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Abstract

The main object of this research is concerned about the best choice of the mathematical model to carry off
the static analysis for cable stayed bridges. The static analysis of cable stayed bridges having three spans with
considering single or double planes of cables in harp shape is carried out. Eight cases of loading which
include the most symmetric and asymmetric traffic loads are considered. In addition, two special cases of
loading (wind loads in both longitudinal and transverse directions) are investigated. To take the influence of
connections between pylons and floor beams into consideration, four common cases are presented. The static
analysis is carried out taking into consideration geometric and material nonlinearities. The own weight of all
structural elements, and traffic load including impact are taken into account. In the static analysis, the energy
method, based on the minimization of the total potential energy of structural elements, via conjugate gradient
technique is used. The procedure is carried out using the iterative steps io acquire the final configurations. All
prepared computer programs in FORTRAN language for this work are written by the author. The major

conclusions, which have been drawn from the present work, are outlined.

Accepted September 29, 2005.
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1- Introduction

Cable stayed bridges, in which the deck
is elastically supported at points along its
length by inclined cable stays, are now
entering a new era, reaching to medium and
long span lengths (with a rang of 400m to
1500 m of center span]) [1].Three elements,
namely girders, pylons and inclined cable
stays are the main principal components of
this type of bridges.. The most common
cable stayed bridges may be classified as
harp, radiating and fan depending on the
arrangements of cables and  their
connections with pylons. This paper is
conccrned with the bridges having cables in
harp shapc. The own weight of all structural
elements with all various considered cases
of cquivalent traffic loads including impact
on the girders are considered. To get thc
best mathematical model for the required
analysis, two cases as single and double
planes of cables are considered. In both
cases, the analysis is carried out considering
cable and space frame elements for cables
and pylons and floor beams, respcctively.
Also, the study is carried out considering
four common methods of connection

between pylons and floor beams.

The Energy method is a unifying
approach to the analysis of both linear and
indirect

non-linear structures, It is an

method of analysis and valid for both small

and large structures. The energy method is
applied to the analysis of general pin-ended
truss and cable structures. Both geometric
and material nonlincarities are directly
incorporated within the formulation, thereby
accounting for large displacement and
strains as well as configuration changes due
to the structural response [2]. A summary
with a iterative

together step-by-step

procedure is presented. Main sources of
knowledge about this method are given
in[3], [4], [5], [6] and [7]. The obtained
numerical results for all cases are discussed
and compared. Finally, the major
conclusions arc presented.

2. Step- by —step static response analysis

by minimization of the total potential

energy.

The point at which W (total potential
is a minimum defines the
loaded

structure. Mathematically, the equilibrium

energy)

equilibrium  position of the

condition in the i direction at joint j may

be cxpressed as:
o

—_—= = 0
o 8]

M

,i=1,2and 3 (N

The focation of the position where W is a
minimum is achieved by moving down the
energy surface along a descent vector v a
distance Sv until W is 2 minimum in that

direction, that is , to a point where

- =0 (2)
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Where: x;; = the displacement of joint j
corresponding to a particular degree of
freedom in direction, i , and

g;i = the corresponding gradient of the
energy surface.

From this point a new descent vector is
calculated and the above process is
repeated. The method is mathematically
expressing the displacement vector at the
(k+1) th iteration as:

[xJrt = [x] + Sk vi 3
Where:

vk = the descent vector at the kith iteration
from xy in the displacement space, and

Sk = the step length determining the
distance along vy to the point where W is a

minimum

Summary of the iterativc procedures

The main steps in the iterative
processes required to achievc structural
equilibrium by minimization of the total
potential cnergy-may be summarized as

follows:

First, before the start of the iteration

scheme

a) Calculate the tension coefficients for

the pretension forces in the cables by:

” =|:[7]] +%e]/[ﬂ]ﬂ‘ )

Where:

the force in member jn , and ¢ = the

tin = the tension coefficient of

elongation of cables due to applied load.
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To = initial force in a pin-jointed

member or cable link due to pretension;

