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ON THE PERFORMANCE OF THE "6-3" ELEMENT IN
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ABSTRACT

The "6-3" triangular element has been widely used in consolidation analysis because it was
the first one to be introduced and gave satisfactory results in most cases. Yet, it has a
directional bias as the transient response depends on the orientation of the triangles in the
mesh, particularly at the early stages of loading, As the time elapses this defect reduces until
almost vanishes by the end of the loading history. The purpose of the present investigation
was to illustrate the directional bias of the "6-3" element and provide a solution to this
problem by comparing its performance with that of the "8-4" element in solving a problem
with known analytical solution. It was found that by averaging the solution of the "6-3"
element for non symmetric mesh or by using symmetric mesh, the "6-3" element provides a
solution very close to that given by the “8-4" element as well as the analytical solution.

Keywords: Consolidation, Variationat formulations, Finite element discretization
INTRODUCTION

Sandhu and Wilson [1, 2] presented the first  Sandhu [16, 17]. Least-Squares mixed finite

application of the finite element method to
analysis of seepage In elastic media.
Considérable progress has been made in the
theoretical  formulation as well as
computationat procedures. This includes
variational formulations admitting limited
smoothness of finite element bases [3, 4] and
experimentation with several different spatial
interpolation schemes and investigation of
various temporal approximation methods [5-
11). The finite element method has been

applied to saturated soils exhibiting
secondary compression {7, 10], nonlinear
soil behavior [11-13], and to finite

deformation [12). The method has been
extended by Aboustait [14, 15] to formulate
the coupled theories of thermoelastic and
thermoplastic  consolidation  and  the
associated variational principles. Further, the
formulation was extended to include inertia
and damping effects resulting in finite
element Galerkin formulation for a dynamic
consolidation theory by Aboustait and

element formulation is presented for Biot's
consclidation using piecewise linear and
quadratic interpolation for the fluid pressure
and for the displacement, respectively [18].
Very Recently new approaches have been
advanced based on mixed formulations. A
fully coupled 3-D mixed finite element
model is developed with the aim at
alleviating the pore pressure numerical
oscillations at the interface between
materials with different permeability [[9].

In spatial discretization, Sandhu [1] proposed
that the order of terms appearing in a
convolution product in the variational
principle be the same. This produced the
"composite" element in which the order of
polynomial interpolation for displacements
was higher than that for fluid pressures. The
composite efement first proposed by Sandhu
{1, 2] and used by Hwang [20] and others,
was the "6-3" element with quadratic
interpolation for displacements and linear
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Figure (1): The “6-3” and “8-4" Composite Elements

interpolation for fluid pressures over triangular
regions. Later, Sandhu [6] introduced the “8-4”
clement which had eight point biquadratic
interpolations for displacements and four point
isoperimetric quadrilateral for fluid pressures.
Figure (1) illustrates the"6-3"and the "8-4"
elements. Later this clement was extended by
Aboustait [14, 15] to obtain the "8-4-4" element
which includes another four point isoperimetric
quadrilateral interpolations for temperature
fields. It is used in solving thermoelastic and
thermoplastic consolidation problems. Severai
spatial interpolation schemes, besides the
composite elements, have been fried by various
investigators. Ghaboussi [5] introduced the "4-4"
element which uses four point isoparametric
quadrilaterals for both fields. However, two
additional jncompatible modes were included in
the displacement approximation. This element
has the economy while the additional "local"
mode gives- it the character of a "higher order"
scheme. Smith [21] presented the "4-4" element
and the formulation was similar to Ghaboussi's
except that no incompatible modes were used.
Prevost [9] proposed cautious use of "reduced
integration” in conjunction with Smith's "4-4"
element. Yokoo [22], Booker [23], and Vermeer
[24] wused triangular elemenis with linear
interpolation for both displacement and fluid
pressure fields, i.e., "3-3" element.

