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The Possible Algebraic Solutions for Rough Collision in Three Dimensional
Multibody Systems
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ABSTRACT
The sliding direction of the collision point for single point rough collision in three dimensional
multthody systems continuously swerves during collision period. Numerical integrations for the bi-
dimensional nonlinear differential equations of motion are usually required. It is proved that if sliding
starts along one of a finite number of directions, called invariant directions, algebraic solutions can be
obtained. The invariant directions are specified. All the possible dynamic scenarios for the motion of
the collision point that starts with sliding along an invariant direction are enumerated and algebraic

solutions are obtained. On the other hand, the conditions required to have the special case where the
equations of motion have constant coefficients are defined and the algebraic solutions are determined.

KEYWORDS: collision, multibody, three dimensional, dynamics, friction.

1. INTRODUCTION

Though collision between rigid bodies has been studied for centuries, recently it has received much
attention. The common method for modeling rough collision assumes that the contact point could
either contentiously slide or contentiously non-slide during collision period. Many classical dynamics
text books like Whittaker [14] and Kane and Levinson [9] were using this method. In fact, sliding
could stop during collision period or change its direction. Routh [10] was aware of this, therefore, he
suggested an incremental method which distinguishes between different types of contact. He used a
semi- graphical semi-algebraic technique for solving planar rough collision. Kane and Levinson [9]
noticed that Whittaker’s method could result in an energy increase if sliding reversed its direction
during planar collision. To solve this energetically inconsistency, Wang and Mason [ |3] suggested to
go back to Routh's method. They proved that the use of Newton’s coefficient of restitution with
Routh’'s methed could not resolve this inconsistency while the use of Poisson’s coefficient of
restitution with Routh’s method prevents the possibility of energy increase during collision.
Meanwhile, Stronge [11] proved that with the use of Poissen-Routh method the normal component of
impulse could dissipate energy for purely elastic collision. He suggested an energetic coefficient of
restitution that can be used with Routh’s method to solve the energetically inconsistency in the use of
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both Newton's and Poisson’s coefficients. Ceanga and Hurmuzulu [6] gave an analytical energetically
consistent solution to the problem of Newton’s cradle where multi-impact occurs between the balls in
the cradle.

Three dimensional rough collision is more complicated. Routh [10] derived the equations of motion
and pointed that in general the direction of sliding changes continuously and no algebraic solutions
are available except for some special cases. Stronge [12] studied the swerve behavior of the direction
of sliding. Bhatt and Koechling [4,5] were able to characterize the possible behavior of contact point
and to analyze the singularity of the velocity flow at the sticking point. They partitioned the space of
the flow patterns defined by the trace of the sliding velocity into finite number of qualitatively distinct
physical behavior.

Battle [ 1] expanded Routh’s incremental method to model rough collision in rigid multibody systems
and developed the sufficiency condition for Newton's and Poisson’s rules encrgelic consistency.
Battle [2] studied the phase-space geometry of sliding velocity flow which gives a global picture of
the system behavior in collision. Elkaranshawy and Dokainish [7] and Elkaranshawy [8] extended
Routh's model to flexible multibody systems by means of a corotational finite element formulation.
An algorithm was developed for numerical solutions that took into account the occurrence of multiple
impacts within a short time which is a peculiar characteristie of impacts involving flexible systems.
Battle [3] presented an analysis of the conditions leading to dual compression in the case of perfectly
elastic three- dimensional rough collision.

Though Battle [1] developed algebraic solutions for the special case of collision described by
differential equations with constant coefficients, the initial and physical conditions required to have
this class of collision were not discussed. Routh [10], Bhatt and Koechling [4,5] pointed out the
existence of closed-form algebraic solutions for the nonlinear differential equations of motion for the
three dimension rough collision under some restrictions, but such solutions were not developed.

