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DESIGN OF SELF COMPACTING CONCRETE
USING ARTIFICIAL NEURAL NETWORKS
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ABSTRACT:

Application of artificial neural networks (ANNs) model to design the mix component of self compacting
concrete (SCC) with desirable properties, compressive strength and slump flow, is described in this
research Artificial Neural Networks (ANNs) have recently been introduced as an efficient artificial
intelligence modeling technique for applications involving a large number of variables, especially with
highly nonlinear and complex interactions among input/output variables in a system without any prior
knowledge about the nature of these interactions. Various types of ANN models are developed and used
Jor different problems. In this paper, an artificial neural network of the feed-forward back-propagation
type has been applied for the prediction of self compacting concrete mixtures. The main targets are SCC
components and the inputs interred are compressive strength and slump flow. Due to the complex non-
linear effect of compressive strength and slump flow properties on the SCC components, the ANN model
is used to predict the components of SCC parameters (mix components). SCC component parameters
were outputted according to a multi mixes taken from 34 researches [1-34] related with self compacting
concrete which contains the compressi've strength and slump flow test results. Mix component values are
considered as the aim of the prediction. A total of 225 specimens were selected from the laboratory
results of about 34 researches. The system was trained and validated using 150 training mixes chosen
randomly from the data set and tested using the remaining 75 mixes. About 20 mixes of experimental
SCC not found in the entered data were performed experimental in order to simulate the program and
compare between experimental and predicted mix design.

Results indicate that SCC components can be predicted with reliable values to the experimental results

using the ANN method.

Keywords:

Self compacting concrete; Compressive strength; Slump flow; Neural Network.

1-INTRODUCTION production of concrete with enhanced

performance (also known as High

Concrete has been used as a construction
material for more than a century. During
this period of time, concrete has
undergone a continuous development, e.g.
the growing use of secondary
cementitious materials in the binding

phase. The use of binder admixtures in the

Performance Concrete or simply HPC)
has received a great amount of attention

recently [35].

One of the most important binder
admixtures to offer a significant
contribution to HPC production is silica

fume, a pozzolanic material [36,37].



Mansoura Engineering Journal, (MEJ), Vol. 37, No 2, June 2012 C.52

Concrete, as a non-homogeneous
material, consists of sepérate phases;
hydrated cement paste, transition zone
and aggregate. Although most of the
characteristics of concrete are associated
with the average characteristics of a
component microstructure, the
compressive strength and failure of
concrete are related to the weakest part of
the  microstructure.  Cement paste
properties are of great significance in
concrete technology. The. compressive
strength of cement paste is mainly related
to Van der Walls forces. Therefore, the
more compacted the concrete, the higher
is the compressive strength. One porosity
reducing factor is the water-cement ratio
and the other factor that affects concrete
porosity is filler materials, such as silica

fume [36,37].

In recent years, ANNs have shown
exceptional performance as regression
tools, especially when used for pattern
recognition and function estimation. They
can capture highly non-linear and
complex relations among input/output
variables in a system without any prior
knowledge about the nature of these

interactions.

Unlike traditional parametric models,
these models are able to construct a
supposedly complex relationship between

input and output variables with an

excellent level of accuracy compared with
that of conventional metﬁods [38]. The
main advantage of ANNS is that one does
not have to assume an explicit model
form, which is a prerequisite in the
parametric approaches. Indeed, in ANN
models, a relationship of a possibly
complicated nature between input and
output variables is generated by the data
points. In comparison to parametric
methods, ANNs can deal with relatively
imprecise or incomplete data and
approximate results, and are less
vulnerable to outliers. They are highly
parallel, that is, their numerous
independent operations can be executed
simultaneously [39]. Basma et al. [40]
proposed a method for the prediction of

cement degree of hydration using ANN. .

The results indicated that the ANNs are
very efficient in predicting the concrete
degree of hydration with great accuracy
using minimal processing data. Nehdi et
al. [41] applied a neural network model
for performed foam cellular concrete.
Results showed that the production yield,
foamed density, unfoamed density and the
compressive strength of cellular concrete
mixtures can be predicted much more
accurately using the ANN method
compared to existing parametric methods.
Marianne, T.J. [42] designed a neural
network to investigate the influence of

different parameters on the salt frost
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resistance of concrete. Ju-Won Oh et al.
[43] developed an ANN model for the
propoftioning of concrete mixtures. Nehdi
et al. [44] used an ANN model for
predicting the performance of self-
compacting concrete mixtures. Zong,
Gung and Yun [45] utilized an automatic
knowledge acquisition system, based on
neural networks, to design concrete
mixtures. In a later work, Gung and Zong
[46] proposed a method to predict 28-day
compressive strength by using multi layer
feed forward neural networks. Lai and
Serra [47] developed a model, based on
neuro computing, for prediction of the
compressive  strength  of  cement

conglomerates.

