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Two-Level and PI Controller Design for Interconnected Power System
Using Eigenvalues Assignment Technique
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Abstract: - The paper presents two different schemes to design controllers for interconnected power systems.
The first scheme adopts two-level control concept, where the “lower” first level design is based on optimizing
the decoupled subsystems, then eigenstructure (eigenvalues and partial eigenvalues) assignment approach is
adopted to design the “higher” second level controller. The proposed two-level control preserves the autonomy
of subsystems for sharing the assignment process, and suits power system stabilizers design. The proposed
scheme can achieve robustness via eigenvector selection. The proposed second scheme proposes a proportional
plus integral controller which is commonly used for load frequency control. The design procedure is based also
on eigenvalues assignment. Two illustrative numerical examples are presented to prove the effectiveness of the
procedure where the results indicate that the proposed control scheme works well.

Key-Words: - Load frequency control (LFC), Multi level control, Eigenvectors.

1 Introduction and Research several . issues  through . Fhe multilevel  or
Motivation decentralized approach to facilitate several tasks and

achieve requirements for stability and load
frequency scheduling [1]. It is necessary that the
frequency of each interconnected area and inter area
tie line power are kept as near to the scheduled
values as possible through effective control action
and which can be achieved by designing automatic
generation control (AGC). The deviation from these
scheduled values are wusually combined and
represented in the area control error (ACE) which is
computed within each area, hence providing the
basis for load frequency control (LFC) action.
Allowing the frequency to deviate too much from its
nominal value results in a low quality of the

Electric power systems control has received a great
deal of attention and will receive increasing
attention in the future as a major means in the
competitive energy market, and to improve
performance due to the increasing size, changing
structure and complexity of modern interconnected
power systems. Electric power system analysis is
the basis of operation and planning since the overall
electric power systems are large in size and their
problems are computationally complex with
increasing interactions. In the dynamical operation
of electric power systems, it is possible to study
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delivered electric energy associated with damping
vibrations in turbines. Inter-area oscillations have a
direct relationship with lower frequencies. A high
quality of electric power system requires both the
frequency and voltage to remain at standard values
during operation. An effective countermeasure to
low frequency oscillations is to implement power
system stabilizers (PSS), which are automatic
controllers mainly of the lead-lag structure, acting
on the excitation system providing additional
damping leading to attenuation of oscillations under
different fluctuating load conditions. A proposed
algorithm for such type of stabilizers presented in
[2-3] based on participation factor and decentralized
pole placement to determine the PSS parameters.
Another method for decentralized controller design
was developed in [4], where the proposed algorithm
was applied to the decentralized design of power
system stabilizers for a 10-machine power system
model. As an extension of the power system
stabilizers, the supplementary excitation damping
control (SEDC) is usually applied for damping
torsional frequency oscillations [5]. Moreover,
flexible AC transmission systems (FACTS) devices
are used for fast voltage and reactive power control.
Other possibilities for increasing damping have
different controllable equipments installed in the
system such as high voltage direct current (HVDC)
or static VAR compensators (SVC). Several
strategies for load frequency control have been
introduced [6-7]. Most LFC systems use
proportional plus integral (PI) based controllers,
where several tuning techniques for such controllers
are available based on trial and error concept [8].
Systems implementing PI controllers are capable of
obtaining good dynamic performance for wide range
of operating conditions and various load changes,
besides the capability of PI controller to damp the
undesirable oscillations and its robustness against
parameter uncertainty. Load frequency control
received a considerable interest in clectric power
system design and operation [9]. In [9] with the
references therein, an overview of control strategies
are provided with various methodologies with
comparisons  between  different  approaches.
Recently, the LFC problem has received attention
including optimal, adaptive, decentralized ‘and
intelligent control techniques [10]. However,
electric power systems contain different kinds of
uncertainties due to changes in load variations and
errors in modeling, also the operating points of the
system change randomly [11]. Dealing with
parameter uncertainties through active disturbance
rejection control (ADRC) for load frequency control
was developed on a general transfer function [12].