In this article, single point rough collision in three dimensional rigid multibody systemns is considered.
Coulomb’s law for friction force and infinite tangential stiffness is assumed. Energetic coefficient of
restitution is used to determine the end of collision and Routh’s incremental model is used to model
the contact modes of the point of collision. Equations of motion are developed by means of
Lagrangian formulation. Integrations of these equations are performed taking the normal impulse as
integrating variable instead of time. Generally, numerical integrations have to be performed. It is
proved hat algebraie solutions for the collision in three dimensional multibody exist if the sliding
starts along one of a finite number of invariant directions. The equations required to specify Lhe
invariant directions are ohtained. For motion starts with sliding along an invariant direction, the
requirement for reaching the sticking mode is derived and the value of the coefficient of friction
needed to keep this non-sliding mode is determined. If the sliding restarted, the condition to specify
the new sliding direction is acquired. Classification of all possible sliding behaviors along invariant
directions is achieved and algebraic solutions are obtained. Initial and physieal conditions that make
the equations of motion differential equations with constant coefficients are defined and the
corresponding closed form algebraic solutions are specified.

2. FORMULATION OF THE EQUATIONS OF MOTION

The application of Lagrange’s equation to the total kinetic energy gives the equations of motion of an
n-degree—of-freedom multibody system during single point rough collision in the form:

[ (q)]q+ H(q,q) =u +F o
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where
q : n-dimensional generalized joint coordinates.

[#(q)] : multibedy system inertia matrix , [® (.)]E RAXN

H((.l, q): vector of Coriolis, gravity, and centrifugal forces, H(.,.) e R"% 1 .
U : input forces, U € R" x1 :

F :generalized contact forces, due to collision, expressed with respect o joint coordinates,

nxl . . .
FeRr - F is related to the components of contact force at collision point through the refation:

F=P@k, Joeg> o

with
[: spatial contact force applied at the collision point.

[J(q)]: Jacobian matrix that transforms joint velocilies to collision point velocity components
through the relation:

VZ{V"}:{[gH‘i=[J]é, ac "™, [lern 2, y,er
\
VIERZXI (3)

V,» V,: the normal and tangential components of the collision point velocity, respectively.

3. IMPULSIVE CONTACT MODEL

The collision impulse at the cellision point is defined as:

[n 1+t

= [fdt
1 zj

I 4

I, I the normal and tangential components of the impulse, respectively. The direction of the

normal conponent of impulse is assumed to be positive.
Subslituting equation (2) in equation (1) and integrating both sides over the collision interval (t 1o 1+71)
yields:

+7 t+1 I+t +r

| | lqde+ [Hdi= Judi+ | [T tds "

The usual assumptions are applied; T is assumed to be arbitrary small, so that collision is
instantaneous. In the same time, the comtact force is very large, therefore, the collision impulse
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defined in equation (4) remains finite. During this instantaneous impact, no configuration changes
take pl.ace. Since u, H are finite, the second term in the left hand side and the first term in the right
hand side of (5) vanish. Consequently, (5) gives:

[q; ]Aq = [Jr I (6)

Aq  the instantaneous change in joint velocities. Which leads to

A(;[ = [<I> ]‘1 [3]1 - ™
in the same time (3) gives
Av=[J]Aq ®

Substituting from (7) into (8) gives

Av:[J][d)]Ll[J]TI:[D]I. [D]e p33 9

where

[D] the Jacobian inertia. [D] depends only on system configuration and is a symmetric positive
definite matrix given b

D0 & om a=arle e bHET! b bl e

Equation (9) c¢an be partitioned inlo two equations containing four unknowns
[",It,A Vi ,A V¢ The number of unknowns can be reduced by introducing the friction law

(10

and the restifution law.

4. COULOMB'’S FRICTION

Coulomb’s friction and infinite tangential stiffness at the collision point are assumed. Coulomb’ jaw
for friction forces can not be extended 1o the frictional impulses, Therefore, differential versions of
equations (7) and (9) have to be used with Coulomb’s friction law”. This reads:

s Coulomb's friction Jaw relates tangential and normal components of centact foree for sliding mode in the

5
form f: x _.Uo'fn - Since, f, = ——d[’ . and = —dI” » therefore, gll = —pg —= . which
dt "odt dt dt

= e
can be written as d]‘, = ‘Llﬂ'd]" ;
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: -1
dq=[¢’] [J]le (11a)

dv=[D]dI (11b)

IN SLIDING MODE the unit vector defining the sliding direction is defined as:
[vd

dI, can be expressed in terms of dI,, the friction coefficient p, and & as follows (see the foomote):
5 —_ 13
dl’ =—podl (13)

Substituting (13) into (I 1), and make use of (3) and (4), gives:
d's—[tt]'![J]T ; dl =[|'_"kf ; (14)
Q= __m " . n

dv: =(a-pcro)dl sy
dv, =(c—pulblpdl, (15b)