Yeh [48] developed a strength based
Artificial Neural Network (ANN) model,
which was found to be more accurate than

the one based on regression analysis.

It was also discovered that his ANN
model gave the detailed effects of the
proportions of each variable from the
concrete mixtures. Dias and Pooliyadda
[49] wused back propagation neural
network models to predict the strength
and slump of | ready mixed ordinary
concrete and high strength concrete, in
which chemical admixtures were used.
Attempts have been made in the past to
devise a kinetic model for cement paste

properties to predict the phenomena

occurring in concrete, but the focus of
these models has been on predicting
density, compressive strength,
deformation under loading, the cracking
of sufficiently hardened concrete and etc.
The models have not yet reached the stage
where they can explain the changes in the
physical properties of the cement paste
portion of the concrete [39-49]. Predicting
the properties of cement paste is of great
significance and difficult to achieve as a
function of the mixture gradient and
physical properties of concrete, hence, a
nonlinear prediction model needs to be
considered. The uncertainties associated
with the parameters affecting the SCC
mixture of cement paste make it difficult
to exactly estimate such properties
[36,39]. Knowing the properties of
cement paste, a better understanding of

concrete performance properties can be

taken into account [36,37].

Considering the influence of silica fume
on the transition zone and cement paste
and the complex and nonlinear effect of
silica fume on concrete cement paste, a
set of experiments were carried out on
cement paste with different water-
cementitious materials and silica fume
unit contents, in order to investigate the
effect of silica fume on cement paste. An
ANN model is then developed, based on
the data produced, to predict SCC mixture

parameters.
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2-NEURAL NETWORKS

ANN  modeling, a paradigm for
computation and knowledge
representation is originally inspired by the
understanding and abstraction of the
biological structure of neurons and the
internal operation of the human brain. A
neural network is a network of many
simple processors that are called nodes. A
multilayer perceptron may be thought of
as consisting of layers of parallel data
processing cells. Each node (neuron) has
a small amount of local memory. Nodes
in the input layer only act as buffers for
distributing the input signals to nodes in
the hidden layer. The nodes are connected
by connections; each usually carrying
numeric data called weights, encoded by
any of the existing methods. Each node in
the hidden layer sums up its input signals
after weighting them with the strengths of
the respective connections from the input
layer and computes its output as a
function of the sum. The nodes operate
only on the local data and on the inputs
they receive via the connections. The
differences between the computed output
and the target are combined together by
an error function to give the network the
verification set, and used to keep an
independent check of the progress of the
algorithm. Training of the neural network

is stopped when the error for the

C.54

verification set begins to increase
[38,39,43].

The main principle of neural computing is
the decomposition of the input-output
relationship into a series of linearly

separable steps using hidden layers [39].

There are three distinct steps in

developing an ANN based solution:
1. Data transformation or scaling;

2. Network architecture definition, where
the number of hidden layers, the number
of nodes in each layer and the

connectivity between the nodes are set;

3. Construction of a learning algorithm in
order to train the network [38,41].

Fig. (1) Shows the simple architecture of
a typical network that consists of an input
layer, hidden layers, an output layer and

connections between them.

Nodes in the input layer represent
possible influential factors that affect the
network outputs and have no computation
activities, while the output layer contains
one or more nodes that produce the

network output.

Hidden layers may contain a large number
of hidden processing nodes. A feed-
forward  back-propagation  network
propagates the information from the input
layer to the output layer, compares the

network outputs with known targets and
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propagates the error from the output layer
back to the input layer, using a learning
mechénism to adjust the weights and
biases [38,43].

