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Recurrent Neural Networks Based Fault Detection
for Synchronous Generator Stator Windings
Protection
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Abstract:--

This paper presents a proposed approach for fault detection and faulty phase(s) identification tor
synchronous generator protection based on artificial neural networks. In order to perform this approach: the
protection system is subdivided into differcnt neural network modules for fault detection and classitication. The
proposed approach uses Recurrent Neural Network (RNN) to detect and classify the synchronous generator
internal faults. The RNN uses the three-phase current measurements from both sides of the synchronous
generator stator winding as its input data. RNN was trained using various sets of data available from the
simulation results of the selected synchronous model under different fault sceuarios (fault type, fault location,
fault resistance and fault inception angle). Simulation results of the proposed RNN based synchronous generator

stator winding protection provide a great performance; in terms of accuracy, speed and reliability.

Keyvwords: Synchronous generator, Differential protection, Recurrent neural nctwork, Fault detection, [Fault

classification.

1. Introduction protection strategy. The internal faults of

the stator winding of synchronous

Dy +1 > 2 o :
Protection of synchronous generators 1s an . . .
’ 5 generator nesd to be identified and

essential part of the overall power system

Accepted February, 17, 2013



E.2 A. Helal, H. El Dessouki, A. Hatata, M. El Sasdawi and M. Tantawy

classified rapidly and correctly. The most
common method used for generator
protection  utilized the  overcurrent
percentage differential relay as the primary

protection.

In the last few decades, numerical
protection or digital protection was
introduced  to improve the protection
schemes. Several protection techniques
[1-8] have been introduced to provide
protection  against unbalanced fault
conditions. A protection technique uses the
double frequency current in the field
windings and the direction of negative
sequence power flow at the generator’s
terminal for detecting and discrimination of
asymmetrical faults [1]. Another digital
technique for detecting faults in the stator
windings utilizes positive and negative
sequence models of synchronous machine,
in addition to voltage and current measured
at the generator terminal [2]. Power based
protection algorithms have been introduced
in [3-5]. The first algorithm [3, 4] was
introduced to provide protection for non
utility generation units against islanding,
while the second power-based algorithm
was introduced for detecting pole-slipping
conditions  using  three-phase  power
measurements taken at the generator’s

terminal and the equal area criterion [5].

Recently various artificial intelligent

(AI) techniques are introduced to power

system protection. Among various Al
techniques, the Artificial Neural Networks
(ANN) have become most frequently used
for solving numerous complex electric
power system problems. A fault detection
and  classification problem in the
synchronous machine can be treated as.a
pattern classification problem, and hence
ANNs can be used to solve this kind of
problem. The most common NN structures
used for these applications are the
feedforward neural network FFNN and the
recurrent neural network RNN. Figure 1
shows the architecture of a feedforward
neural network FFNN while figure 2 shows

the architecture of the recurrent neural
network RNN [6].

Multilayers FFNN based differential
protection schemes for generator stator
windings was introduced in [7,8]. Ref. [7]
uses samples taken from the line-side,
neutral-end and field currents of the
generator, while [8] uses the difference and
average of the currents entering and leaving

the generator windings.

The FFNN architectures of figure 1,
and algorithms are not well suited for
patterns that vary over time. The temporal
pattern recognition technique involves
processing of patterns which evolve over
time. Recurrent networks have feedback
connections from neurons in one layer to

neurons in a previous layer. The Elman
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RNN of figure 2, was proposed to
determine the fault direction on
transmission lines [9, 10]. In ref [11]
transmission line fault location model
based on an Elman recurrent network has
been presented for balanced and

unbalanced short circuit faults.

Input Hidden
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Fig. 1. Feedforward neural network [6]
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Fig.2 Recurrent neural network [6]

In this paper a RNN is proposed to
detect and classify the internal faults on
stator windings of synchronous generator.
network uses

The proposed neural

instantaneous values of the three-phase

currents on both sides of stator windings of
the synchronous generator to make the
decision. The RNN-based algorithm is
tested to evaluate the performance of the
proposed method in terms of accuracy,
robustness and speed. Details of the design
procedure and the results of performance
studies with the proposed RNN are given

and analyzed in this paper.
2. Power system model

The data required for training and
testing neural networks are developed using
MATLAB / SIMULINK environment.
These data

information to generalize the problem. A

should contain necessary

suitable synchronous generator model is

required to characterize the different
operating and fault conditions. The fault
conditions include fault type, location, and
resistance and inception angle. In a
previous work [12] the authors have
developed a dynamic model to simulate
generator states (internal fault, external
fault, normal states). Three-phase sample
power system was simulated and the
input/output pair patterns were generated.
The developed model will be used in this
synchronous

paper to represent the

generator.