All investigators have generally reported success
with whatever scheme they used. Comparative
studies of different elements are rare. Some
comparisons between numerical performances of
the "6-3" and the "8-4" elements were attempted
by Sandhu ef af [6, 7] and between the "6-4"and
the "8-4" elements by Aboustait ef a/ [25, 26]. In
evaluating various candidate schemes, [6, 7]
proposed that an acceptable method meet the
following requirements in addition to efficiency
and accuracy;

i. The interpolation scheme must conform to the
assumptions regarding coatinuity as well as

differentiability used in setting up the governing
variationa) formulation.

ii. It should be possible to generate the
"undrained” solution, i.e. the state of fluid
pressures and displacement at time t = 0+,

iii. For sufficiently small time steps, the scheme
should be insensitive to the choice of the time-
step size.

Elements "6-3", "6-4" and "8-4" satisfy these
previous requirements. However, the "6-3" and
"8-4" composite elements are too expensive to be
used in large problems. This has discouraged
extension of the analysis to three-dimensions,
and to nonlinear analysis and dynamic problems.
The "4-4" element is more economical but has
oscillatory errors [7]. The "6-3" element gives
satisfactory results in most cases and the "8-4"
element gives results almost identical to those
from the "6-3" element but is more economical as
it requires fewer nodal points and has less band-
width [6, 7). A comparison between the "6-4"
and "8-4" elements was carried by Aboustait ez af
[25, 26]) in solving Terzaghi and Gibson
problems. The "6-4" element gave a solution
identical to that given by the "§-4"element but
with significant savings in computational time.
Also, it is distinctly superior to the "4-4" element
as it does not have the oscillatory error of the "4-
4" element. Further, it directly gives the sofution
at time = 0+. This is because, in eliminating the
additional degrees of freedom, the static
condensation would, in general, result in non-
zero diagonal quantities. At the same time, it has
the economy of the simpler element.

The "6-3" triangular element still has been widely
used particularly in commercial packages. Yet, it
has the defect of directional bias since the
transient response depends on the orientation of
the triangles in the mesh.

The purpose of the present ipvestigation was to
illustrate the directional bias of the "6-3" element
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and provide a solution to this problem. This had
been achieved by performing another comparison
between the performance of the "6-3"and the"8-
4" elements in solving the same Terzaghi's
problem in [6, 7). Same boundary conditions,
same loading, same material properties and same
spatial and temporal discretizations were
considered. However more attention was given to
the transient response particularly at the early
stages of loadings. Plane strain formulation is
considered for both elements to solve Terzaghi's
problem of one-dimensional consolidation that
has well known analytical solution.

EQUATIONS GOVERNING LINEAR
ELASTIC SOIL CONSOLDATION
Assuming pore water to be incompressible, the
equation of force equilibrium of elementary
volumes, within the spatial region of interest R,
may be written in standard indicial notation as,

(13
[Ewu“],,+;r,),+,c_rfj =0 (1

Also, the mass continuity equation over that
region can be expressed as;

(K, (@4 P2 [0+, =0 2

i.e., the out flow from any closed surface equals
to the rate of volume reduction. Where w;, £, By,
Kj;, respectively denote the Cartesian components
of the displacement vector, the body force vector
per unit mass, the isothermal elasticity tensor and
the permeability tensor. o is the mass density of
the saturated soil and p, is that of water, 7 is the
pore water pressure. With these field equations
we associate the following boundary conditions;

u, =1, on §, 3)
L=tm =1, on S, 4
r=7 on §, ()
O=qn =0 on S, (6)

Here, t; and g; are components of the fraction and
fluid flux vectors associated with surfaces
embedded in the closure of R. S, and §; are
complementary subsets of the boundary of the
spatial region of interest and so are S, S,. 1;; are
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components’ of the total stress tensor which is
related to the effective stress tensor o, and pore
pressure by;

Ty =0, + 70, @)

8; is the Kronecker delta. Noting that the
effective stress tensor is related to the solid
deformation ¢ by;

oy = Eyty (8)
The initial conditions for the problem are
u(x,0)=u(0) on R 9)

m(x,,0) = 7(0) (19)
The variational principle corresponding to a the
above mentioned field equations, boundary and

on R

initial  conditions can be expressed as;
J(u,;r):_[[%o-y Yo - Yu +atuy,

*
_% g*Q.f *(7:,,+p2j:)]dv

- [i*uds - [O* g *mis (11)
S2 Y

Where g = | and * is indication of convolution.