Commonly at steady state operation one may
linearize the set of differential equations, the
algebraic equations, and the network equations to
describe the system dynamic response for small
deviations from the operating point. If the linearized
system eigenvalues has negative real part, then the
electric power system can withstand small
disturbances and is considered stable in the small-
signal sense. A celebrated review of power system
stability problems can be found in [7].

Eigenspectrum (eigenvalues and related
eigenvectors) analysis is a useful design tool in both
voltage collapse analysis at each intermediate
equilibrium stage of collapse (span shoots), and
finding a power system operating point that is both
economically optimal and stable in the small-signal
sense [13]. Stability requirements may be met by
adopting principle of eigenstructure assignment or
optimal control techniques, taking into consideration
that the need for disturbance rejection creates the
need for feedback control.

For the purpose of electric power system control
design, the -present paper considers designing
feedback controller based on eigenstructure
assignment as a tool due to its numerous beneficial
advantages since eigenvalues govern the rate of
decay of various portions of the system dynamic
response, while eigenvectors share prescribing the
shape of closed loop response.

Multilevel control has been an accepted approach in
many control applications. A computationally
efficient constructive procedure for a two-level
controller design is presented for controlling fully
interconnected electric power system to ensure an
improved prescribed performance. Also the
decentralized LFC and frequency control in
emergency conditions based on singular value
theory for multi area power system was addressed in
[14]. This paper proposes a two-level control
structure based on eigenstructure properties to
ensure an improved prescribed performance using
the algebraic relations between the system model
and a targeted closed loop eigenstructure.

This paper is organized as follows; the introduction
presents the research significance and motivation.
Section two proposes a multilevel controller where
the lower level controller is based on optimizing an
associated index with its own criterion, while the
higher level is based on achieving a prescribed
spectrum. Section three presents a proportional plus
integral controller that suits a power system load
frequency control. Two illustrative numerical
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examples demonstrate the significant advantage of
the proposed procedure.

2 Proposed Multilevel Controller
Design

From the control theory point of view, the electric
power system is considered as a large-scale
interconnected system. In this section, a two-level

controller structure commonly used for large-scale

interconnection is presented.

In an interconnected electric power system, the
centralized analysis and control approach are
infeasible due to the requirement of extensive
amount of shared information exchange,
complexity, and high dimensionality. To cope with
such systems, several methodologies have been
applied where most of them embrace the
decentralization and decomposition approaches [15-
16]. The state space linearized representation of the
interconnected  system  under  consideration
composed of N coupled subsystems (multimachines)
can be represented as:

x,(t)=A4, x,(t)+ i A, x,(0)+ B, u () (1)

g=1
#r

where x,(£)€R"™ and u, € R"™ are the state and
control vectors associated with the r-th subsystem
(r=1,...,N). A, € R"™" is a constant system matrix,

and matrix 4, € R"™ reflects the strength of

interaction for the integral signals and exchange of
information among subsystems  and ¢ tied by high
voltage transmission or tie lines, while

B, € R™™ is the constant control matrix.

The objective is to design a two-level controller to
achieve a prespecified self conjugate spectrum for
the interconnected subsystem such that all
subsystems contribute to satisfy the desired
spectrum. An approach to stabilize power system
transients based on shifting the dominant
eigenvalues via optimization procedure was
presented in [13]. The present proposed controller
configuration is of the multilevel structure
commonly used for large-scale interconnected
systems. The underlying multilevel computation
structure has several features [1]. Among these are
the increased reliability and flexibility that is needed
for the concerned electric power system. Let the
controller gain be composed of two levels as:

u' (1) = diag (K,) x,(1) )

where K, € R™™™ is the lower “local” subsystem
level controller and .

