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Abstract

The term texture features is considered a basic issue in image processing and computer vision because it is
related to the qualitative properties of surfaces. Image texture analysis is useful in a varigty of applications
and has been a subject of intense study in many applications such as metal surface analysis, textiles
characterization, ultrasonic images processing, and food qualities evaluation. One of the most common
methods for texture analysis is the gray level co-occurrence matrix (GLCM), which has been widely used
in industries because it has a large number of texture features that can be used to describe object textures.
This paper introduces an appltcanon of the image texture features to characterize the effect of changing
the cutting conditions in turning operations (feed, speed and depth of cut). A set of turning specimens with
different cutting conditions were used for the characterization process. A vision system was employed to
capture images for the specimens under investigation, then the images were analyzed using special
software, which has been fully developed in-house to calculate all available texture features from the
captured images. The correlation coefficients between each texture feature and the three cutting conditions
were calculated and discussed. The results showed that eight texture features have good correlations with
the feed; five have good correlations with the speed, while no texture features found to be have good
correlations with the depth of cut.
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Abbreviations
ASM Angular second moment
CON Contrast
COR Correlation
CPR Cluster prominence
CSH Cluster shade
CVAR Coefficient of variation
DAVR Difference Average
DENT Difference Entropy
DIS Dissimilarity
DM Diagonal moment
DVAR Difference Variance
ENT Entropy
GLCM Gray Level Co-occurrence Matrix
GLCMTF GLCM Texture features
IPM _Inverse difference moment
MaxP Maximum probability
MCOR1 Mean Correlation 1

MCOR2 Mean Correlation 2

MEAN Mean

SAVR Sum Average

SDM Second Diagonal Moment

SENT Sum Entropy

SIM Similarity

SVAR Sum Variance

VAR Variance
1.Introduction

The term texture features is considered a basic
issue in image processing and computer
vision. Therefore, it has been an active
research topic for more than three decades [1].
Texture is related to qualitative properties of
surfaces, but due to its complexity and great
variety, there exists neither a unique definition
of texture nor an accepted computational
representation of it. Image texture analysis is
useful in a variety of applications and has been
a subject of intense study by many researchers.

The first study of image texture is dated back
to the 1950s when the autocorrelation
functions method was firstly employed as a
technique of image texture analysis [2].
Statistical approaches based un gray tone, and
structural approaches based on some complex
primitives, were some new technologies
developed in the 1970s. As suggested by
Haralick [3], statistical technology generalized
for structural primitives can result in more
methods for analyzing image texture.

Investigation about image texture continued -
and new techniques including fractal model
and transform-based texture were continually
proposed during the last twenty years.

In. industry, statistical texture is the most
widely used method for quality grading or
classification. Transform-based texture and
model-based texture might also be used, but
not as often as statistical texture. However,
applications of -structural texture are very
limited in the industry because the structural
primitives that used in this method can only
describe very regular textures {6].

Among the statistical texture methods, the
gray level co-occurrence matrix (GLCM) is
the most widely used in industry and its
accuracy is usually the best [4]. This is
possibly due to the large amount of
information that.can be extracted using this
method. It is possible that there will be at least
one feature from the images that can reflect
changes of texture patterns among different
images. GLCM was first introduced by
Haralick et al. [3] and it was among the first to
characterize texture as an overall or average
spatial relationship between gray tones in an
image. The GLCM reveals certain properties
about the spatial distribution of the gray levels
in the texture image. For example, if most of
the entries in the GLCM are concentrated
along the diagonals, then the texture is coarse
with respect to the displacement vector [5].

Image textures have been introduced into a
wide range of applications. In the field of
surface roughness, Gadelmawla [7] used the
GLCM to characterize and to evaluate surface
roughness of machined products. Using fuzzy
neural network (FNN) approaches, texture
features were utilized to establish relationship
between actual surface roughness and texture
features of the surface image by many
researchers [8-11]. In the medical fields, Tsai
and Kojima [12] used the texture features of
ultrasonic images to classify the heart disease.
In food industry, which is one of the top ten
industries using computer vision [13], texture
has been used regularly. For example,
Chandraratne et al. [14] investigated the
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usefulness of raw meat surface characteristics
in predicting cooked meat tenderness, Other
usages cover a variety of food including baked
products [15], cereal grains [16], fruits [17],
and vegetables [18]. In addition, texture
features were used for the inspection of wood
[19], paper [20] and leather [21].

The use of machine vision in the determination
of tool wear is fairly wide spread in the
manufacturing literature, and dates back thirty
years [22]. Many researchers used texture
descriptors for tool wear monitoring using
computer vision [23-25].