The tested power system consists of

synchronous generator

three-phase

connected to an infinite bus through a
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transmission line with the details given in
[12]. The measured devices are located at
the two ends of the generator. The one line
diagram of the modeled power system is

shown in Fig.3.
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Fig.3 Single line diagram of the modeled power

system
3. Recurrent neural network

The ANNS are statistical modeling tools
that have a wide range of applications,
including time series prediction. Neural
networks with hidden units are universal
approximators, which theoretically mean
that they are capable of learning an
arbitrarily accurate approximation to any
unknown function. Their complexity is
increased at a rate approximately
proportional to the size of the training data.
Neural networks can be applied to time

series modeling without assuming a priori

function forms of models [13].

The simplest way to include temporal
information into a multilayer feedforward
network is by using different time-lagged
input variables. For example, for a target

series s(t), series {s(t—1),s(t-2), .., s(t —1) }

can be used as input variables. Selecting
proper time lags and an informative set of
input variables is critical to the solution of

any time series prediction problems.

For a neural network to be dynamic, it
must be given memory. There are two ways
to accomplish this requirement. The
technique uses time delays. The Time
Delay Neural Networks (TDNNs) are
multilayer feed forward neural networks.
They do not have feedback connections
between units. TDNNs provide simple
forms of dynamics by buffering lagged
input variables at the input layer and/or
lagged hidden unit outputs at the hidden
layer. The Finite Impulse Response (FIR)
network is a feed forward network whose
static connection weights between units are
replaced by an FIR linear filter that can be
modeled with tapped delay lines. The
standard back-propagation algorithm is
used for training. An alternative is to use
the temporal back-propagation learning
[14-15].

The second technique is the recurrent
networks which have feedback connections
from neurons in one layer to neurons in a
previous layer. A typical recurrent network
has concepts bound to the nodes whose
output values feed back as inputs to the
network. So the next state of a network
depends not only on the connection weights

and the currently presented input signals
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but also on the previous states of the
network. The network leaves a trace of its
behavior; the network keeps a memory of
its previous states. Depending on the
architecture of the feedback connections,
there are two general models of recurrent
networks: (1) partially recurrent, and (2)
fully recurrent.

The back-propagation-through-time
algorithm for training a recurrent network
is an extension of the standard back-
propagation algorithm. It may be derived
by unfolding the temporal operation of the
network into a layered feedforward
network, the topology of which grows by

one layer at every time step.

The RNN has some advantages over
FNN such as faster convergence, more
accurate mapping ability, etc., but it is
difficult to apply the gradient-descent
method to update the neural network
weights in RNN [16].

4. Generation of training data

The simulated cases are divided into
three groups. The first is the training group
and its patterns are selected randomly and
normally distributed in order to make
ANN to generalize and prevent skew
learning. The second group is used to
validate the ANN during the training
process and the last one is the test group.
Training set consists of 3400 pattern
cases of the

representing  different

generator states which can be classified as:

o The normal operation state represented
by three-phase balanced operation at
different loads and power factors and
has 800 pattern.

o External fault state represented by
different types of external faults at
various locations along the T.L and has
600 pattern.

e Internal faults state represented by
various types of internal faults at
different percentages of the stator

winding and has 2000 pattern.

S. Proposed protection

algorithm using RNN

The first stage of the proposed RNN
protection algorithm is the input
processing. The input data is collected by
measuring the three-phase currents at the
two ends of the stator winding. This stage
consists of two steps: filtering and
normalizing the input data.

o  Filtering: The current signals are

corrupted by high frequency transients,

which may not be suitable for the
learning of the proposed algorithm. The
six current signals are filtered using

band pass filter with cutoff frequency 80

Hz to attenuate the D.C and high

frequency transient components.

e Normalization: Current samples are

linearly normalized to be within the
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range [-1, 1]. This is done by using the
command "mapminmax" in neural
network  toolbox in MATLAB.
Normalizing the input patterns have
shown many advantages on speeding up
training process, preventing the neural
net from working in saturation, and

improving the NN performance [17,18].