N
u ()= K, x,(t) 3)

g=|
*r

where K, eN" ™ is the global “higher” level
controller representing feedback from other areas.
Therefore the two-level control associated with
subsystem (r) is  u,(¢)consisting of two
components namely:

! g
u,=u, +u, 4)
Both components are working together achieving
the global objective. The resulting closed loop is
given as:

%,(t)=(4, + B, K,)x,(0)+

N
> (4, +B, K,)x, 1) 5)

g=I
2y

A decentralized “local” controller based on
optimizing decoupled linear quadratic performance
index associated with each subsystem is proposed
for the lower level. Many methods for control
design are based on optimization techniques
considering a diverse performance index that each
has its merits and limitations [16-17]. The lower
level feedback gain is obtained according to
optimizing a linear quadratic performance index

with respect to %, (¢) as:
Tt a0, ) = [ O 0, %O+ O R, u, () dr
(6)

For the free r-th subsystem
X,(i):A,, x,(l)+Br ur([) . (7)
where 0<Q eR"™and 0< R, eR"™ are

symmetric positive semi definite and positive
definite weighting matrices respectively. Under the
assumption of complete controllability of each
subsystem (4,, B,), there exists a unique linear

optimal control u_ (¢) which can be expressed as:

u (t)=—R" B/ P, (8)
where 0< P eR"™is the symmetric unique
solution of the algebraic Riccati equation given as:

A P.+P. 4, +Q, ~P, B R'B P.=0 (9)

Such u,‘.(t)yields the minimum of performance
index (6), given as:
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Jr 0 Swy=xn Boxg (10)

It should be mentioned that the above desigt-

simulates the design of PSS. Furthermore, the

optimal control sigpal u(¢) provides stability to the |

matrices (4, — B, Rr"' B! P)(=1,....N).

Hence, the overall loéal gain (K") is given as:

K" =blockdiag (- R;' B] P,) = blockdiag (k,)
(1

To illustrate the proposed procedure, consider the

interconnected system extracted from [15] where:

L4 4 e 6 —10’
4, 4, 10 20

-20 -10
Anz[—os 0.4 0.2]’ 4=l s 4|
-0.1 0.1 0.1
1 -1
10 5 8
4,=2 -10 2 | B=[B‘ 0],
10 0 -25 .5
01 025
B {g 0.125]’ B <1 1)
11

Interestingly, each decoupled (free subsystem) is
controllable but unstable with eigenvalues as
(13£ j 7.1414) for the first subsystem (4,, B;) and
(15.1542,-8.2092, —9.4450) for subsystem (4,
B,). Increasing the values of the weighting matrices
O, will increase the overshoot of the corresponding
state variable, while decreasing the settling time.
Meanwhile, increasing the values of the weighting
matrices R, reduces the control effort. For the
quadratic performance index given in (6) applied on
two subsystem aforementioned in (7) with O, = I,
R, =1L, 0, = I; and R, = I,. Solving the algebraic
Riccati equation shown in (9) using Matlab® results
in;

43.3384 —12.2327

'-122327 262991 |’

30.7260 6.0824 14.4828

P, =| 6.0824 1.2540 2.8659

14.4828 2.8659 6.9101

Whereas the local optimal gains are:

v 16.5666 —27.5223
'T1-1.3981  23.2409
il k)— 11.4730 2.2201 5.4925
Wit %271 982467 5.6405 .13.3967
' 0k
Consequently, ‘ﬂw closed-looP optimal control
subsystems are: |\ !
4.6929 —13.0580
(4, - Blknl) =
27.9647 -30.7632

optimal eigenvalues became (—13.0352+ ; 7.133)
while

kl -0
The overall local gain K - =[ ! ]

:l where its

1.7910 3.3679 4.1016
(4, - sz4) =|-14.7738 -13.4204 -5.9042
-29.7197 -17.8606 —21.3891
where  its  optimal  eigenvalues  became
(-15.1857,-8.3193,-9.5135).
The global “higher level” gain

K(;=[qu](r,q=l,...,N, r#q) is obtained via

eigenstructure assignment procedure.
The déecoupled “lower level” optimal subsystems are
represented as:

x,()=(4,-B, K,)x,(t) (12)
The decoupled overall system is given as:

x(t)=A, x(t) (13)
where

N
x(6) =[x/ (0), X] (1),ry X3, (D) €R", (= 3 1,)
r=|
is the overall state vector which uniquely
describe the system while
A, =blockdiag (A, - B, K,)e R"™™" (14