E = modulus of elasticity, A = areaof

the cable element, and

Ly = the unstrained initial length of the
cable link.
b) Assume the elements in the initial
displacement vector to be zero.
¢) Calculate the lengths of all the elements
in the pretension structure using the

following equation:

L= Z(X -x,f (5)
Where: X = element in displacement vector
due to applied load only, and
d) Ifeither the method of steepest descent
or the method of conjugate gradients is
used, calculate the elements in the scaling
matrix, [8,9,and 10] :

H= diag{k;,”’,kz‘z'”, ............ k"”} (6)
Where: n = total number of degrees of
freedom of all joints, and

k = the 12 x 12 matrix of the element in

global coordinates.

The steps in the iterative procedure then

are summarized as:

Step (1) Calculate the clements in the
gradient vector of the TPE, using:

fn 12

’h
g, = Z Z (k, x, ), - Zt,n(.w + i = Xt = xjt) - Fni

nal rul =1

....................................... )
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Step (2) Calculate the Euclidean norm of

the gradient vector, R, =[gfg,,]”2, and
check if the problem has converged. If
R, <R_. stop the calculations

and print the results. If not, proceed to step

3)
Step (3) Calculate the elements in the

descent vector, v using:
Via = "[ng]m + By [V]k (8)
Where [v]g = -¢l, (9), and

N 0 i oL fel.
GG ST I
o e e tenes i the

step-length polynomial from:

P

C, =Y (Eda?/2L), (11-a)
n=|
,

C, =Y (Edaya, 1 13), (11-b)

n=|

Cy =S la, + 4la? +20,0,)1283] + i y: [—v kv ]

el ¥l

¢, = i[’e"z + Edaga, /1-11. N iii(:,k,v-). *iF.v.

=} wel 12l rel

Where:
= number of flexural members,

= number of pin-jointed members and
cable links,

F = element in applied load vector, and
K, = Element of stiffness matrix in global
coordinates of a flexural element.
Step (5) Calculate the step-length S using
Newton's approximate formula as:
4C,S* +3C, 8 +2C,S +C,
12C,8* +6C,8 +2C,

Sen =S, -

Where: k is an iteration suffix and Sy - is
taken as zero
Step (6) Update the tension coeflicients

using the following equation.

EA
Copdin =Uap iy +—5—A{a, +a,s+a,s )ab

Step (7) Update the displacement vector
using equation (4).

Step (8) Repeat thc above iteration by
retuming to step (1).

3. Wind assumptions

It is convenient to express the wind
velocity as the summation of the mean wind
velocity in the long- wind direction and the
fluctuating time-dependent velocity
components. Because this paper is concerned
about static analysis only, the fluctuating wind
speed component is neglected, and the mean
wind velocity is only considered. The most

general law describing the way in which the
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mean wind velocity U (Z) varies with height,

Z, is the "logarithmic law" and is given by:

U(z)=2.5u*In(Z /Zo) (15)

Where:

u* = the shear velocity or friction wind

velocity, and

Zo = roughness length.
4. Geome(ry and properties of bridge

A three span cable stayed bridge

having cables in harp shape considering
single plane of cables (Fig.1-a) and double
planes of cables (Fig.1-b) are considered.
The bridge has two equal exterior spans of
140m, each, and interior span of 280 m.
The deck girder has a total span of 560 m.
The bridge is symmetric and is composed
of three major elements: (a) the deck
girder, (b) the two pylons and (c) eleven
cables on each side of pylon. The cables
were 6x37 classes IWRC [11] of zinc-

coated bridge rope. All cables have an

2
area of 61.94 cm , diameter of 10.16

cm, own weight of 48.96 kg/m, modulus

2
of elasticity of 1584 t/cm and

maximum breaking load of 925 tons. The
initial tension in all cables was taken as
10 % of the maximum breaking load (92.5
tons). The pylon is designed as reinforced
concrete with hollow rectangular uniform
section having 3 m, width (parallel to x-
axis) and 5 m depth(parallel to Y-axis)
and the thickness of all walls is 0.40m.