Equation (15b) shows that a’V‘ as a vector has a direction, in general, does not coincide with the

direction of the tangential velocity v, itself. This means that, generally, the tangential velocity

changes its direction continuously, or swerves, during the collision interval. Therefore, ¢ is not a
constant coefficient,
For sliding mode, it can be noticed that the two equations in (15) have three unknowns

[ JAv Av.
n n 4
IN'NON-SLIDING MODE v, =0 and (11b) gives:

cd[ﬂ +[de[{ =0 o d[{ :—[b]”lcd[” (16)

Substitution of {16Y into (I 1) leads 1o
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dq={o T v for, = [,

v =(a—¢" [b]_l c)dl (18)

In this non-sliding mode, equation (18} has two unknowns ]” s A V” .

For both the sliding and non-sliding modes a remaining equation is needed to calculate the unknowns.
This equation can be obtained from the restitution law.

5. RESTITUTION LAW
There are three definitions for the coefficient of restitution; namely Newton’s (ey), Poisson’s (ep), and
energetic {e,) coefficients, where

ol Kr_l'g ...._]HE—IHC 2 ____WHR ([9)
ENT * ep— ' ew —

Vai I e W ne

1. 1. normal impulses at the end of compression period and at the end of collision, respectively.

Vi Vet DoTmial velocity at the beginning and at the end of collision, respectively. The direction of v,, is
opposite to the direction of /,,, which implies that v,; is a negative quantity. '

Weee Wop: work done by the mormal component of reaction force, F,, during compression and
restitution, respectively.

The work W, done by the normal component of reaction force during collision peried is a non-
positive quantity and W, , W, W,z are given by:

r [l?( [“ ]df
W =IFpy,dt= (I) Vil [ W= (I) v,y Wa=I1vd], (20)
0 Fue

According to (15) and (18), one can write:
= 2
dj,=¢dy, @n

where

¢ =(a-pcT0), ¢ =(a—cTp[e)” @)

Consequently:

Ve 0 Vre -
Wa= f gvndV"- W™= J—gvndvn' War= éé‘vndvn (23

Vo Ve
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Integration of {21) eads 1o:

0 Var
L= Vo dtw o™= {C dva 4)

Vai m

Equation (22) shows that { depends upon a, [b], ¢, and ¢. While a, [b]. and ¢ are configuration
dependant that are kept unchangeable during collision period, ¢ is velocity dependent that could
change during collision period as discussed before. Therefore, { can be constant in the following
cases:

(H frictionless case.

(2) Non-sliding case.

(3) Permanently sliding with constant sliding direction (¢ constant) case.
“@ Case with c=0.

in these cases, equation (23) leads to:

1 1
e ===6 v == Vi, @5)
154 5 v War 2§V

substituting in (19) gives

2 __Vne — _Vue

ew="5 " O ew= =en (26)
Vni Vi

Equation (24) leads to:
[n.:':_gvni’ fne:é'(v,,e—v,,i) e
substituting in (19) gives

P N w

Vi

which means that the three definitions of coefficient of restitution are identical whenever { is kept
constant during collision peried. In this case, Newlon’s rule gives
Ve = ~€Vni (29)
For the general case, ¢ is not constant and the three definitions of the coefficient of restitution, given
in (19), are not equivalent and only the energetic cocfficient is energetically consistent. To have
energetic consistency, the energetic coefficient is used through out this article. ¥, W, from (23) can
be substituted in (19} and numerical integrations are usually used, because ¢ is not constant, to
determine Vg If the motion starts along an invariant direction analytical integrations can be used

with equations (19) and (23), as will be shown later in this article.
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6. NUMERICAL AND ALGEBRAIC SOLUTIONS
Once the normal velocity at the end of collision, v, , is obtained the solution of the collision

problem, can be obtained through equations (13)- (15). (17), and (18). Generally, equations (13)- (15)
are bi-dimensional nonlinear differential equations of first order since ¢ is not constant. Usually,
numerical solutions can be obtained. Algebraic solutions can be obtained if the moticon starts along an
invariant direction and for the first three cases with constant { which were discussed in the previous

section.

