corresponding duration is called
norral duration (ND). The shortest possible duration for performing an activity is referred to as
crash duration (CD) and the corresponding cost is called crash cost (CC). The points between
these two limits show the costs for the various feasible time in which an activity can be speeded
up. The detailed time and cost information for an activity obtained form construction estimatc are
referred to as utility dats,

The function that mav relate time and cost of construction activities is of great
importance, since the type of optimization technique depends, mainly, on that relationship
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Eldosouky et 2] {1991) proved that the discrete point relationship is the realistic representation for
activity time-cost relationship. They concluded that: "Although this representation is difficult 10
be used in time-cost optimization problem, it is the correct one.” Most of the existing time-cast
optimization methods assume linear activily time-cost relationship in order to control
computational effort. On the other hand, every reported methodology that attempts to deal with
other activity time-cost relationship either completely fails to reach the computer model stage or,
if it does, it is accompanied by the "only for small networks" wamning (Panagiotakopoulos 1977).
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Figure 1. Activity Time-Cost Relationship

Another factor which must be considered is the fact that mosi construetion activities
overlap. Harris (1978) defines four types of overlap ~hat may exist between construction
activities, The most commen used one is the Finish Te S1ast {FTS) relationship. Harris concluded
that overlapping activities allows for more realistic moageling of consiruction projects Perera
(1982} introduced a linear programming model to handle cverlapping activities. However, the
modlel ts based on the unrealistic assumptior that activity time-cost relationship is linear. Although
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Eldosouky et al (]991) 'f‘o‘nnulated an integer programming model considering discrete utility
data a:nd overlapping activitics, the model is intended for small- to medium-sized projects due to
€xcesstve computer storage requirements,

FORMULATION OF THE GENERAL MODEL

Consider a project having (n) activities, where utility data for all project activities are
reprcsented by discrete point relationship, For each activity (), m, discrete points must be
specified, where m, 21. Every discrete point corresponds to a specific way of carrying-out the
activity. Let d, and c, be variables representing duration and cost for the activity (/) respectively.
Let dy and ¢, represent the normal discrete point, while dm, 2nd ¢,y correspond to the crash

point. For activities having only one discrete point, the normal and crash points coincide.
Decision Yariables

A single zero-one variable; x, is needed for each discrete point in the utility data. These
zero-one variables are introduced to insure that only one discrele point is selected for each
activity. The duration and cost for an activity (1), in terms of zero-one variables, can be expressed
as follows:

m
Activity Duration (d,)) =dgx, + dagxg + ... .. ... .+ Gom, Xy, = de"xfj (1)
§=l

and,

Rt
Activity Cost (c,) = ZCUXU @
=

Where X, is a zero-one variable belongs to the discrete point number (7) for the activity (i). The

project direct cost is the summation of cost of all activities, and can be formulated as follows:

nomn
Projeet Cirect Cost (PDC) = 3 3" ¢yxy )

j=1 J=i

For an activity (#), the model can be forced to select a single duration, and consequently Ihe
corresponding cost, at a time by the following condition:

i=1,2, v, . n (4)

i1
q5-1
I

This type of constraints “wiil bs referred to as zero-one constraint. Since every discrete point
requires zerc-one variable, the number of zerc-one variables needed is the sum of discrete points
fur all aclivities, whereas number of zero-one constraints equals number of activities; n.

Network Logic Cons :iajits

The completicn time of 3 project, A, could be constrained by onc of two methods
(Crowston 1970). The firsi approach is to allow for a precedence constraint for each immediale
predecessor relationship in the project network, and in total they constraint the finish time of the
last activity, which is actually the project completion time. This approach was used in all existing
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optimization lechniques (Liu et al 15°5, Eldosouky et al 1991, Cusak 1985, Pe-~ - 1981 wamu
1973, Meyer and Shaffer 1965, anc Fulkersor 1961). The second is to aliov' v~ Guc cons:ran.
for each possible path from the fir.. ¢ ctivitv to the last one in the project network. Satistving al:
possible paths constraints simultancousy, the. right sequence of project activitic . 1. ~naintaluea (v
the present model, the second procedure wiil be considered,

Path Consiraints Formulation

Let {PATH} be a set of aii possc»: paths comprising the project network. cach path
contains some or all project activivics. Eact path F,in the set {PATH]) coulo be exprenset 2s

follows:
Pom{ay, & i s Y ey

Where y is & zero-one parameler, which takes the vaiue of unity if activily a, exists on the path P,
otherwise it takes the value of zero. The set of all possible paths {PATH]} could be expressed as
follows:

(PATH) = (P, Ppy oo oo - WP P

Where K is the total number of ail possible paths. The set of paths {PATH} could oe determined
either by visual inspection of project network (for small project networks) or by iol.owing a
systemalic simple procedurc to gercrale all possible paths. After identifying 1:e a. vities
comprising each path, values of the (y) perameter can be determined.

