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Abstract

The main aim of the present work is to investigate the dynamic analysis of circular cable suspended
roofs which are the most common forms of suspended roofs using the frequency domain method. Although
frequency domain analysis is used basically for lincar systems, it may be used to analyze cable suspended
roofs for which, wind is considered as the fundamental dynamic factor affecting in these structures. This is
due to the fact that the fluctuating wind speed, except for sites in mountainous areas, may be neglected
comparing with the mean wind speed.

Many circular cable roofs have been analyzed using a computer program constructed by the second
author based upon the frequency domain analysis. The results werc used in making non-dimensional
graphs. These graphs were used to investigate the factors that affect the natural frequencies of circular

cable suspended roofs.

Accepted September 29, 2005.
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Introduction:

Cable structures are one of the two
categories of tension structures, which
both

structures. In

include cable structures and

membrane tension

structures, the main load-carrying
members transmit the applied loads to
the foundations or other supporting
elements by direct tensile stresses
without flexure or compression [1].

The development of high tensile steel
cables has made it possible for the
designers to transmit large axial forces in
tension at a relatively low cost and so,
cable suspended roof is the economic
solution to cover large open areas
without interior columns. They have
been used to cover different types of
buildings such as stadiums and sport
halls,

reservoirs, concert hall, cooling towers,

swimming pools and water
hangars, warehouses and factories.

Cable suspended roofs must be
designed not only for static loads but
also for dynamic loads. The failure, of
the 853 m Tacoma Narrows bridge in
1940,

oscillations,

because  of  aerodynamic
of 41

m.p.h[2],showed that it was not adequate

constant wind
to design structures for static stability
only[3].

Circular roofs in plan may be radial,

with tension ring, or of intersecting
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cables/cable beams. Generally, behavior
of cable roofs is softening nonlinear.
Also, they are lighter and more flexible
than other forms of structures and, as a
result, they are more resistant to
earthquakes and more sensitive to wind
than conventional structures.

A complete dynamic analysis includes:

1) A frequency analysis;

2) Establishment and formulation of the
dynamic loading;

3) Estimation and formulation of

the structural damping; and

4) A dynamic analysis.

The frequency domain method is
limited to the analysis of linear-behavior
structures. It is also, practically, applied
to some nonlinear behavior, such as
cable roofs taking only the nonlinear
response due to the mean wind speed
component into account and not for the
case where there is no load on the
structure. Apart from the assumptions
statistical

with  respect to the

characteristics of wind, the main
assumption made in order to make the
method possible is that the amplitudes of
the fluctuating component of wind are
sufficiently small compared to the mean
wind speed and can be ignored.
Generally, this assumption is justified
except for sites in mountainous areas.
This method is based on the spectral

density function that enables the use of
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closed-form solutions, of the random
loading. So, the accuracy of analysis will
vary with the type of spectral density
function used and it may be advisable to
construct spectral density functions, for
important structures, from recordings at
site, concerned. Frequency domain
method underestimates the response in
the cable roofs as they are softening
structures. As cable systems are
nonlinear structures, both stiffness and
frequency vary with the amplitude of
As a

frequencies and damping will also vary.

response. result both natural

For this reason, the closed-form
solutions to obtain frequencies are no
longer valid and an iterative process is
needed. During the analysis, structural
damping is assumed to be constant
because of lack of information, and
because the values given in the codes of

practice tend to be conservative.

2- Frequency Domain Analysis

The eigenvalue equation may be

written in general matrix notation as:

K¢ -w*Mg=0 (1-a)

Or K¢g-AMg=10 (1-b)
Where:

K =the tangent stiffness matrix at the
static equilibrium position,

M =the mass matrix, which is diagonal

since masses are lumped at nodes,

¢ =the mode-shape matrix, and

w’ = A= Nx N =corresponding natural
frequencies.

The determination of eigenvalues,wz, is
of fundamental importance to the
frequency domain method of analysis, in
which the distribution of energy of
random forces such as wind are given as
function of their frequcncy content in
terms of power spectra.