The overall control vector is given as:
N

u(e) =[] (6), u] (s ufy (O) € RO (m =D m,)
r=1
(15)

Using equations (2) and (3), the composite control
vector can be expressed as:

u(t) = (K" + K¢)x(t)= K x(t) (16)
Therefore the composite closed loop will be on the
form of:

x(t)=(A, + A+ B K)x(t) )
where 4 =[4,, ]eR"™" (18)
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B = blockdiag (B,) € R"™" (r.q=1,....N, r#q)(19)
Let A= {/li,i =125 n} represents a desired
closed loop self conjugate set of eigenvalues
representing a desired (improved) dynamic response
specification. There exists at least one nonzero
vector ¥, e R" such that
(A4, +A+BK-2,1V, =0 (20)
The proposed procedure is based on mode
separation by decomposing the overall eigenvector
(V) into subeigenvectors associated with each
decoupled subsystem. It is possible to simplify the
composite relation (20) to the subsystems level as:

T T T qT X
v, = [V, Vi Vin 15 Vie € @1

This decomposition yields:

N
(Ar - Br K: _'l: 1) Vir +Z(Arq +Br Kn/)v;q =0
q=1

(22)
It may be represented as:
[(Ar - Br K: - 1’11) Arq """ ArN Br ]u,x(:nm,)
i vll‘ -‘
V“I
o 0
le
N
Z kn/ vlq
q=1
o Jnem, )1
(23)

Equation (23) represents (n,) linear equation in (1 +
m,) parameter forming the rightmost vector.

One can freely select (n - (n, - m,)) element
including the lower most (m,) vector wy,.

N
w, = kv, (24)
g=1

Then repeating the selection for (i =1,..., n), and
arranging to get

WI' = [wl‘l wl’ll ]E 9‘{ e (25)
Also, repeating for all subsystems and arranging it
as:

Wy o e

W W, e W,

Wy Wy w,,

me Wyy e W

0 ky e kyy Vi, Vy e Vo

k, 0 ... kyy Vi, Va o e V.,

.......... 0 ...

LT 0 Vi Vau  seeee Von
(26)

Let the desired closed-loop self conjugate set of
cigenvalues to be assigned to the composite system
via local and global control be
(-0.1+£,0.1,-02£,03,-1).

In order to obtain the higher level gains k;; and k,
while taking .into account interaction matrices 4,
and Ay, equation (23) is applied for
r=1,4,==0.1+ ;0.1 which yields:

Vi = _(’4 - Blkxl - All) I Byw,, "(A - Bk "111)-I Aviy
Numerical values are:

4.7929- 0.1 ~13.0580 03 04 02 01 025] ™" 5
Vv, =
279647  -30.6632-j0.1 -0.1 0.1 01 -1 1 J| "
N . 0.3
Arbitrarily selecting w;, as and v,; as
0.6

1+
02-j
0.7-/0.3
of the right most
o 0.0226 + j 0.0787
~0.003-0.0277 |
Meanwhile ford, =—0.1-j0.1, selecting w;, =
conjugate (w;;) and vy, = conjugate (v2); then vy
results as conjugate to v;;. Repeating the procedure
for r= 1,2, and i = 1,...,,5 to form equation (26), the
desired high level gains are expressed as:

[— 2.1764 0.6485 13.160011
an

while forming the lower five elements

vector, one gets vy

12 -
nyxiny

56950 2.8137 6.1087
[—20.6243 27.5748

21 T
myxi,

h he high
~17.2874 10.8792] where the higher

02x2 klZ

level gain K¢ =\: :\while the overall

k2| 2x3
gain that assigns the desired spectrum is

(k" +K9).
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An interesting advantage of the proposed procedure
is that the eigenvectprs can be partially selected.
The detailed selection procedure had been
previously presented for a centralized system [18].
Relation (26) is expressed in a compact form as:
W=K°V 27
where matrix W € ®™" contains all the properly

selected free papgmeters while ¥ e R™ s the
eigenvector matrix.