Having delermined the set i all paths {PATH), the network logic constraints c.n-id be
specified. The duration length of ;u.. path must be less than or equal to the raquire.. project
curation; A. That is 10 say, for any palii «,.

{dy, tdy, v kdy ayl, <i

Where d, is the duration of activity (1) as given by Eq. (1). If overlap exists between anv (wo

consecutive activities along the path (41, summation of overlap values are to be deduced form the
leR hand side. Therefore, logic constraint for path (4) eould be rewritten as follows:

fdy, +dy, v Td Y T T RY Y <A+ SO,
or,

n
S diyite sn+5S0, (5

=3

Where SOy is the algebraic Sum of Overlap values that may exist between any two aetivities along
path k. Because aetivity duration can assume any feasible value between normal and crash
durations, overlap values are consequently variable. Variable values of overlap are usualiy
expressed as percentage of activity duration (Eldosouky et al 1991). The new model can aeeept
overlap as a fixed value or as a percentage of activity duration, Path constraints of type {5) must
be formulated for all possible paths. Therefore, the total number of required constraints is (n+K).

The general model can be summarized as follows:
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n m
Minimize: PDC=3 3 c;x;

{=1 J=l
o |
Subject to: (@) Xx, =1 i=1,2 i, n
Ja1
n
®  2{d;vili <a+8s0, k=12, e, K
f=1

EFFICIENT REFORMULATION OF THE GENERAL MODEL

In practice, there are only limited number of ways to accelerate an activity, and thus only a
finite number of discrete points on the activity time-cost relationship are defined as given by
Eldosouky et al (1991}. They concluded that the number of discrete points is limited and usually
ranges from one to four points from the practical point of view. Therefore, the number of
variables required for the gemeral model is manageable even for large projects having many
hundreds of activities. On the other hand, the major obstacle faced when applying the general
model to even medium-sized projects is the large number of constraints required. Medum-sized
projects can contain many thousands of paths which makes the general model of minor value. 1n
the following sections, the unnecessary deeision variables and constraints will be eliminated, thus
making the modified model more efficient.

Decision Variables Leduction

Recalling Eq. {4) and rearranging, this yields:

T,
Ki=1-(a+Kat o FXp) =12 > %, (6)
i=2
Since, for caeh activity, a single zero-one variable can assume a value of unity, the upper
bound on the summation part of Eq. (6) is one. Mathematicaily, this condition can be expressed
as:

my
Z ‘X"j <1 (?)
j=1

Obviously, zero-one constraints of the f~— (7) are required only for Lhose aclivities
having more than one discrete point. Activities having single discrete point utility data are to be
excluded in formulating zero-one constraints, Substituting from Eq. (6) into Eq. (1) and Eq. (25,
this yields:

dmdi- 3 ~d,)x, @
LY
il

¢ =¢n +Z(°;, ~c Xy (9)
a1

The term (cca} rejresents the (dditical cost (over normal cost) incurred if an activity
1} is speeded up at the dur:ticr ¢, beyrind fts normat duration d. Substituting form Eq. {8) into
Eq. (5}, and rearranging yields:
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l m "
> 24, = di)%¥ihe 2 24d, ¥i}e-n- 50 (10)
x| fml i=l

Making use of these adjustments, the project direct cost would be:

n R on
PDC =3 o+ 3 (o~ cuxy (n
1=1 iml =3

The first term of Eq. {11) is a constant part which represents the noritial project cost,
while the second term denotes the extra cost resulling from accclerating some activisizg, "¥it%
these adjustme-1=. the number of decision variables are reduced by one for each actirity 21 the
other hand, zerc-one constraints are required only for those activities having mo e taa1 one

discrete point.
Redundant Paths Xlimination

In practice, only small number of paths are dominant which mu=t be ronsiderec in (he
process of expeliting the project from normal to crash duration, The other pai s are recL. it
and can be elimunated from Lhe optimizalion model Ahuja (1984) refers to this phenomenen as
the critieality theorem. Redundant paths are those that will never be criucal in an -.ra-hing vycle
If any path has a duration length {with all activities having normal durations) less thar or equal 1o
crash project duration {CPD) then this path is redundant. Redundant paths ad1 nothing Lo the
mathematical mode! except increasing the problem size. Redundant paths elimir.atio » makes the
optimization model more effective, since unnecessary eonstraints are removed Let the number of
dominant (effective) paths are found to be (X,) and the number of effective activities, which
comprise the dominant paths, are (#,} The following syste.natic proeedure can be uied to identify
redundant paths’

» Perform {orward pass of ordinary CPM analysis considering erash duraticn for 4l activities 1o
determine crash project duration (CPD).

e Generate the set of all possible paths {PATH]. The procedure given in Appendix [T can be
used.