It can be notice that for the first three cases with consiant ¢, equations (13)- (15}, (17), and (18) have
constant coefficients and algebraic solutions can be obtained for all the unknowns. The fourth case,
which is a generalization of the central or collinear collisions, is different. In this case, while equation
(29) is applicable, equations (13)-(15) are nonlinear equations, in general, because there is no
restriction on o to be constant. Consequently, for the later case, advanced analytical or numerical
integrations have to be performed.

In the rest of this article the existence of such algebraic solutions will be discussed. In the same time,
these solutions will be obtained if they are available.

7. INVARIANT DIRECTIONS
Though the sliding direction is continuously changing during collision period in general, there are
some invariant sliding direction. Any sliding starts along one of the invariant directions remains

restricted to it until it halts. The invariant direction is the direction of Vi whenever it coincides with

the direction of d Yt If 01 is an invarnant direction, vy and d Vv, can be written as:

Vi= v, g ad ave=(av)e; (30)

1t can be noticed that, from the definition of the unit sliding direction vector given by equation (12),
y,1s always a positive scalar quantity. Therefore, dv[should be a negative scalar quantity if the

sliding has to stop. An orthogonal unit direction vector, Op can be obtained through:

0 -1
Op~ [R]g’l , where [R]Z { 0 (D

this direction is orthogonal to that of d vtdefmed in (15b), (30), therefore:

o E (c—n [b ]a ) =00 a}r[R]T(c— [L[b]gl)=0 (32)

in the same time

| R -
o1 o.l_l (33)
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Since equations (32} and (33) contain quadratic forms, four nvariant directions as a maximum can be
obtained from the solution of these two simultaneous equations. For a certain vatue for the coefficient
of friction, the invariant directions depend upon system configuration. Sliding starts along an
invariant direction, g [, keeps constant direction until the end of collision or it halts during collision
period and then the non-sliding situation continue or the sliding restarts in a new invariant direction
that is kept constant until the end of collision. The resume of sliding is along an invariant direction,

0 F . because the direction of v coincides with the direction of d v ¢ after the restart from zero
value for the tangential velocity'. Due to the fact that is an invariant direction it fulfills equattons
g OF

{32) and (33). Four solutions can satisfy these equations, the only acceptable one is OF that leads to

2 postlive d y, since Vi should be positive by definition, as discussed before.

8. ALGEBRAIC SOLUTIONS FOR COLLISION WITH SLIDING STARTS ALONG
AN INVARIANT DIRECTION

At the instant the tangential velocity vanishes, the normal impulse and the normal velocity are 7, and
Vo, Tespectively. They can be obtained by making use of (22) and integrating equations (15) between
the starting of sliding until the stop of sliding to get:

Vi
]Hh = {33)
U]T(c_)u[b]ﬂl)
and
Vin=vai T’ £1) (35)

The ratio between the tangential and the normal differential impulses in the non-sliding mode can be
obtained from equation (16) as:

e Ok
but

jeng<ua,

therefore, if the sliding stops during the collision period, the non-sliding mode continues and persists
as long as

u . <H (38)

' This is always true whenever sliding resumes after halting even if the original sliding phase was not along
an {nvariant direetion.
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otherwise the friction will not be enough to keep the non-sliding mode and the sliding will restart in a
new invariant direction. ﬂc will be called the critical friction coefficient that relies only on system

configuration,

If one assumes that sliding does not stop, by using {21), the normal impulse at the end of compression
period and at the end of collision, Inp , [nf , respectively, can be defined as:

[np = -g Vit [nf = g(vnf_vm;) * v,,f=-—evm_ (39

For collision with sliding starts along an invariant direction, one can distinguish between the
following types of motion of the collision point:

1. Permanent sliding if [!!f Lk

2 Sliding that changes direction in compression if [np > [nh and ‘uc > U

3. Sliding that changes direction in restitution if [, e < I nrend 2, > 4
4 Sliding followed by non-sliding in compression if Inp > [ ppand ., <MuU.