The global gain K “ is obtained from (27) as:
K¢=wv™ (28)
It should be pointed out that the design complexity
is resolved via partioning the overall eigenvector as
shown in (21). Robustness property for the
interconnected systems is a desired approach in
decentralized control. An extra design freedom can
be exploited by shaping the closed loop transient
response by selecting the matrix  in equation (26)
that results in as orthogonal as possible eigenvector

suchthat V™' =V’ (29)
The more robust the closed loop system is, the better
the design will be. This condition assures robust
performance. Combining the local level and global
level controllers, equations (11) and (28), the
controller structure is expressed in (16). An amazing
property for the proposed procedure is that as the
interconnections are disconnected from each other,
subsystems behave optimally.

3 PI Controller Design

To set the frequency and tie line power back to their
set values, PI controller can be used. This section
presents a comprehensive Pl controller design
procedure based on eigenvalues assignment as a tool
by exploiting the non unique feedback gain for the
multivariable augmented system. Let the linearized
controllable observable state space representation of
a two-control area power system be represented as:
x(t)=Ax(t)+ Bu(t)+ L w(t) (30.a)
y(t) =C x(1) (30.b)
where x(t) e R"is the state vector composed of

measurable components. The matrices 4, B, C and L
are constants and of appropriate dimensions.

u(t)eN™ is the two-input control vector, w(t)is the
m-dimensional unknown but constant step load or
slowly varying disturbance signals, y(¢) e 9‘is the

overall output vector. It is logical to assume that
step change of load can be considered as a
disturbance; hence in order to achieve the finite
constant load disturbance rejectionw(r), an effective

disturbance rejection controller is designed by
differentiating equation (30.a) as:
2(t)y=Az(t)+ Bu(t) , @3n

where z(x)=idd§. Defining an augmented state
t
vector x,(1)= [zT o y (r)]r where x, (1) eR".

Therefore, the augmented system can be wkitten
as:

%, ()= A, x,(t)+ B, u(t) (32.2)
Y.()=C, x,(0) (32.b)
where
A4 0 B
Aa= . ’Ba= ’Cn=[c 0 x(q+n,
[C OJ(nﬂ{)x(ﬂnﬂ [o]ﬂnqﬁ:m ]q’ ¢
(33)

The objective is to design an augmented PI control
which takes the form:

u(t) =K, x(t)+ K, j y(t) dt (34.2)
0

Differentiating both sides to obtainu(f) :

ut)=K, z+K,Cx=K, x,(t) (34.b)

such that the non unique gain

K, =K, K,Je®R"™  where K,eR™
represents  the  proportional  part,  while
K, e R™ represents the integral part. Appling
equation (34), results in:

x,(0) =(4, + B, K,) x, (1) (39)

The design procedure is summarized as follows
which is based on a procedure represented in [19].
To achieve a prespecified symmetric self conjugate

spectrum A = {/1., i=12,...,n+ q} for the

1
augmented system to provide a desirable transient
response through PI controller, the following
relations are satisfied:

|4, +B, K, -4 1|=0 (36)
Then,
(4, = A D|{lpug + (4, =4 D' B, K,|=0(37)

Let® ,(4,)=(4, - 4, I)™', then equation (37)
reduces to:

4, =4, D) =0 (38)

1n+q + (Da(ﬂ'l) Bu Ku

Applying the well known identity
I, + PO|=|l, +QP| where P is (w+q) xm
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matrix while Q is mx (n+q) matrix. Consequently,
equation (38) is transformed to:

Au_;"l IIH-q |1 +Kn (Du(/ll)Ba|=0 (39)

This relation indicates that there must not be a
common eigenvalue between open and closed loop
systems.