« Considering the normal duration for all activities, determine the duralion length of all paths in
the set {PATH]}.

e Eliminate those paths whose duration length < CPD. These are the redundant paths, the
remaining omes are the dominant paths,

e Enumerate the activities comprising the dominant paths. They are the effective aclivities {#,)
which will be considered in formulating the mathematical niodel.

The fina! form of the modified model could be summarized as follows:

L |
Minimize: Extra Cost =Z Z (e —eigxy
1=l gw2

m
Subject to:  (c) foj <1 =12 .t

=21



Mohammad A. Ammar

H, Mg
(4 2 2@y ~dpxgyde2 2 {d, yi)i- 2 - SO k=12 ...K
fe]  jm3 ix|

As all the used decision variables are zero-one, a zero-one programming subroutine should
be used to solve the problem. Zero-one programming problem is a special case of integer
programming problems, since all variables are restricted to have a value of zerc or one only. Zero-
one programming techniques have many advanteges over integer programming {computaticnal
efficiency, storage, etc.). The FORTRAN subroutine given by Kuester and Mize (1972) is used in
the present study after being recoded in QuickBASIC programming language Version 4.5.

The mode! requires as input precedence relationship of project activities, overlap between
consecutive activities (if any), and activities discrete point utility data. Making use of these data,
the project is analyzed to get both the all-normal and all-crash durations. An interface subroutine
is nrepared to use this information to establish automatically the cbjective function and the
required consiraints. Zero-one programming subroutine is then called 1o solve the mathematical
mode! TFor each feasible project duration, the optimization subroutine selects the optimum
duration and cost for each activity. These data are then used by a simple CPM subrcutine to
determine scheduled timings corresponding to each project duration. The project time-direct cost
curve is then determined, and consequently the oplimum project duration can be specified

TLLTSTRATIVE EXAMPLE PROJECT

Ta illustrate the previously discussed concepts, consider the simple example project given
by Aiwja (1984). The project is depicted by the network shown in Fig. 1. Ahuja assumes linear
activity time-cost relationship. In the present analysis, utility data are discretized at interval of unit
duration and overlap values are assumed to suit the model requirements. Cverlap values (FTS) are
shown on the arcs linking consecutive activities. Utility data for each activity are given in Table 1,
wherc the first value in each column represents the normel condition and the last value represents
the crasi condition. Duration values; {d), are given in weeks and cost values; {c), are given in US
doliars, The cost values for all activities represent the cxira cost associated with crashing an
activity bevond its normal condition.

The projcct requires a total duration of 69 weeks to complete, if all activities are
serformed at their normaf durations, However, the all-crash sclution produces a project
con:pletion time of 57 weeks. Therefore, the two extreme project time limits are 69 and 57
wenks The project network comprises 14 paths, and they are listed in Table 2. If the problem is
fonnulated according to the general model, it requires 49 zerc-one variables (number of discrete
points for all activities), and 28 constraints (14 zero-one constraints and 14 network logic
constraints).

All possible paths from the first activity to the last one are listed in Table 2. If an activity
exists on a certain path, a value of | is inserted in the column belongs to that activity. Otherwise,
the column is left blank. Assuming normal duration for all activities {considering the overlap
between conseculive activities), thc normal duration length (NDL) of each path is calculated and
the results are given in the last column of Table 2. Comparing normal duration length of each path
with CPD, it is apparent that only 4 paths are dominant and the other 10 paths are redundant. The
dominant paths are those numbered 3, 8, 10, and 14. The aciivities comprising the dominant paths
are 1, 2, 5,6,7,8,9,10, 11, 13, and 14. Decision zero-one variables are needed for activities §,
7. 8,9, 10, |1, ard 13 only since the others have utility data with single discrete point (i e.,
aclivities 1, 2, 5, and 14).
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Fig. 1. Preccdence Network of the Example Project