Structural damping is usually not
included when one is formulating the
cigenvalue problem, as it increases the
numerical effort considerably and has
only a second effect on the calculated
frequencies.

In the iterative method, the eigenvalues
w’and eigenvectors ¢ are determined

by optimizing an assumcd mode-shape
vector through an iterative procedure on

either:

w'¢d=M"K¢ (2)
Or jz— =K' Mg (3)

o
lterations on Eqn (2) will cause the
assumed eigenvector to converge
towards the mode corresponding to the
highest eigenvector and hence the
highest frequency; iterations on Egn (3)
will cause the assumed eigenvector to
converge towards the eigenvector
corresponding to the lowest frequency.

Eqn (2) involves the inversion of the
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mass matrix M, which when the matrix
is diagonal is achieved by simply
inverting each of the elements on the

time to be inverted. This problem can be
lowest

avoided by calculating the

eigenvalue and eigenvector as follows:
Let B¢ =|a I-M"K]¢, )
Where: @ =constant larger than the
highest eigenvalue;
I =the unit matrix; and
B = square matrix having the
same order of matrices M and X.

From Eqgn (2) it follows that:

M7K¢, =wllg, (5)
Substituting of the expression for
M™K¢, given in Eqn (5) into Eqn (4)
yields:

Bp, =l -0?] 1p=[a -0?] ¢ (©)
Assuming an initial vector ¢, , iteration of
Eqn (6) will yield the highest value of

la —-a)f] and hence the lowest possible
value of @] . Thus

! =w]
g, = ¢r

Iteration algorithm based on Eqgs (2) and (6) will

(7)

yield the highest and lowest natural frequencies
and (he comesponding mode-shape for any

structure.

The Raleigh quotient

Pre-multiplication of each term of Eqgn

(1-a) by ¢ yield:

Nabil Sayed Mahmoud, Mohamed Naguib Abou El-Saad and Mohamed Mohie-Eldin

¢' Kp-w’¢" Mg =0 (8)
Hence ' =%—% (9)

The expression for w? given by Eqn (9)
is called Rayleigh quotient. It has the
property that for even approximately
correct values of eigenvectors or mode-
shape vectors the values for the
frequencies are reasonably correct. This
can be seen simply by pre-multiplying

cach term in Eqn (8) by 2. This yield:
SHKb =0t My (10)

Which states that the maxiinum strain

energy (é—;é"" K¢ ) is equal to the

maximum kinetic energy (%wz.;ﬁ"M é)

due to the mode shape vectorg .

2.1 Mass, damping and stiffness

matrices

2.1.1 Mass properties

Mass matrix of cable element may be
expressed in one of the following:

1) Lumped-mass matrix

Assuming that the entire mass of
a structure is concentrated at the
points at which the translational
displacements are defined, the
lumped mass matrix for a cable

element is given by:
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1 0 0 0 0 0]
010000
[M"]=_@oooooo(m
200 001 00
000010
0 0 0 00 0f

Where m is the mass per unit length
of the cable element.

2) Consistent-mass matrix

2 0 0 1 00
020010
e, ]-mL0 02 00 )
611 0 0200
010020
00100 2

Lumped-m_ass system needs effort
than consistent-mass system for two
reasons:

i) Lumped-mass mairix is diagonal.
ii) Rotational degrees of freedom can
be eliminated from a lumped-mass
analysis, whereas all rotational and
translational degrees of freedom must
be included’in the consistent-mass

2.1.2 Damping matrix

Damping matrix is expressed as:

[c]=2¢w([M] (13)
Thus, the damping matrix will only be

diagonal if the mass matrix is also
diagonal.

Egn (13) implies that the damping forces
at different points in a structure are
proportional to the distribution of mass

and that the damping ratios decrease and

are very small in the higher modes of
vibration.

2.1.3 Stiffness matrix

The stiffness matrix of pin-jointed
pretensioned link is given by:

EA- " _GGT !
(K] 4-T,| GG T G(_}r N
L, |~GG" GG"| Ly-1
e (14)
Where [ is a unit matrix of

dimension(3x 3), and
G={ m n} Where/, m and n are
the direction cosines of the member.