The properties and shape of cross-section
of pylon is given in Fig(l-d). The
modulus of elasticity of pylon is 300

tf‘cm2 , and its own weight i1s 14.4 t/m.

The deck was taken as steel box-girder in
orthotropic plate shape with properties

given in Fig.(1-c).The modulus of

elasticity is 2100 t/cm2 , and its own

weight including asphalt for each main
girder, is 5.78 t/m. The cross girders were

taken as built I- section with an area of

0.12 m2 , modulus of elasticity of 2100
2 N
t‘em” , polar moment of inertia of

0.0543517 m4 , and moment of inertias

about the principal axes as 0.01042 m4 ,

and 0.05435 m4 , respectively. Finally,

the top transverse members between the
two pylons and other points have a square
cross reinforced concrete sections with
dimensions 1x1 m. The width of the
bridge is 24 m. In order to take into
account the influence of connection types
betwcen pylon and floor beams, four cases
[12] arc considered as shown in Fig. (2).
5. Analysis Considerations

The static analysis for cable stayed
bridge in harp shape with all mentioned
geometry and properties is carried out by
the energy method, which is based on the

minimization of the total potential energy
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of the structural elements, via conjugate
gradient technique. The program used in
the analysis and all programs used for the
generation of geometry and properties of
bridges are developed by the author. The
elements for decks and pylons were
analyzed as space frame elements, while
the cables arc considered as space cable
elements with the global system of
coordinates given in Figs (1-a) and (1-b).
Two mathematical models as shown in
Figs. (1-a) and (1-b) (single and double
planes of cables) are considered,
respectively. The first model considering
single planc of cables is carried out for the
first four cases of loading as shown in Fig.
(4). This model has 1302 and 1278
degrecs of freedom for both pairs of
connection types (A and Bas well as C
and D), respectively. The second model
considering double planes of cables as
shown in Fig (1-b) is considered. This
model has 2604 and 2556 degrees of
freedom for the similar types of
connections, respectively. The analysis is
carried out for all eight cases of loading
shown in Fig (4). The total equivalent live
load for both mathematical models
including impact on the bridge with 24 m
as road width is 5.28 t/m for half width of
the bridge. The deck floor is at a level of
10m above the ground with mean wind

speed as 108 km/hour.

The shear velocity of wind and the
roughness length are taken as 2.85734 and

0.15m, respectively. The area exposed to

wind for cables is taken as 0.1061l m /m

and the drag coefficient varies between
0.9 and 1.2 according to flow air regime.
The area exposed to wind for pylon in

longitudinal and transverse wind are 5

m2 /m and 3 m2 /m, respectively .Also

the area exposed to wind for decks in

longitudinal and transverse wind are zero

and 3.15 m2 /m, respectively. The drag

coefficients for both pylon and floor beam
is considered as 2. The initial tension in
cables in all cases is taken as 92.5 tons (10
% of maximum breaking load). In
addition to the eight mentioned cases of
cases arc

loading, two combined

considered. Both wind loads in the
longitudinal and transverse directions of
the bridge in addition to case of loading |
arc applied 1o carry out the complete static
analysis,

Figures 5 to 35 show some of the
obtained results for connection cases A
and B. The sway along pylon height in the
longitudinal  and lateral directions is
given in Figs (5 and 8) .Figures 9 to 11
contain the variations of normal forces
along pylon height , while Figs 12 to 15
contain the variation of bending moments.
forces, and

The deflections, normal
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bending moments along the floor beams
are given in Figs.( 16-35). The variations
of final tensions in cables 11 and 12 as
examples with all connection types are
given in Table (1). The variations of
maximum responses in pylon and floor
beams are given in Tables (2) and (3),
respectively.  Finally the effect of
transverse wind loads considering single
and double planes of cables and cases of
strut locations with pylons are given in
Table(4).