Table |, Activitics Utility Data

Act. | Act.| Act, AcﬂAcL Act. | Act. | Act | Act. [ Act | Act | Acl | Ace | Act
1 1213 4 3 6 7 8 9 011112 (13 ] 14
dcid cjd c|d c|d ¢[d ¢|d cjd <¢jd ¢/d ¢/d ¢|d ¢|d ¢]dc
50010035 015 olls50]to o)ty olly  olle ojle 0j12 00 O B0 O
4 3014 63 9 BOyl® 70|18 7519 504 B3|l 40| 9 45]9 50
36003 130 8 16017 14O|17 IS0 | B 100 |8 17010 8G) 8 90
2902 195 7 240]16 210116 225 7225
I 260 15 2801015 300 o 340
14 320 5 425
13 420 4 510
12 4%0
L 11 560 i L

Table 2. Project Network Paths

Path Activity __|NDL
No. [1]213fals]sl7Fs]o]w]11]iz73]14
TENE 1 | 1] 1] 49
2 |1 I 1 | 111 a9
3 111 1 i L1 ] 65
a |1]: 1 ] 28
s |1 { t i 1)1 a9
6 |11 1 11 bt so
7 |1 1 1 1)1 11| 50
8 |11 1 L 1 1{1} 69
9 |1 1 1 i L | 35
10 {11 ({1 11 1166
TR ! 1 1 1] 42
12 |1 1 1 1 1 1] a2
13 V11 1 1 l 1] 5%
14 |11 1)1 Lo 1] 58
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Aclivities Duration

Let the first subscript associated with zero-one variables refers to activity number and the
second refers to discrete point number for that activity. For instance, Xy denotes the zero-one
variable belonging to the fourth discrete point of activity number 7. Activities duration in terms of
zero-one variables would be:

ds= 10 - xg2 - 2% - 3354

dr =19 - x12 - 2x73 - Ixq4 - A%y - Sy » O%N97 - Ty = By
da =19 - %52 - 2xg5 - 3%gy ~ 4%as

dp" 10~xn-2xg,

djo = 10 - Xy02 = 2X103 -3X104 = X108 - SX106 - 6% (07
du=12-xu2- 2x13

din=10-xn

For the first dominant path (i.e., paih number 3), the logic constraint would be:

X3+ kg T+ Ixgy T X2 T g + Inga g X1 2 (69-;\.-4)
or,
Xgz + 2Xgy + 3Xsa + Xz + 2xgy + 3xga T 4xay + Xpaz 2 (65-1)

The mathematical statement of the problem would be:
Objective Function:
Min. : Extra Cost = 80xg5 + 180xg, + 240xa + 70x5; + 140xn + 210X + 280%7s + 350x7 +

420!71 + 490?!‘;3 + .‘60?(19 + 75,‘(3} + 150133 + 225?(34 + 300X35 + 50)(99 +
100xs + 85%192 + 170%105 + 255X109 + 340105 + 425X 105 + 510%307 + 40%,12

+ 30!113 + 50X|31 (12)
Subject To:
Zero-One Constraints:
Xg2 + 2xg3 + IXes <1 (13}
XQ+2X13+3X'}4+4X73+5K15+6)\'”7 - Ty + 8% <1 (11)
Xyz + 2%g7 + IXpg T+ dXgy <1 (I5)
Xo2 + 2Xn <1 (16)
X103 + 2X303 F3%10a + 4Xage T Ipa v T <1 ("
Xz + 213 <1 (18)
X3z <1 (19)
Network Logic Constraints:
Xgz T+ 2Xg3 T 3Xaq ¥ gy F gy < vy v dxgs T Xz > (65-.;,) (20}
Xeg + 2Xg1 + 3oy F Xgz T 2%op 7 Xn. 203z “Kans - Axpes T 5Xgpe +
G107 + X2 = (60-2) (21
Yoz T 2,‘({,3 + 3.‘{54 + Y52 + 2193 o o i3 = (5 3-:’.) (22 I

A = 25y + 3%yy F4xa F Xpp e 2 Thay - Bxpe F X2+ 2Ky +
3%Kq08 + A0s T S¥ee — OXqar T N 2 (69-h) (23)
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The upper and lower bounds on the parameter A are the normal and crash project
durations, which are 69 and 57 weeks, respectively. The normal direct cost of the project is
36,600, The Computer program was run for all feasible solutions of project duration. Due to
discrete nature of activities time-cost relationship, feasible solutions are found for all project
durations. The computer solution of the problem, based on the new mathematical model, is given
in Table 3.