In general, the net input to each node is

calculated as:

o |l —
NE=) WX+ 4

n
1=1

Where W]ji is the weight that connects
node j in layer 1 to node i in layer 1- 1; n
is the number of nodes in layer 1 -1; B]j is
a threshold value assigned to node j in
layer 1; and X", is the input coming from
node i in layer 1 -1 to node j in layer 1. The
net input, N]', is then modified by an
activation function, f, to generate an
output value, Y' j» given by:
Y} = f(N)),

Where f is a nonlinear activation function
assigned to each.node in the network. The
learning mechanism of this back-
propagation network is a generalized delta
rule that performs a gradient-descent on
the error space, in order to minimize the
total error between the calculated and
desired values at the output layer during
modification of the connection weights.
The implementation of this algorithm
updates the network weights and biases in
the direction in which the error decreases

most rapidly. Tréining is accomplished in

an iterative manner. Each iteration cycle
involves the feed-forward computation
followed by an error-backward
propagation to modify the connection
weights. Convergence depends on the
number of hidden layer nodes, learning
rate parameters and the size of the data set
required to create the proper results.
Furthermore, there is no structured
algorithm to obtain the optimal structure

and parameters of neural networks;

therefore, one should find the optimal

network by trial and error. The most

interesting property of a network is its
ability to generalize new cases. For this
purpose, an independent data set is used
to test the neural network and check its
performance. When verification and test
errors are reasonably close together, the
network is likely to generalize well [38,
43].

Upon successful completion of the
training process, a well-trained neural
network is not only capable of computing
the expected outputs of any input set of
data used in the training stage, but should
also be able to predict, with an acceptable
degree of accuracy, the outcome of any
unfamiliar set of input located within the

range of the training data [38,41].
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3-SELECTION OF
DATABASE

The selection of the database chosen to
train a neural network such that it will be
capable of capturing the relationships
between the properties of SCC and its
mixtures is of great importance. It must be
trained on large and comprehensive sets
of reliable experimental data that contain
influential ~ factors regarding SCC

mixtures.

The data set for neural network analysis
was a subset from the database of SCC
mixes and its corresponding properties.
The SCC mixés were measured in the
laboratory by chosen several mixes of
SCC from 34 references. In this study,
cement (C), fine powder (P), fine
aggregate (FA), coarse aggregate (CA),
superplastisizer (SP), viscosity
enhancement agent (VEA) and water-
cementitious ratio (W/C) were used for
the production of SCC with desired
properties, compressive strength and
slump flow. Type of cement used was
(Type I) of 161 to 680 kg/m® with the
W/C of 0.24 to 0.58 and silica fume unit
contents of 0.0 kg/ m3 to 493 kg/ m® and
fine aggregate of 263 to 1270 kg/m® and
coarse aggregate of 370 to 1217 kg/ m’
where VEA was 0 to 5.7 kg/m® were used
to prepare the specimens. All the

specimens were cured for 28 days at an

average temperature of 20°C. This led to
the development of a large number of data -
sets. Table (1) shows the ranges, average
values and standard deviation of all
relevant parameters. Ultimately, a total of
225 data pairs have, therefore, been
selected from the experimental database,

as mentioned above.

4-NEURAL NETWORK
ARCHITECTURE

There is no effective procedure for
identifying the optimal architecture of a
network before training. However, it is
important for the hidden layers to have a
small number of nodes. An excessive
number of hidden nodes may cause the

network to memorize the training data.

In such cases, the ANN would not be able
to interpolate effectively between adjacent
training data points. Too few hidden
nodes, on the other hand, will limit the
network's ability to construct an adequate
relationship between input and output
variables [38].

The number of hidden layers and nodes
are usually determined via a trial and

error procedure.

There are some rules to estimate the
number of hidden nodes. According to the
method suggested by Dave Anderson and
George McNeill [38], an upper bound for

the number of processing nodes in the
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hidden layers can be .calculated by
dividing the number of input-output pairs
in the. training set by the total number of
input and output nodes in the network,
multiplied by a scaling factor between

five and ten.

Compressive strength and slump flow
were represented by the two input nodes,
while the output layer contains seven
nodes representing cement, fine powder,
fine aggregate, coarse aggregate,
superplastisizer, VEA and water cement
ratio. Following the guidelines suggested
by Dave Anderson and George McNeill
[38] and some preliminary gomputations,
‘a network architecture containing two
hidden layers was adopted. The first
hidden layer included fourteen nodes,
while the second hidden layer had ten
nodes and a full connection between the
nodes in the adjacent layers was selected.
The network architecture can be seen
schematically in Fig. (2). A free access
ANN package (Qpet) of the feed-forward

back-propagation type was used in this

study [50].
5-TRAINING OF ANN
MODEL

The training procedure was carried out by
presenting the network with the set of
experimental data in a patterned format.