2.2 Reduction of NDOF
When the mass of a structure is

assumed to be concentrated at the nodes,
it is usual to consider only the inertia
due to transnational movements and to
ignore that due to rotation. This assumes
that the lumped masses are concentrated
as point masses with radii of gyration
equal to zero. Thus in the case of
flexible structures, such as cable roofs,
where the joints rotate, the elements on
the leading diagonal of the mass matrix
corresponding to the rotational degrees
of freedom will be zero. In such case,
the mass matrix can not be inverted.
Therefore the elements related to the
rotation need to be eliminated from the
stiffness  matrix. Condensation or
reduction of the stiffness matrix may
also be desirable to reduce the overall
degree of freedom, of structures with a
very large number of DOF in order to

reduce the numerical problem.

C.59
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Three condensation methods are

mentioned below:
2.2.1 Static condensation method
[4, 5, 6,and 7}

Stiffness equation of any structure

may be written using partition of

matrices as:
o) el

Where {#}and {x}are the displacement
vectors corresponding to fand x
degrees of freedom, respectively, where
6 are the secondary coordinates to be
condensed and x are the primary
coordinates (remaining coordinates).
Carrying out Gauss-Jordan elimination,
Egn (15) may be written as follows:

'} “[Z_J {gﬂ = {O}}J (16)
ol k] it e

It should be noted that in Eqn (15), it is

assumed that at the dependent degrees of
freedom &, the external forces are zero.
Eqgn (16) is equivalent to both:
6=Tx (7

And Kx=P (18)
Where T is the transformation matrix
given by?

)=l K]
In Egn (18), that shows the relationship

(19)

between the displacement vector x and
the force vector P, K ( the reduced

stiffness matrix )and may be expressed
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by the following transformation of the

system matrix:

K=T"KT

Where T = [11}

Similaily, the reduced mass and

(20

21)

damping matrices will be expressed as:
M=T"MT (22)
C=T'CT (23)
Eqn (17), which expresses the
relationship between displacement
vectors x and &, may also be rewritten,
to calculate the modal shape matrix of

the system, as:
oy T

{r;‘ ]
2.2.2 Dynamic condensation method

[8, 9, and 10]
Equation (15) will be dynamically

1

Where ?is the approximation of the

¢ = {x} (24)

extended and rewrittcn as:

{6

{x

[KM]—waWm] [K&]“wfu4&1
[Kla]—a)f [M.rﬂ] [Kn]"a’lz[Mu

(25)

i th eigenvalue which was calculated in
the preceding step of the process. To
start the process an approximate or zero
first

value is taken for the

eigenvaluew;. After carrying out a

Gauss-Jordan  elimination of the
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unknown rotationsé&, Eqn (25) will be

rewritlen as:
1 -T]|[g] |o
— = (26)
0 D ||x 0
Where: D, =the reduced dynamic

equation and expressed as:

D =K, -w' M, 27
The reduced mass and damping matrices
are expressed respectively as:

M =T'MT, (28)

C =T'CT, (29)

Where, transformation matrix T is

calculated using Eq. (17).

Using Eqn (27), the reduced stiffness
matrix will be expressed as:
K =D+w’'M, (30)
Finally, according to Eqs (26) and (30),
the reduced eigen-problem is:
K, -0} M,]x=0 (3N
This equation ‘is solved to obtain an
improved eigenvaluew?, and also an

approximation for the next order

eigenvaluew?,. The ith modal shapeg,

=+l
is given, using the eigenvector x for the

reduced system, by Eqn (24).
2.2.3 Modified dynamic_condensation

method |11]
Firstly, setting @’ =0 in Egn (30), it
yields an unchangeable reduced stiftness

matrix K . Secondly, an approximated

value is taken for the first eigenvalue

2

@, to calculate the corresponding

reduced dynamic matrix D, using Eqn
27).
The corresponding reduced mass matrix

for the i th mode is given by:
#7,)-—[k)-15]