If overlap between activities are omitted as given by Ahuja (1984), the computer solution
of the problem against the manual solution as given by Ahuja is shown in Table 4. For comparison
purpose, solutions for project durations given by Ahuja are only given, It is apparent that manual
solution does not guarantee optimal solution. This is because in manual methods, once an activity
is crashed in a cerlain compression eycle, the activity is not allowed to be decompressed in
subsequent eycles. Decompression of certain activities and compression of other activities may
produce optimal solution. Optimization modeling of the problem permits decompression of
crashed activities to minimize crashing cost on condition that nerwork logic is satisfied.

Table 3. Computer Solution of the Example Problem

Project Duration (wks)| Extra Cost {3) | Direct Cost ($)
69 6,600
68 50 6,650
67 120 6,720
66 190 6,790
63 260 6,860
64 345 7,945
63 495 7,095
62 645 7,245
61 795 7,395
60 955 7,553
59 1115 7,715
58 1275 7,875
57 1435 8,035

Table 4. Manual {Ahuja) ¥s Optimum Solution

Project Duration | Direct Cost (§) | Direct Cost {($)
(Weeks) {Ahuja) (New Model
70 5,600 6,600
69 6,650 6,650
68 6,700 6,700
65 7.150 7,115
61 7,790 | 7,755
MODEL COMPARISON

A relatively medium-sized project was analyzed using the new developed model. The
project involves the construction of an earth dam and consists of 34 activities (Thompson 1982).
The project network comprises 35 paths. Analysis of the project to produce project utility data
was given by Ammar (1992). The number of discrete points for all activities is 75. If the project is
solved using the mode! developed by Eldoscuky et al (1991), the required number of variables is
109 whereas the number of constraints is 82.
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Using the new developed model in the general form, 75 viuiaties and 35 constraints are
required. Applying the modified new model, the dominant yai.s . ¢ 2. only, while the effeetive
activities are only 12. [n this case, the required number of var'asies nd constraints are 23 and 21
respectively. Thes: data arc summarized and are given i:'Ta . - Ii apparent that the new
model reduces significantly the problem size.

Table 5. Model Comparison

Model Number of Variables | Number of constraints
Eldosouky et al 109 82
New Model 23 21
%Reduction 79% 74%

CONCLUSIONS

A mathematical optimization modei has been developed to establish the pptimum project
time-direct cost relationship. The problem is formulated in the standard form of zero-one
progremming. The objective function is to minimize project cost while the mode! is constrained by
zero-one and network logic constraints. The model uses path constraints to satisfy logic sequence
of project aetivities. All possible paths, which comprise the project network, are first generated,
and then redundant paths are identified. Ty activities comprising dominant paths (effective
activities) are considered. Network logic corstraints are formulated only for dominant paths.
Redundant paths as well as unnecessary decision variabies are elimisated, thus makes the model
vervy powerful.. The discrete point utility da:a for acrivities are used. Overlapping between project
activities i3, also, permitted. The model has the foillowing features: (1)1t guarantees the optimum
solution, {2)Precise activity ttme-cost relationship is used, (3)Ovarlapping activities are permitted,
{($YThe model 5 entirely formulated using an interface computer subroutine, and (5)The model
s.gnificantly redizces the problem size.
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APPENDIX II: PROCEDURE FOR GENERATING NETWORK PATHS

Assuming that the number of successors for an activity () is NS(f) and the succeeding
activities are SUC(,/), where j = 1,2,........., NS(#).The procedure consists of the tollowing
systematic steps:

1. Determine the sequence step for each activity. Sequence step is defined by Farris {1978) as'
“The earliest logical position in the network that an activity can occupy while mairvaizing its
proper dependencies”.

2. Sort project activities in increasing order according 10 sequence step numkber.

3. Initially consider the first activity, the number of paths at this stage (K} equals ¢ amoer of
successors of the first activity, NS(1), while the paths are the [inks betweer the “rst activity
and its successors. Theretore:

K =N5{1)
. = {A(1), SUC(L )}
P, = {A(1), SUC(1,2)}

P, = {AQ1), SUC(LK)}
4. Consider the following activity (f):

a. Check the last element in the each generated path; &, where k=1, 2, ..., €. if k=K .hen got
to step 5.

b. If the last element in a path is identical to the activity under consideratian t%en go to step 4-
¢, otherwise go to step 4-d.

c. The number of paths (K)is to be increased by NS(i)-1. The new paths are identical to the
checked path. Then the successors of the considered activity are ta be added for the
checked path and the new generated paths,

d. If the last element in the checked path differs from the activity under considesztion, then
move the last element one position to the right and replace it by zero.

5. Repeat step 4 for all Activities.
After step 5, the set of all possible paths; (PATH]}, and the total number of paths; (K), are
specified.
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