Each training pattern includes an input set

of two parameters representing the
compressive strength and slump flow and
a corresponding output set representing
SCC mixtures (that is, cement, fine
powder, fine aggregate, coarse aggregate,
superplastisizer, VEA and water cement
ratio). The network is presented with the
variables in the input vector of the first
training pattern, followed by an
appropriate computation through the
nodes in the hidden layers and prediction
of the appropriate outputs. The error
between the predicted output and target
value is calculated and stored. The
network is then presented with the second
training pattern and so on until the
network has gone through all the data

available for training the network.

The Root-Mean-Square (RMS) of the
error is then calculated and back
propagated to the network. Biases and
weights or the connection strength
between nodes are modified during the
back propagation phase such that the
(RMS) errors are reduced. The process of
the introduction of training input-output
pairs to the network, calculation of the
(RMS) error and, finally, the adjustment
of weights and biases to reduce the
(RMS) error are referred to as, one
iteration. This process continues until
cbnvergence is achieved or the maximum
number of iterations is reached [38, 41].

The trained ANN model is represented by
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the connection weights once the above
procedure is converged. This process is
illustrated in Fig. (3). Trial and error
procedure are illustrated in Table (2)
where trial of hidden layers were carried
out for the Neural Network program in
order to obtain optimum number of
hidden layers (hl) and performance. Letter
(x) represented the trial number of layers.
Second column of Table (2) shows the
number of trial for each number of layers
(x). Best trial was illustrated in the third
columns of the table whereas optimum
performance illustrated in column 4. After
about 176 trials, Results indicated that
best trial and performance occurred when
using two layers 14 and 10 consequently

as hatched in column 4.

To avoid the over-fitting of the neural
network model to the data during iterative
training, a separate set of the data set was
used to validate the model at some
intervals during training. Training is
stopped when the error for the validation

set begins to increase.

The network was trained and validated,
based on 150 training patterns chosen
randomly from the 225 qvailable data
sets. The remaining 75 pairs of
independent data were used to test the
network after completion of training and
validation in order to assess its

performance on data to which it has never

before been exposed. The training process
and the associated ANNs analyses were
carried out with an optimal value of
learning rate of 0.00338147and maximum
number of iterations of 3000 with an error
goal of 0.000.

6-RESULTS AND
DISCUSSION

The network was trained to predict SCC
mixtures using a total of 150 training and
validating data sets and 75 testing data
sets. Figures 4a to 4g compare the output
and target values of SCC mixtures for all
the 225 available data sets. Figures 5a
and 5b show the
characteristics of the ANN model during

convergence
the training and testing phases,

respectively.

Fig. (6) Illustrates the distribution of the
network outputs versus the target values
for the training data sets. All data points
are distributed along the optimal
agreement line, with the training and
testing Root-Mean-Square (RMS) errors
of  0.0338147 and 0.0208165,
respectively. The correlation between
predicted and measured SCC components
is seen to be satisfactory. It is generally
lower for powder, superplastisizers and
VEA values that is because of these
parameters includes zero values in some

mixes as indicated in Table (2) and
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figures 4b, 4e and 4f. The relatively larger
prediction error and less correlation
pararrieters may, therefore, be associated
to high variability in the mixture
development rather than the prediction
method and may be related to the
different types of such materials used in
the training set targets. To test the
accuracy of the ANN model, the final
trained model was called upon to recall
the data not used in the training process
(150 mixes). A total of 20 mixes,
unfamiliar to the network in the range of
training data sets, were presented to the
ANN model and the network was required
to predict the SCC mixture associated
with each mixture. The mixture
proportion and the measured and

predicted values are listed in Table (3).

As mentioned previously, a set of
experimental data, including 225 pairs of
data, was used in this study, from which
150 training and validating patterns were
chosen arbitrarily and the remaining 75
pairs were used as measured data, to test
and verify the efficiency and validity of
the predicted values by the network. A
reliable agreement between the measured
and predicted values of SCC is observed,

as shown in Fig. (7).