To ensure that the network can identify
faults in a very short time, the three-
phase currents are sampled at a rate of
20 sam;ﬁles per a cycle. This sampling rate
is commonly used in digital relays [10].
Fig. 4 shows the schematic diagram of
proposed protection algorithm. The current
signals from the power system are obtained
through current transformers. Then these
currents are sampled at sampling frequency
1kHz. The selected samples are entered to
the fault detector neural network and if the
output becomes one, then the sampled data
flow to the fault classification neural

network and classify the fault type.
6. RNN fault detector

6.1 RNN input and output

selection

Long data window enables protective
algorithms to get more information and in
turn resulting in stable performance. On
the other hand, long data window leads to
slow decisions. So, after analyzing the

simulation results and having acceptable

RNN performance, a short length data
window of 4 samples is selected. This
data window will be sufficient for
detecting all fault types. Therefore, it
should have 24 inputs. Hence, the

network’s input consists of:

ian()T,  ian(0-DT, ian(n-2)T, ian(n-3)T,
n(MT,  ion(n-DT, i6a(n-2)T, ipa(n-3)T,
T, i@-DT, ica(n-2)T, ien(n-3)T,
br(MT,  Lr(n-DT, ir0-2)T, ir®n-3)T,
(T, ibr(n-DT, ipr(n-2)T, ipr(n-3)T,
if@T, ier(@-DT, icx(n-2)T, ier(n-3)T.

Where { ian(n)T, ian(n-1)T,.. , icr(n-3)T }
are the time-lagged terminal and neutral

side currents.
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Fig.4 Schematic diagram of proposed protection

algorithm
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The network needs just one output to
differentiate between three states of
generator (Normal state, External fault
state, and Internal fault state).  The
network’s output should be 1 for the case
of internal faults,-1 for the case of external

faults and 0 for normal state or no faults.
6.2 RNN structure

Different neural network structures,
having different number of neurons in their
hidden layers are consider and trained.
Training and testing patterns are generated
by simulating different types of faults on
different locations and phases regions of
the simulated generator. The proposed
network is a small sized and gives
satisfactory results. It consists of 10
neurons in the first hidden layer, 5 neurons
in the second hidden layer and one neuron
in the output layer. The number of the time
delay units is two for the output layer.
The RNN structure of the fault detector is
(24-10-5(2)-1). Activation function used is

a log sigmoid function.

The software used for implementing the
algorithm is the MATLAB neural network

toolbox.
6.3 Tests and results

After training, the RNN fault detector
was tested for many case studies include
different fault conditions and different

power system data for each type of fault.

Fig.5a illustrates the RNN response for
an external fault occurs at the middle of
transmission line. The fault is a single
phase to ground fault. It occurs at 0.075 sec
and the pre fault power flow from generator
to infinite bus is P=1p.u. at p.f 0.85 lag.
Fig.5a shows the waveform of the three-
phase currents at the two ends of the stator
winding of the synchronous generator.
Where as Fig. 5b depicts the response of
the RNN as a function of the time (sec). It
can be seen that the network's output has a
value of (-1) through 4 samples after the

fault occurs.

(b) RNN output

Fig. 5 Response of RNN fault detector to an
external fault

Fig.6 illustrates the network response
for an internal fault. The results are
obtained for a single-phase to ground (a-g)
fault at 53% of stator winding away from
the neutral point, the inception fault time is
0.075 second, the fault resistance is 3 Q,
The pre-fault power flow from generator to

infinite bus is P = 1 p.u. at p.f 0.85 lag.



E. 8 A. Helal, H. El Dessouki, A. Hatata, M. El Sasdawi and M. Tantawy

Fig.6a shows the waveform of three-phase
currents. It can be observed that the current
of phase a is divided into two currents i,
and ip. The current i, has a large value due

to short circuit occurs.

Fig. 6b illustrates the response of the
network as a function of the time (sec). The
network's output is going to the value of (1)

through 4 samples after the fault occurs.