The reduced eigen-problem will be:

[K-0? M]x=0 (33)

(32)

As mentioned before, this equation is

solved to obtain an improved
eigenvaluew’, and  also  an
approximation for the next order
cigenvaluew’,. Also, the ith modal

shape ¢, is given using Eqn (24).
3- Factors affect natural frequencies
of circular cable roofs [12]

Using a computer program
bascd on the frequency domain method

[13],

frequencies and mode-shapes of many

mentioned before the natural
circular cable roofs (nets, concave grids
and convex grids) are calculated; Fig.
(1). These natural frequencies are

recalculated for different values of
sag/span ratio, rise/span ratio, spacing
between the nodes, the steel area of the
sagging cable, the steel area of the
hogging cable, the steel area of the
hangers, the pretension of the sagging

cable, the pretension of the hogging

C.ol
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cable and the pretension of the hangars.
To study the influence of any factor, the
other factors are kept constant. The
results are shown in non-dimensional
graphs, Figs. (2) to (17). The analyzed
roofs (nets, concave grids and convex
grids) have the following properties:
Diameter = 40.0m, Spacing = 4.0m, Sag
= 1.60m (4%), Rise = 1.20m (3%), w =
0.1 t/m?, initial tensions for all cables =
6.25 ton with modulus E= 1663t/cm’,
steel area of all members = 13.92 cm?
and Height = 10.00m.

3.1 Natural frequencies of circular
cable nets

The results presented in Figs. (2) to
(6) showed that:
1) Increasing the applying uniformly
distributed loads decreases the natural
frequencies.
2) Increasing the pretension increases the
natural frequencies.
3) Increasing the cable steel area does
not change the first natural frequency,
whereas higher natural frequencies
increase in a very slight rate that can be
considered unchanged also.
4) Increasing the sag/span ratio decreases
the natural frequencies.
5) Increasing the spacing between nodes

decreases the natural frequencies.
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Figures (7) and (8) represent the first two
mode-shapes of the circular cable net
with the properties mentioned before.
3.2 Natural frequencies of circular cable
grids

The resuits presented in Figs. (9) to
(17) show that:
1) Increasing the sag/span ratio increases
the natural frequencies of both concave
and convex grids in a small rate.
2) Increasing the rise/span ratio has
approximately no effect on convex grids,
whereas it increases the natural frequencies
of the concave grids in a small rate.
3) Increasing the spacing between

hangers decreases the natural
frequencies.
4) Increasing the steel area of one of the two
cables increases the natural frequencies in a
very small rate so that it has practically no
effect. Also, hangers, either ties or struts,
have no effect on the natural frequencies.
5) Increasing the pretension of either the
suspension or the pretensioned cables
increases the natural frequencies. The
same thing will happen when increasing
the pretension of the hangers, but in a
smaller rate.
4- Conclusions:

A frequency analysis of cable roofs is
an essential step to complete their
dynamic analysis. Frequency domain
analysis of cable roofs is obtained using

an iterative eigen-problem and a spectral



Mansoura Engineering Journal, (MEJ), Vol. 30, No. 3, September 2005.

density function of the dynamic load,
which is most probably due to wind. The
following conclusions are drawn:

1) Increasing the steel areas of cables or
hangers has approximately no effect
upon the dynamic stability of the
structure. This is due to their very small
own weight compared with the applied
loading.

2) Increasing sag/span ratio of a cable net
makes the structure more dynamically
excitable, whereas increasing sag or rise
to span ratios in cable grids slightly
increases the dynamic stability of the
structure.

3) The most efficient and economic
solution to make the circular cable roof
more dynamically stable, is to increase
the pretension of the cables and the
hangers.

4) Convex grids are dynamically better
than concave grids and both are better
than cable nets.
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Fig. {16): Effect of the pretension in he pretensioned cables on the natural frequencies of the circular cable
grid.
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Fig. (17): Effect of the pretension in the hangers on the natural frequencics of the circular cable grid.
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