Results of program/experimental mix
design ratios of 10 mixes of SCC are

illustrated in- Fig. (7) Where the mix

design prediction was approximately
closed to the target mix in some mixes
whereas other mixes were relatively
closed to targets. The high range of inputs
data of compressive strengths and slump
flows (SF) makes some properties of
compressive strengths and slump flows
entered to the program are closed to each
others so, outputs may correlate to more
than training set data hence, the predicted
mix design may result in many training
mixes so mix design of outputs may differ
from experimental. Tested data were
entered to the program by pairs whereas
each tested data of compressive strengths
and slump flows correlate to the training
set as a group which may differ from the
pairs of training sets which produce
deviation about targets as indicated in Fig.
(7). For example tested mix M1 some
components increased with related to
targets such as powder, aggregates and
W/C where as decreasing in cement and
superplastisizer were observed. On the
other hands tested mix M7 indicated
increasing in cement, superplastisizer and
W/C whereas decreasing in powder and
aggregates was observed. Economical
investigation of desired and predicted
mixes may be carried out in order to
choose the economical mixes as shown in
mix M8 which exhibited no powder in the
mix design and decreasing in cement and

FA where increasing in CA and
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superplastisize. It can be, therefore,
concluded that the proposed ANN model
is adequately able to predict SCC

components.

Fig. (8) illustrated the

prediction/experimental which indicated

average

that cement, W/C and CA were more
closed to the experimental (0.99, 1.02 and
1.03 respectively) where powder, FA and
superplastisizer was relatively closed to
the experimental (0.9, 1.14 and 0.83

respectively).
7-CONCLUSIONS -

This paper presents a nontraditional
approach to the prediction of the SCC
mixture of a cement paste mixture, based

on ANN technology.

Based on the findings of this
investigation, the following conclusions

can be drawn:

1. The proposed model demonstrates the
ability of a feed-forward  back-
propagation neural network to predict the
mix component of SCC concrete with
reliable accuracy. The model performed
quite well in predicting, not only the SCC
mixtures used in the training process, but

also those of test mixtures that were

unfamiliar to the neural network.

2. Predicting the mix proportions of SCC
as a function of the SCC mix properties,

using analytical and traditional methods,

C. 60

is difficult to achieve as a previous
studies, whereas a trained neural network
model can predict such mix proportion
easily and accurately. Therefore, ANN
can provide a drastically powerful

alternative approach.

3. Although the prediction capability of
any ANN model is limited to data located
within the boundaries of the training
range, the proposed model can be
retrained to include a wider range of input
variables by providing additional training

sets covering the new range;

4. The existence of powder materials,
superplastisizer and VEA in the training
model may confuse the model with some
negative values of outputs if its ranges

stared with zero values.

5. It is recommended to build up a néw
model for zero values of powder,
superplastisizers and VEA if desired in
order to adjust the model without any

confusion.

6. The average prediction/experimental
outputs were more closed to cement,
water- cementitious ratios ahd coarse
aggregates (0.99, 1.02 and 1.03)
respectively  whereas  the  average
prediction/experimental outputs were
relatively closed to powder, fine
aggregates and superplastisizer (0.9, 1.14

and 0.83) respectively.
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Fig. (1)Creation of Neural Network and design topology

Table (1): Range, average and standard deviation of measured input and output

variables.

variables Range Average Standard deviation

Y1 (Few) 200-950 kg/cm’ 498.1785 150.2768

Y2 (Slump flow) 440-930 mm 701.36 88.13144

X1 (©) 161-680 kg 359.5326 96.68018

X2 (P) 0-493 kg 155.3457 75.16052

X3 (FA) 263-1270 kg 850.3273 118.2341

X4 (CA) 370-1217 kg 795.5567 104.9805

X5 (SP) 0.4-30 kg 7.317022 4.601536

X6 (VEA) 0-5.7 kg 0.599932 1.243141

X7 (W/C) 0.24-0.58 0.36 0.047925
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Slump flow

Compressive strength

Input layers
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Hidden layer 2
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C P FA CA SP VEA W/

Fig. (2) Architecture of neural network model

Table (2): Trial and error of hidden layers (hl) and performance

No. of hl Number of Best trial Optimum performance
trial (x)
2-x-7 11 2-10-7 0.0118565
2-1-x-7 14 2-1-11-7 0.0143926
2-2-x-7 10 2-2-9-7 0.0128645
2-3-x-7 13 2-3-10-7 0.00904575
2-4-x-7 12 2-4-10-7 0.00880824
2-5-x-7 12 2-5-7-7 0.00851817
2-6-x-7 ‘ 13 2-6-9-7 0.0083789
2-7-x-7 10 2-7-8-7 0.00655413
2-8-x-7 11 2-8-10-7 0.006472
2-9-x-7 11 2-9-9-7 0.00620846
2-10-x-7 10 2-10-10-7 0.0048537
2-11x-7 12 2-11-8-7 0.00540072
2-12-x-7 12 | 2-12-10-7 0.00409228
2-13-x-7 13 2-13-12-7 0.00383568
2-TAx=75 " 12 e 1A 107 10100338147
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Table (3): Measured and predicted values of outputs variables for data sets used in