Q and EJ are the prescribed fluid flow and

tractions on S, and S, respectively.

FINITE ELEMENT FORMULATION:

Discretization of the governing functional for the
two-field formulation followed by application of
the variational principle (11) leads to the
following matrix equation.

Ksm Kpu H(f[)
+
Kpu - a‘&erp w(t))
- Kpu 'N(to) pl
= (i2)
(A=A py7(t0)| | p.
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Where (1o, 1)) is the single time step of interest,
and;

A=t -ty (13)

{ufty)}, {u(ty)}= vectors of nodal point values of
the components of the displacement at time t,, t,,
respectively

{7 ()}, {7 (o)} = vectors of nodal point values
of the pore water pressure at time ft;, ty,
respectively.

{m} = the vector of nodal point loads including
applied nodal loads, boundary tractions, body
forces, initial stresses and effect of displacement
constraints .

{p2} = the vector of nodal point fluxes including
applied nodal fluxes, boundary fluxes,
body force effects and effects of specified pore
wafer pressures.

[Ky) = spatial "stiffness matrix" for the elastic
soil.

[Kpl = the spatial “flow matrix" for the
compressible fluid and At= 1.

o = the coefficient characterizing single-step
temporal discretization.

[Ka] = the coupling matrix representing the
influence of pore pressure in the force
equilibrium equation.

(ko T = the coupling matrix representing the
influence of soil volume change upon the nodal
point fluid pressure.

[Kpp) = the spatial fluid compressibility matrix.

The matrix {K,,] depends upon the interpolation
scheme for displacements and [K,,] depend upon
the interpolation scheme for the pore water
pressures. The coupling matrix {K.,] involves
spatial interpolation for both the field variables.
The temporal discretization for the single step
scheme is reflected in the value of the
coefficientet. For linear interpolation & = 0.5.

Equation (12} includes the "natural!" boundary
conditions expressed by Equation (4) and (6).
Equation (3) and (5) are satisfied by explicitly
requiring v, = #on § and m=Aon S

Baher L. Aboustait and Osama A. Mansour

Development of the vectors and matrices
appearing in Equation (12) is given in [25).

Terzaghi's problem of one-dimensional
consolidation

A computer program was developed for plane
strain consolidation using both "8-4" and "6-3"
elements. The code was used to solve Terzaghi's
problem of one-dimensional consolidation. For
this problem, the theoretical solutions are known
and, therefore, precise comparison was possible.

For Terzaghi's problem, the dimensions of the
consolidating soil column and soil properties
were the sare as in {6, 7, 23, 24]; i.e. soil depth h
= 7 m, modulus of elasticity E = 6000 t/m?
Poisson's ratio = 0.4, coefficient of permeability
K = 4x10° m/s. Figure (2) illustrates the
geometry and the boundary conditions of the
problem.

L

7]

derperviony Sras

Figure (2): One dimensional Consolidation

Generally, finite element approximation involves
discretization in the spatial as well as temporal
domain. Accordingly, the investigation reported
herein covered these two aspects. For the spatial
discretizations, three different meshes were
considered as shown in figure (3). Figure (3.a)
and (3.b) illustrate biased and symmetric meshes
that were used for the "6-3" element, while
Figure (3.c) illustrates the mesh used for the "8-
4" element. The first mesh for the "6-3" element
consisted of 18 elements with 57 nodes and the
second mesh consisted of 36 elements with 84
nodes. While the "8-4” efement mesh consisted
of 9 elements with 48 nodes.
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a) Non-Symmetric Mesh for
the “6-3” Element

b) Symmetric Mesh for the
“6-3” Element

o)} Mesh for the
“8-4” Element

Figure (3): Finite Element Discretization

In the temporal discretization, linear
interpolation was considered ie., the
coefficient a was given the value of 0.5. For
each of the spatial discretization schemes the

following temporal  partitioning  was
considered starting with t= 0,

[0 steps of At=0.01 over [0, 0. 11
10 steps of At=0.1 over [0.1, 1.1]
10 steps of At=10 over [1.1, 1011}
10 steps of At= 100 over {101.1, 1101.1)