One possible solution for (39) is the sufficient
condition

Ka Ta("’l) e Im (40)
where ¥, (4,) =®d,(4,) B, is an (n+g) xm matrix
of rank (m) associated with the eigenvalue 4,.

m

Therefore in total it contains (ntq) xm linearly
independent columns. The j-th column of the left
hand side of equation (40) and the j-th column of 1,
satisfies the relation:

K,¥,(4)=-e¢, (41)
As the desired eigenvalues are distinct, the columns
of the (nt+q) x (nt+q) matrix
[Y,(4) Y,(4,) ... ¥, (4,,,)]are linearly
independent. (42)

Selecting. (n+q) colupns . from _equation (42)

representing the contribution of all ‘the prescribed
eigenvalues in the design process to form the (n+q)
x (n+q) matrix denoted as:

(Aig)]

T=[¥,#4) ¥,@4) ..
(43)

Consequently, the corresponding columns ¢, in
equation (41) are arranged in mx (n+q) matrix as:
E=[e, e 44)

Al (nag)

P € neq))

Accordingly, the desired Pl controller gain (X,) is.

obtained as:
K,T=-E (45)
Hence K, =-ET" (46)

The available flexibility in the choice of columns
that form equation (43) can be exploited to satisfy
several requirements (e.g. minimum norm gain,
robustness, improved eigenvalues sensitivity and
shifting poorly damped eigenvalues).

4 Illustrative Example

The significant advantage of the procedure is
demonstrated via the following numerical example.
Considering a two-area power system as a case
study with data taken from the well known model
[20] such that:

[-0.05 6 0 -6 0 0 0 ]
0 -333 333 0 0 0 0
-5.21 0 -125 0 0 0 0
A=| 045 0 0 -0.545 0 0
0 0 0 0 -0.05 6 0
0 0 0 0 0 -333 333
0 0 0 0 =521 0 -12.5]
(47.a)
.
B=[o 0 125 0 0 0 0O } (47.0)
00 0 0 0 0 125
[l 00 1 0 0 OJ
= (47.c)
000 -1 1 11
The open loop system eigenvalues
(electromechanical modes)

are

(~0.8312 + j 2.8855,—1.2479 + j 2.4743,

-0.9386,-13.2789,-13.2843)

As long as the pair (4, B) is completely state
controllable, it is possible to assign all the
electromechanical modes to specified desirable
locations to avoid poorly damped oscillations. The
state vector associated with matrix (47.a) is defined

[ tie Afl APgl Axvl Afz Asz Axvz]’
the control vector associated with (47.b) are
[AP, AP,], while the output vector associated

with (47.c) are [(ACE), (ACE),]" where AP,
is the interconnection tie-line power, Af is the

incremental  frequency -deviation, AP is the

incremental power generation level, Ax is the

incremental change in valve position, AP is the

incremental change in speed changer position and
ACE is the area control error.

Let the desired closed loop time response, which the
power system is required to track, be expressed as
the location of the closed loop eigenvalues for the
system expressed in (33) specified
as:

(~0.69 %/ 0.69, - 0.91+ j 0.91,-2.38 + j 2.78,

-3.06+;2.5,-24)
The significance of these eigenvalues are defined
for both low and high frequency roots with different
damping measures. Applying the proposed PI
design procedure using MATLAB software results
in the proportional and integral feedback gains as:
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0 0 0 0.1049 0.2724 -0.3051 0.6272

_[—1.1182 1.6051 ]
, =

p _[-um -1.8008 -1.1408 13982 1312  1.5784 1.5345]
-0.0472 -0.0472

5 Conclusion

This paper considered two proposed controller
design procedures for interconnected power system
load frequency problem. Due to poor choice of
primary controller parameters and in order to have a
good closed loop performance, a prescribed set of
eigenvalues have been specified to provide a
desirable response. The first design procedure
adopts the decentralized “two-level” control
strategy. The local level controller design is based
on index optimization that simulates power system
stabilizer design; while the higher level controller
has ‘been designed based on eigenspectrum
assignment (eigenvalues and partial eigenvectors).
Viewing interconnected power system as a group of
locally optimized subsystems, and globally
interconnected controllers tuned through
eigenstructure assignment can guarantee the overall
stability and suboptimality. An interesting feature of
the procedure is that one can partially select the
eigenvectors to shape the output response without
scarifying robustness. The objective of the second
procedure is to design a proportional plus integral
controller commonly used for power system load
frequency control. To set the frequency and tie-line
power back to their set values based on eigenvalues
assignment procedure which is flexible to select the
nonunique controller to achieve a desirable
performance. A two-area power system is used as a
case study.
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