3. Sliding followed by non-sliding in restitution if Inp < o < [nf and Fhy <H.

One could notice that the type of motion of the collision point depends upon the system configuration,
the coefficient of friction, the coefficient of restitution, and the initial velocity. Each type of motion
can be divided into parts, each part has one contact mode, whether a sliding or non-sliding. For each
mode of contact analytical integration can be performed for equations (13)-(15),(17), and (18).
Assurning:

¢, =¢" =(a-pc"0 )" (L=(a-puo ) ¢ =(a—cTh[ )T @
Y, =HO Y =, y:sz—[brlc @

LU =fel T Pl T 1 =TT | @

FOR SLIDING THAT HALTS IN COMPRESSION PHASE H,., W,z can be evaluated from (23)
as:

1 1 ‘
Wnczaé"r(\)ih—vlzzi)—-z—gp VE!} (43)

(44)

__1 2
WnR_Eé’FVne
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substituting in equation (19) leads to

¢, -
Vae = €, [V () Hvin (1= @)
¢r S r
FOR SLIDING THAT HALTS [N RESTITUTION PHASE W, W,zcan be evaluated from (23) as:
.y R
nc 54’: Vi (46)
. lg B ol l( ( 2 .2 47
!LR-2 Ivnh 9 F\Vne Vnh-)

substituting in equation (19) leads to

i 234‘1 21_4}
Mz ((;) (g.F

The positive sign in (45) and (48) means that the direction of normal component of velocity at the end
of collision is in the same direction as the normal component of impulse.

(48)

FOR ALL CASES making use of (40}, /.. can be obtained from (24) as:

I"e " (f(vh‘_vm) * ;F(i"'ﬂ?—"vﬂfra “9
making use of (42), integrating (i4) and (17) gives:
quLIInh +LF(1__.[H) (50)

by integrating {13) and (16), the tangential component of the impulse at the end of the collision can be
cbtained as:

Le=Y L, Ve et ) - s

The tangential velocity at the end of collision for the fourth and fifth types of motion, that end with
non-sliding, is identicatly zero. For other cases, it is given from the integration of (15b) as:

e=(C _'u[b]ff D o1 ) (52)
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In equations (40)- (52), for the first type of motion ()F = ()I the second and third types of

s
motion corresponding to ()F = ()F , and the fourth and fifth types of motion can be acquired by

putting ()F = ():: .

9. ALGEBRAIC SOLUTIONS FOR COLLISION DESCRIBED BY DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

As discussed in sections (5) and (6), for the first three cases with constant ¢ equations (13)- (15),
(17), and (18) have constant coefficients and equation (29) can be used to calculate v,. The
permanently sliding with constant sliding direction case is identically the first case for the motion
along an invariant direction. This means that it can exist if the sliding motion of the collision point
starts along an invariant direction and the normal impulse required for the cease of the tangential
velocity is greater than the normal impulse at the end of collision. The non-sliding case occurs if the
collision starts with zero tangential velocity and the coefficient of friction is greater than the eritical
coefficient given by (36). The solutions for this case are the same as the fourth case in the previous

seclion with V=~ 0. Algebraic solutions can be obtained for the frictionless case regardless of the

sliding direction, i.e. whether the sliding is along an invariant direction or not. These solutions are the
same as the solutions of the first case in section (8) with u = 0.

10. CONCLUSIONS

Lagrangian formulation of the eguations of motion for rough collision in three dimensional multibody
systems is developed. Routh’s incremental method combined with energetic coefficient of restitution
is used to affirm energetic consistency. Coulomb’s friction and infinite tangential stiffness are
assumed at the collision point. For general configuration and initial conditions usually numerical
integrations are used meanwhile it is proved that algebraic solutions exist if the sliding starts along an
invariant direction. There are maximum of four invariant directions that can be specified for any
particular configuration of the multibody system and certain coefficient of friction. The sliding that
starts along an invariant direction could continue until the end of collision or sticking point could be
reached depending upon the system configuration, the initial tangential velocity, the coefficient of
friction and the coefficient of restitution. A critical value of the coefficient of friction is determined
that relies only on system configuration. [f the coefficient of friction is at least equals to that critical
value the non-sliding mode will continue until the end of collision once it has been reached.
Otherwise, the sliding will resume along a new invariant dicection. Only one invariant direction can
be found that takes the collision point out of sticking mode. The algebraic solutions are obtained for
all the possible scenarios of the motion of the collision point along invariant directions. Algebraic
solutions for collision described by differential equations with constant coefficients are determined. It
is proved that this class of collision occurs whenever, the sliding starts along an invariant direction
and the normal impulse required for the cease of the tangential velocity is greater than the normal
impulse at the end of collision, the collision starts with zero tangential velocity and the coefficient of
friction is greater than the critical coefficient, or frictionless collision.
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