. Tool wear affects both the dimensional
precision and ‘surface quality. On the other
_hand, the tool wear itself can be affected by
machining parameters such as spindle speed,
feed, and depth of cut. Therefore, an optimal
selection of these parameters is very important
in order to obtain high precision parts and to
reduce the cost. The aim of this work is to
characterize the effect of cutting conditions in
turning operations using texture features, then
classifying the texture features according to
their correlation coefficients with the cutting
conditions. This could help, in the future, to
predict the values of the cutting conditions for
existing products using image texture features.

2. Textures of the Gray level Co-
occurrence Matrix

Generally, the co-occurrence matrix, Mc(ij) is
calculated using the following equation:

MG, )= PG PG, ) 6
[N

Where MJi,) is defined as the co-occurrence
of gray level occurring, P(i,) is the frequency
of occurrence of gray levels / and j; and »
refers to the total number of pixel pairs. A
normalized matrix is produced by dividing
each element of the GLCM by the summation
of all elements.

In a previous work [26], all texture features that
can be calculated from the GLCM were
collected from the literature and discussed. The
mathematical equations of these texture
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features are listed next. If M is the normalized -
GLCM, ij are the row and column of each
element in the GLCM and n is the number of the

GLCM  elements, then the following
mathematical equations are used to calculate
the GLCM texture features:
ASM=35" w6 W
=D j=0
CON=3 314,611 G- 7 @)
= =
COR= i‘:i‘ﬂ o6 1) (- )i - 1,)) 3)
=0 ful a.og,

where fz, is the mean for every column, o
is the Standard Deviation for every row
and g; is the Standard Deviation for every
column,

n=1 n=1

CPR= Y3 MG, /) G+ )+, (4)

=0 fubd

=l n=l

CSH= Y M, ) G+ )- s  (5)

10 fnl

CVAR = % (6)
n-1
DAVR=Y}i* M, (i) 7
i=0
Where:
n-1 n-1
M, (k)= M(,j)andk=i-j.
=0 f=0
DENT=-"§"; M., O M., ©) (8)
DIS= :Z-OZTZ;MG(A', M- &)
DM= ?_;;Z O.5M, 0, i - /) (10)
DVAR= 3. M, () (- DENTY an
=l r-1
== 2. M.G, ) In(M, (i, /) (12)
[
DM=5'5 MbD (13)

i=0 1-01"'("'}'):
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MaxP = max,"'M (M)
hd!:()lll = IQVT HXY1

‘Max(HX,HY)
" Where

wn=-55. Dinr,
. i=0 j=0
n-1

LDM,, ()

(14)
(15)

Me,m ZM G.J), M, (D= ZM (%)
_HX and H}’ are the entropies of P,(}) and

P,(/), respectively.

MCOR2= |1 - exp™XHT2-ENT) (16)
where
:mz=;ZM,,(f)Mc,U)In(M,,mM,,U))

MEAN (u)=5%" im.4.) an

=0 f=0

SAVR-ZI ey U (18)
where M,,, (i+))= "Z",NZE MG, )

=0 j=0
SDM = ,2.; j:Z.:(O.SM,(i, M- (19)
SENT=-3'M,_, ) (... 0) (20)

=1

sm—zzﬁ I(;i'1) - 1)

SVAR= Z M,,,, () (i-SENT)* (22)

VAR = ggmm G- 23)
where p,=§i§'; MG, )

3. Experimental work

A vision system, shown in Figure 1, has been
employed to characterize the effect of
changing the cutting conditions in turning
operation using the image texture features. The
vision system consists of two main parts,
hardware and software. The hardware was
used to capture images for specimens
machined by turning operations and the
software was used to analyze the captured
images. The software, named GLCMTF
(GLCM  Texture Features), was fully
developed in-house and was previously
discussed in [26]. It is capable of calculating
all texture features, discussed in section 2, for
up to 100 position operators (direction & and
distance d) of the GLCM.

Flg 1 Phutograph of the emploved vision system
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3.1 Specimens Preparation

A steel bar "Steel 37 type" with 45 mm
diameter was used as a raw material to prepare
the specimens of investigation. A total of 54
specimens were machined by turning machine
using face operation. The specimens were
machined using cutting tools have tips of
commercial type Widadur coated hard metal
(TNMG160412P25) with nose radius of 1.2
mm. For each cutting condition (feed, speed,
and depth of cut), 18 specimens were divided
into six groups (3 specimens in each group)
and each group was machined using six
different values for each cutting condition as
shown in table 1. The other cutting conditions
were kept constant and chosen as intermediate
values, Before performing the tutning
operations, all specimens were machined using
fine surface grinding to remove the effect of
the previous machining.