8 steps of At=1000 over[1101.1,9101.1]

Where, the time is in seconds. In this scheme
At changes in a ratio 10:1 except that the
change from At=0.] to At = 10 has a ratio of
100:1.

RESULTS OF ANALYSIS

Table | shows the time settlement history for
the three types of discretizations as well as
the analytical solution. The settlements

which are the vertical displacements of the
two comer nodes on the top surface of the
soil column were recorded. For the "6-3"
element with nom-symmetric mesh, the
settlfements of these two nodes are
completely different at the early stages of
loading, while they are the same for the other
two meshes. As the time elapses, this
difference decreases until it vanishes near the
end of the loading history. Meanwhile the
average settlement of these two nodes in the
non-symmetric mesh for the “6-3" element
practically coincided with the settlement of
the symmetric mesh for the "6-3" element as
well as response of the "8-4" element
throughout the time domain and also was in
good agreement with the analytical solution.
Overestimates of early seftlement are
associated with all spatial discretizations
schemes considered. Also, it was found that
the surface settlement calculated s
insensitive to the temporal discretizations
and the sudden change in the size of At.

C. 17
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Table (1); Surface Settlement History
Symmetric Mesh Non-Symmetric Mesh for the  “6-3" Elernent .
Time (sec) furE :he "5:3" nga™ Exact Sohutlon
Left Node Right Node Average
002 4.6412E-06 2.7936E-06 7.0104E-06 4.90206-06 5.2770e-06 5.7255€-06
0.6 1.5091€-05 1.6537E-05 1.3973¢-05 1.5255E-05 1.5681E-05 1.5459E-05
1.1 2.0646E-05 2.1661E-05 1.9801E-0S 2.0731E-05 2.1221E-05 2.0877E-05
3 8.1150E-05 B.0815E-05 8.1492E-05 B.1154E-05 9.1394E-05 $.1433E-G5
41.1 1.2051E-04 1.2034E-04 1.2066€-04 1.2050£-04 1.2815€-04 1.2760E-04
81.1 1.7459E-04 1.7450€-04 1.7467E-04 1.7458E-04 1.8022E-04 1.7924E-04
301.1 3.1443€-04 3.1440E-04 3.1446E-04 3.1443€-04 3.4446E-04 3A205E-04
901.1 4.9727€-04 4.9726E-04 4.9727E-04 4.9727€-04 5.0352E04 © 5.0166€-04
2101.1 5.3400E-04 5.3400€-04 5.3400€-04 5.3400E-04 5.4778E-04 S.A253E-D4
4101.1 5.4425E-04 5.4425E-D4 5.4425E-04 5.4425E-04 5.4456E-04 5.4443E-04
£101.1° 5.4444E-04 5.4444E-04 5.4444E-04 5.4444€-04 5.4440E-04 S.4444€-04
9101.1 5.4445E-D4 5.4445E-04 5.44441-04 5.4444E-04 5. 4440E-04 5.4444E-04

Table 2 and figure (4) show the pore
pressure history for the three types of
discretizations as well as the analytical
solution. The pore pressure at the two
corner nodes located at depth = 2/70 of the
total height, measured from the top surface
of the soil column, were recorded. Same as
for the surface settlement, the pore
pressure at these nodes in the non-
symmetric mesh for the "“6-3" are
completely different at the early stages of
loading, while they are the same for the
other two meshes. As the time elapses, this
difference decreases until vanishes near
the end of the loading history. Also, the
average pore pressure at these two nodes
for the non-symmetric mesh for the "6-3"
element practically coincided with the
response of the symmetric mesh for the "6-
3" element as well as the "8§-4" element
throughout the time domain and also was
in good agreement with the analytical
solution, except at early time i.e. t < 0.1,
At early stages, the error in the pore
pressure at points near the loaded surface
is quite large for both the schemes. This is

a feature of the spatial interpolation [7]
used.