6. Analysis of Resulis

It may be concluded that:
1.During the analysis for asymmetric
cases ,the computation will converge
slowly and sometimes becomes difficult
to converge when only the transverse
wind loads with higher wind velocity and
then the analysis by the energy method via
conjugate  gradients needs numerous
iterations (Maximum number of iterations
=5 to 6 times degrees of freedom).

2. From the numerical results it can be
evidently seen that a complete coincident
between the two considered mathematical
models (a single and double planes of
cables) for the first four cases of loading
(cases 1, 2, 3, and 4). Also, case of wind
in the longitudinal direction of the bridge
gave completely similar results for both
cases of mathematical models.

3. The analysis cannot be executed for the

asymmetric cases of loading (5, 6, 7, and

C.76

8) considering the single plane of cables
mathematical model.

4. The double planes of cables is an
essential assumption to carry out the
analysis of cable stayed bridges with
asymmetric cases of loading .

5. Case of loading 2 covers the most cases
of the biggest responses (the sway in the
bending

moments in the pylons, and the deflection

longitudinal  direction, the
and the bending moment in the floor
beams, and the final tcnsions in cables).

6. The -variations of normal forces in the
pylons, floor beams and the final tension
in cables have insignificant difference in
all cases of loading,

7. Case of wind in the transverse direction
of the bridge causes an inductance in the
lateral deformation and bending moments
(out-of-plane displacement) for both
pylons and floor beams. The values of
these lateral deformations depend on the
connection types between pylons and the
floor beams and the number of struts
between pylons as well as their locations.
7. Major Conclusions:

The major conclusions that have been
drawn from the present work are:

I. The first

considering single plane of eables(Fig.1-

mathematical model
a) is simple and valid for all cases of
symmetrical gravity loads with small

insignificant difference in the various
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responses compared with the second
model of double planes of cables.

2. The second mathematical model of
analysis considering double planes of
cables is valid with various cases of
symmetric and asymunetric loading,
dimensions and cable arrangements. It
gives good results similar to the first
model.

3. In the analysis for wind in the
transverse direction of the bridge, the
double planes of cables with enough
numbers of lateral struts must be
considered.

4. The connection type between pylons
and floor beam has a significant influence
on all various responses. Type B in all
phases of comparisons is the best choice.
5. Connection type D is better than
connection type C in case of transverse
wind ( wind perpendicular to the
longitudinal direction of the bridge)
8-REFERENCES:

1. Abdel-Ghaffar A.M., Nazmy A.S,,
"3.D Nonlinear Static Analysis of
Cable Stayed Bridges", Computers &
Structures Vol. 34, No. 2, pp .257-271,

1990.

2. Murray, T. M., and Willems, N. M,,
"Analysis  of
structures”, J. Struct. Div., ASCE, Vol. 97,
No. STI2, pp.2791-2806. paper 8574,
December, (1971).

inelastic  suspension

3. Buchholdt, H. A., ” An introduction to

roof structures” , Cambridge

University Press, (1985).

cable

4. Buchholdt, H. A., " Tension structures”
, Struc. Engrg., Vol. 48, No. 2, pp. 45-54.,
February (1970).

5. Buchholdt, H.

deformation

A.,, " A nonlinear

theory applied to two
dimensional pretensioned cable assemblies
" Proc.nst. Civ. Engrs.,Vol.42, pp.129-

141, (1969).

Stefanou, G. D., Moossavi, E., Bishop,
S., and Koliopoulos, P., " Conjugate
gradients for calculating the response of

large cable nets to static loads
Computers & Structures, Vol. 49, No.5,

pp. 843-848, (1993).

7. Stefanou, G. D., and Nejad, S. E. M., "
A general method for the analysis of cable
assemblies with fixed and flexible elastic
boundaries ” Computers & Structures, Vol.
55,No.5, pp. 897-905, (1995).