testing of ANN model.
. AWMMMMW Experimental Mix Mix from ANN program
C | P |FA|CA| SP |VEA|WC | C P | FA| CA | SP | VEA | WIC
! 425 | 130 | 718 | 718 | 9.00 | 0.00 | 0.34 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
2 425 | 130 | 718 | 718 | 9.00 | 0.00 | 0.34 | 379 | 140 | 893 | 740 | 7.33 | 0.08 | 0.36
3 425 | 130 | 718 | 718 | 9.00 | 0.00 | 0.34 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
4 425 | 130 | 716 | 716 | 10.8 | 0.00 | 0.34 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
5 412 | 120 | 748 | 748 | 8.10 | 0.00 | 0.32 | 332 | 157 | 837 | 822 | 4.31 | 0.12 | 0.37
6 400 | 130 | 736 | 736 | 9.00 | 0.00 | 0.34 | 351 | 171 | 901 | 727 | 7.90 | 0.04 | 0.36
7 350 | 182 | 917 | 917 | 2.79 | 0.00 | 0.37 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
8 350 | 125 | 781 | 781 | 10.6 | 0.00 | 0.42 | 380 | 139 | 892 | 741 | 7.3 | 0.08 | 0.36
9 350 | 125 | 781 | 781 | 12.5| 0.00 | 0.42 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
10 402 | 71| 941 | 941 | 142 | 0.00 | 032 | 439 | 46| 786 | 875 | 15.2 0| 035
1 334 | 100 | 776 | 776 | 5.70 | 0.00 | 0.38 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
12 300 | 211 | 718 | 718 | 820 | 0.00 | 0.34 | 365 | 119 | 829 | 833 | 7.55 | 0.15 | 0.37
13 497 0| 854 | 854 | 6.96| 0.00 | 0.35| 464 0| 785 | 875 | 8.19 0| 035
14 350 | 175 | 723 | 723 | 6.60 | 1.75 | 0.37 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
15 161 | 241 | 864 | 864 | 3.45 | 0.40 | 0.35 | 258 | 220 | 857 | 801 | 3.31 | 0.12 | 0.38
16 248 | 191 | 729 | 729 | 8.00 | 0.00 | 0.45 | 253 | 216 | 855 | 814 | 3.72 | 0.11 | 0.38°
17 286 | 190 | 753 | 753 | 5.80 | 0.00 | 0.39 | 331 | 157 | 837 | 821 | 4.32 | 0.12 | 0.37
18 286 | 190 | 713 | 713 | 7.00 | 0.00 | 0.39 | 337 | 152 | 836 | 823 | 4.32 | 012 | 0.37
19 197 | 197 | 956 | 956 | 2.80 | 0.56 | 0.35 | 223 | 223 | 871 | 800 | 2.80 | 0.09 | 0.39
20 161 | 241 | 864 | 864 | 3.00 | 0.40 | 0.35 | 258 | 220 | 857 | 801 | 3.31 | 0.12 | 0.38
1+ ; ~ v
y=0.9461x+0.0239
0.8 R-square=0.9473 ]
oo e © °
m 0.6 -
3
% 04 ]
5
0.2 No of points = (7*150) =1050 points |
0 i
ﬂ 1 1 1 L 1 1 1

1 1 1
03 04 05 06 07 0.8 0.9 1
Training tagets ]

Fig. (6) Network outputs vs targets




C.73  Ashraf M. Heniegal

1.4 ;
4 Target "
] BC WmP BF % N
PR = o AN [ s A BCA SSP BW/C
e Progran g — m
s 1LIEE | 5 |6 g lE
> 1 3 %
< : B 'f
< ) : :
(e B R
o ] :
206 . HIENH LHENT
= ] 8
ey | 2
=] B
O 04 H — - — - L -
0.2 H{ENH s HIENT- EN
O 11: T U 1 1 1 T 1 T T
1 2 3 4 5 6 7 8 9 10

Average Outputs of ANN/Exp.

Test mixure number
Fig. (7) Ratio mix design proportion (program/experimental)

1.2

Outputs Targets

99

=

0.90

0.83

o
@

o
o

o
»

o
[N

o} - P FA CA SP W/C
Test mixure
Fig. (8) Average Ratio mix design proportion
(program/experimental)




	Design of Self Compacting Concrete Using Artificial Neural Networks.
	Recommended Citation

	Untitled