CONCLUSIONS

The "6-3" and “8-4" elements were applied
to Terzaghi’s problem for which exact
solution is available. Results of these
limited tests show;

i.The "6-3" triangular element exhibit a
directional bias and gave solution depends
on the orientation of the triangle in the
mesh particularly at early stages of
loading. As the time elapses this defect
reduces until completely vanishes at the
end of the loading history.

ii. The average solution of the "6-3"
element for non-symmetric mesh or the
sotution of the "6-3"using symmetric mesh
are identical to that given by the "8-4"
element and the analytical solution.

iii. At very early stages of loading, both
"6-3" and "84" elements gave
unsatisfactory results. Apparently, special
singularity elements are required near
loaded drained surfaces.
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Table (2): Pore Pressure History

Timeln || ‘63 Element-

seconds Sy:;::k “6-3" Eflernent - Nor-Symmeatric Mesh "8-a" Element || Exact Solution

L Left Node | Right Node | Average
0.02 1.035 1.423 1.009 1,216 1217 ) 0.987672331
0.04 1.04 1.333 0574 | 1153 1156 | 0.962044728
0.1 0.983 113 0.88 | 10075 1.0154 | 0.892813547
0.6 0597 0.618 0569 | 05935 057489 | 0575724889
11 0.455 0.4436 04633 | 045345 | 0.05225 | 0447440278
| 212 0.102 0.099 01074 | 01032 0.10346 || 0.107914459
| a1a 0.0765 0.0749 00783 | 00766 0.076389 | 0.07743673%
611 0.064 0.0629 0.0651 0.064 0063934 §  0.063543454
811 0.0559 0.0552 0.0558 0.056 0.0559?; 0.055168022
| 1011 0.0502 0.0495 0.0509 | 0.05025 0,0502?? 0.049411265
301.1 0.0299 0.0297 0.0302 | 0.02995 0.029943 || 0.026214407
5011 a.0177 0.0176 0.0179 | 0.01775 ooz | coiss7e324
7011 0.0105 0.0104 0.0105 | 0.01045 0.010457 || 0009272604
| o013 0.0063 0.0061 0.0062 | 0.0061S 0.0062456 | 0.005520156

1

11081 0.0036 0.0036 0.00358 | 0.00358 0.0036 | 0.003286254
81011 0.0038 0.0036 000358 | 0.00359 0.0036 || 0.003286254

s
—&— "6-3" - Elem - Symmetric Mesh

e o fee- "6-3" - Elem -Non- Symmetric Mesh [left Node)
~=4=="6-3" - Elem -Non- Symmetric Mesh {Right Node)

~—&— "8-4" - Elem Mesh

N . ~—— Exact Solution

Pore Pressure percentage (3t/Po}

0.10
1.00
10.00
100.00

1,000.00 |
10,000.00

Time in Seconds { Log Scale }
Figure (4): Pore Pressure History
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NOMENCLATURE

uj the Cartesian components of the
displacement vector

4 the pore water pressure

f; the Cartesian components of the

body force vector per unit mass

the isothermal elasticity tensor

K;  the permeability tensor

[N]  the mass density of the saturated soil

F(t)  the mass density of water

t the Cartesian components of the
traction vector

qi the Cartesian components of the

fluid flux vector

T, the Cartesian components of the
total stress tensor

gjj the Cartesian components of the
effective stress tensor

8,  theKronekrd

€5  the Cartesian components of the
solid deformation tensor
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