8. Bauer, F.L. "Optimally Scaled

Matrices." Num. Maths., 5§, 73-87, 1963.

9. Businger, O.A "Matrices which can be
Optimally Scaled " Num. Maths., 12,364-8,
1968

10. Fried, 1. "A gradient computational
procedure for the solution of large
problems arising the finite element

discretisation method “ International j.



Mansoura Engineering Journal, (MEJ), Vol. 30, No. 3, Scptember 2005.

for Numerical Methods in
Engineering,2 (2), October —December
1970.

11.Frederick S. Merritt: Structural
Steel Designers’ Handbook: Copyright

by McGraw-Hill, Int., 1972.

C.78

12. Naguib, M. "Influence of Connections

between towers and Floor Beams in Cable-

Supported Bridges", Mansoura Engineering
Journal (MEJ), Vol. 28, No. 4, pp. ¢.14- 29,
December (2003).

Table (1): Final tensions in cables 11 and 12 (tons) with connection type and loading.

Cable Connection Case of loading
Number type Casel | Case2 | Case3 | Cased | Case5 | Case6 | Case7 | Case8
Member A 166 | 112 | 145 | 168 | 148 | 129 | 111 | 146
Number B 167 | 113 | 145 | 168 | 140 | 127 | 107 | 140
Fgllm C 166 | 112 | 141 | 168 | 150 | 130 | 113 | 148

D 165 | 104 | 148 | 166 | 149 | 128 | 109 | 147
Member A 179 | 172 | 103 | 181 | 156 | 141 | 145 | 155
Number B 178 | 169 | 105 | 180 | 148 | 139 | 139 | 148
nglm C 180 | 176 | 100 | 183 | 158 | 141 | 147 | 157

D 180 | 176 | 100 | 183 | 159 | 142 | 143 | 157

Table (2): Maximum responses in pylon 1, with several types of connection and

loading.
Item response | connection Case of loading
type Casel Casel Casel Cased CaseS Caseh Case7 Cascl
Top pyton A 345 | 66.55 | -2316 | 36.52 | 23.45 | 25.2 | 40.56 | 23.15
sway (cm) B 313 | 5764 |17.93 | 3512 | 21.02 | 23 | 3527 | 21
in (X-axis)
c a4 98 -48 57 29 31 57 29
D 33 65 23 40 21 23 33 2
Maximam A 5202 | -4729 | -4258 | -5263 | -4990 | -4450 | -4625 | -4458
rm‘" foree B 5192 | -4700 | -4273 | -5243 | -4194 | -4473 | -4390 | -4497
in pylon
(tons) C -4375 | -4200 | -3410 | -4500 | -4105 | -3832 | -3878 | -4076
D -4325 | -4076 | -3497 | -3400 | -4075 | -3400 | -3800 | -4045
Maximum A 5554 | 18108 | 11103 | 15080 | 3896 | 5363 | 9154 | 5151
bending B 2333 | 7650 | 4750 | 4296 | 1525 | 2233 | 3810 | 1573
moment (tm)
+bout Xoais c 1010 | 6563 | 5113 | 1060 | 677 | 1067 | 3686 | 673
D 4896 | 13583 | 7351 | 5735 | 3298 | 4128 | 8097 | 3253
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Table (3): Variations of floor bcam responses with conncction types and loads.