M. 14

¥

3.2 Capturing Images

The vision system was used to capture three
images for each specimen at different areas.
Therefore, nine images were captured for each
cutting condition. All specimens were set
under the microscope objective lens so that the
machining marks (lays) appeared vertically.
To avoid varying illumination conditions,
which may affect the values of texture
features, the microscope light was adjusted to
constant light intensity while capturing all
images through all tests. Figure 3 shows
sample images for specimens with different
feeds and constant speed and depth of cut.

3.3 Image Analysis:

To calculate the texture features for each
cutting conditions, the following procedures
were performed:

Table 1: Cutting conditions data of the specimens under investigation

o e

a RTolp lan
& Heonditio :
s =560, d.= 0.30

£=0.16, d,= 0.30

£=0.16, 5 = 560

il

Feed=031 " Feed

' Fig. 2: Sample images of specimens machined with different feeds (mm/rev), constant speed (560 rpm), and
' constant depth of cut (0.3 mm)
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1- For each cutting condition, the texture
features were calculated for all images by
the GLCMTF software using a position
operator of (1,0), ie. (distance=1 and
angle=0).

2- The average of each texture feature was

calculated from the nine values obtained
from the nine images.

3- The relationship between the value of each
texture feature and the values of the three
cutting conditions (feed, speed, and depth
of cut) were plotted using MS Excel then
used for analysis.

4- The correlation coefficients between each
texture feature and the corresponding
cutting conditions were calculated using the
following equation:

Y-S =1 -
Y- xlr-7f
where ¢, f are the data sets of the cutting
conditions and texture features,

respectively, and E" £ are the averages of

the cutting conditions and the texture
features data sets, respectively.

(24)

Correlation(c, [) =

4. Results and Discussions

Figure 3 shows the relationship between each
texture feature and the three cutting
conditions. As shown in the figure, some
texture features have approximately the same
trend with the thiee cutting conditions, despite
of the correlation coefficient values.
Considering this, all texture features can be
categorized into four groups as shown in the
figure (Al:A7, BI:BS, C1:C6, D1:D5). This
means that the mathematical definitions of the
texture features in each group may have the
same. physical meaning about the change in
cutting conditions.

Figures 4, 5, and 6 show the correlation
coefficients between the texture features and
the feed, speed and depth of cut, respectively.
Additionally, Fig. 7 represents a collective
chart for all texture features and their
correlations with the three cutting conditions.

From figures 4, 5, 6, and 7, the following
points could be observed:

1- Eight texture features (COR, CPR, SAVR,
DAVR, MEAN, VAR, SENT, SAVR) have
good correlation (> 90%) with the change in
feed.

2- Only five texture features (MEAN, DENT,
DIS, DAVR, ENT) have good correlation
with the change in speed.

3-No texture features that have good
correlations with the change in depth of cut
were found. -

5-1t can also be seen that there is no texture
features that have good correlations with the
three cutting conditions at the same time.
The MEAN is only the texture feature that
has good correlation with both feed and
speed.

Taking into consideration both the trend and
the correlation coefficient of the texture
features, the following points could be
concluded:

1- The first group (Fig. 3, Al:A7) is mostly
sensitive to the change of speed. Therefore,
four texture features (DENT, DAVR, DIS,
and ENT) are highly correlated with the
change in speed.

2. All textures features (COR, DVAR, SAVR,
SENT, SVAR) in the second group (Fig. 3,
B1:B5) are highly correlated with the
change in feed.

3. All textures features (CSH, CVAR, IDM,
SIM, MCOR1, MCOR2) in the third group
(Fig. 3, C1:B6) are not highly correlated
with any of the cutting condition.

4- The forth group (Fig. 3, D1:D5) is mostly
sensitive to the change of feed. Therefore,
three texture features (CPR, MEAN, and
VAR) are highly correlated with the feed. In
addition, the MEAN is also highly
correlated with the speed.

Finally, the texture features that have good
correlation with the cutting conditions might
be used, in other work, to predict the cutting
conditions of existing specimens.
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Fig. 7: Correlation between the GLCM texture features and the cutting conditions (Alphabetic sort)

5. Conclusions

The GLCM texture features have been
employed to characterize the effect of
changing the cutting conditions (feed, speed
and depth of cut) in turningoperations. A set of
circular specimens were produced by face
turning operation using different cutting
conditions and a vision system was employed
to capture images for these specimens. A
software, specially developed for this purpose,
was used to calculate all GLCM texture
features for the captured images.

The results showed that eight texture features
have good correlations with the change in feed
and five have good correlations with the
change in speed. No texture features found to
be have good correlations with the change in
the depth of cut. In addition, there is no texture
features found to be have good correlations
with the three cutting conditions at the same
time. The MEAN is only the texture feature
that has a good correlation with both feed and
speed. Finally, the highly correlated texture
features might be used to predict the cutting
conditions of existing specimens. ’
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