Item Casc of loading
Type | Casel Casel Cased Cased Case5 Case6 Case? Case8
Deflection (em) A -67 -98 15.2 -84 -47 -46 -63 47
at mid spanof g 64 | 89 | 97 | 76 | 44 | 44 | 56 | 44
hebrile T3 a2 | 43 [ 0a | 2a | =3 | 10 | a
D | 64 | 95 | 16 | 79 | 45 | -44 | -60 | -45
Maximam A | 1550 | -2082 | 970 | 1887 | 1305 | 1277 | 1558 | 1322
normalforce  ™"g™1"9373 | 1532 | 965 | 1541 | 1132 | 1043 | 1201 | -1147
(tons) in floor
beam, C | 1381 | 1311 | 811 | -1400 | -4185 | -1045 | -1040 | 1959
452 1033 | 1086
D | 1382 | 1461 | 1084 | 1429 | 1218 | 1116 | 1076 | -1202
Maximum A | 5853 | 6870 | 5324 | 6374 | 4320 | 4205 | 4452 | 4250
bending moment ™5 "3534 | 6850 | 3670 | 6348 | 4345 | 3965 | 4730 | 4223
Aot e [ seaz [ 773 | 5575 | 8704 | 4547 | 4467 | 5782 | 3670
D | 5813 | 6813 | 3660 | 6125 | 4494 | 4450 | 4975 | 3800

o In normal force values: (-) means compression and no sign mean tension.

Table (4): Sway at top of pylon 1, and dcformations at mid- beam due to wind, cm

Connection | Single plane of cables Double planes of cables
types Deflection |Sway n Y- | Sway in Y- axes at top of pylon Deflection |Swayn Y-
at mid axis at mid axis
deck At mid deck (*) At mid
deck Case | Casc 11 Case 11] Case VI deck(*)
A 65.37 171.6 96.54 86.16 79.13 51.62 69 (11N 8.96(1)
B 61.06 159.0 136.0 1209 110.0 68.5 63.32(VIly | 1173 (1)
C 67.00 361.2 86.23 76.22 69.49 43.34 73.0(L1N) 1.67 (1)
D 58.77 84.08 72.08 63.76 58.43 37.28 63.46 (1)) 1.65 (1)

e Maximum values for all cases and their corresponding .

» case and VI (case of 11 struts along pylon height at cable levels).
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Pylon 1 4 Pyion 2 .
Member 11 /4% Member [2 (
N 5

N

Z /
Iy J,, "L ' Em
—

140m 280m & -J

140m

[ .
L | | 1
r

Fig. (1-a): Single planc of cables for three span cable stayed bridge in harp shape.

Fig.(1-c) : Cross-section of deck floor
All plates have 1.4cm, thickness.

—
. 2.6m All ribs have 40x1.2 cm, dimensions.
Fig.(1-d) : cross-section of pylons, Number of upper ribs = 55
A=576m2 ,Ix=17.88 m4 Number of lower ribs =16
ly=75m4 A=125m2, Ix =2.28 m4
Ip= 0-4X0.4(2x2.6x2.6x4.6x4.6)/ ly=61lmd4, Ip= 63.28 m4
(2.6x0.4+4.6x0.4)

=159 m4
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5 Case A Case B Case C Case D

A

Q?
Pylon
loor Beam

Nk >

Fig.(2): Connection types between pylon and floor beam.

w—pStrut 1 ar
- 1. [ ] strue -
SENE g ~Z
- o e >3 cE> 2
L __ £l
= 24m g
*rir ML g*r‘L ! "!L' T
Case I ‘ Case 11 CaSC I
Fig.(3) : Transverse struts between pylons
W /W/W//W
e W%W G ——— _..___CA Sj,; 2_
///////4//////// . o o /////%3

- R

CASE7
S —————————————————— i
140m 280m 140m CASES

Fig.(4) : Cases of loading: () Dead load . Dead +live+ impact loads)
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l——*'—— case (]} — case (2) —o— case (3} —=— case (4)
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Fig.(5): Longitudinal sway along pylon height in tboth two and three dimensional.
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Fig.{6): Longitudinal sway along pylon height in three dimensional.
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Fig(23): Normal force in floor beam (2) in both two and three dimensional:_ case (B)
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Fig(32): Bending moment in planealong floor beam(2) in three dimensional, case (A)
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Fig(33): Bending moment out of plane along floor beam (2) in three ditnensional, case (A)
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Fig(34): Bending moment in plane along floorbeam(1)in three dimensional, case (B)
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