The proposed program is implemented
for many case studies. The results
demonstrate the ability of the fault detector

to produce a correct response in all

simulation tests.

.......

(b) RNN output
Fig.6 Response of RNN detector to an internal
Sfault at  53% of stator winding of synchronous
generator
The results show also the stability of
the RNN outputs under normal steady state
conditions and rapid convergence of the

output variables to the expected values

(very closed to 0, 1 and -1) under fault
conditions. This clearly confirms the
effectiveness of the proposed fault detector.
The results reveal that the RNN is able to
generalize the situation from the provided
patterns, accurately indicates the presence
or absence of a fault and can be used for

on-line fault detection.
7. RNN fault classifier

The inputs to the fault classifier
network are 6 currents, each current is
represented by 4 samples, making a total
of 24 inputs. The output layer has 4
neurons to represent the faulty phases and

the ground.

The generated patterns were normalized
the output to be within [0, 1] range. The
network outputs were assigned (1) if there
is a fault on the corresponding phase and
(0) otherwise. Similarly, the network output

G had a value of (1) in case of ground

faults and (0) for phase faults or normal

operating conditions. For example a single
phase a to ground has an output equal to [1
001].

7.1 RNN structure and training

The training patterns are presented to
the network in "batch" mode and the mean-
square error between targets and actual
outputs was calculated. This error was
used to update network’s parameters

(weights and biases) through using the back
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propagation through time algorithm. The
learning factor p, was updated in the
direction that minimizes the calculated
error. At the same time, the error of both
validation and testing patterns were
calculated and compared with that of the
training. The process was repeated to

approach the optimal network’s parameters.

Various networks were trained to
classify the type of faults on stator
windings of the synchronous generators.
The network, which has 24 inputs, 6
neurons in the hidden layer, 3 neurons in
the second hidden layer and 4 neurons in
output layer and the number of the time
delay units is three for the output layer,
showed minimum error and satisfactory
results. Different activation functions were
tested and the Tan-sigmoid function was
found to be the best for this application.
The proposed structure (24-6-3(3)-4)
results in a small size network. The
hidden

input/output relationship in 80 epochs and

network had learned the

minimized the computational burden.

7.2 Simulation and results

The trained RNN network was
tested with different independent test
patterns. The results indicate that the
proposed network is able to classify faults
very fast and reliably. The fault

classification task is not affected by the

type and fault location, prefault power,

fault resistance and fault inception time.

Four different types of faults were
tested at different locations on the stator
winding away from the neutral point and
the network performance is shown in Fig. 7

to Fig. 10. The test condition includes:

1- Phase to phase fault (b-c fault) at
70% of stator winding of synchronous
generator away from the neutral point, the
inception fault time is 0.075 second, and
the pre-fault power flow from generator to
infinite bus is P = 0.9 p.u. at p.f 0.85 lag.
Fig. 7a shows the input current waveforms
of the RNN fault classifier and Figures
from 7b to 7f illustrate the response of the

network as a function of the time (sec).

2- Single-phase to ground fault (a-g
fault) at 53% of stator winding of
synchronous generator away from the
neutral point, the inception fault time is
0.075 second, the fault resistance is 3 Q,
and the pre-fault power flow from
generator to infinite bus is P = 0.9 p.u. at
p.f 0.85 lag. Figure.8a shows the input
current waveforms of the RNN fault
classifier and Figures from 8b to 8f
illustrate the response of the network as a

function of the time (sec).

3- Double-phase to ground fault (b-
c-g fault) at 67% of stator winding of
synchronous generator away from the

neutral point, the fault resistance is 5 Q,
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the inception fault time is 0.075 second and
the pre-fault power flow from generator to
infinite bus is P = 0.6 p.u. at p.f 0.75 lag.
Fig. 9a shows the input current waveforms
of the RNN fault classifier and Figures
from 9b to 9f illustrate the response of the

network as a function of the time (sec).

4- Three-_phase to ground fault at

63% of stator winding of synchronous
generator away from the neutral point, the
inception fault time is 0.075 second and the
pre-fault power flow from generator -to
infinite bus is P = 0.7 p.u. at p.f 0.8 lag.
Fig. 10a shows the inpuf current waveforms
of the RNN fault classifier and Figures
from 10b to 10f illustrate the response of

the network as a function of the time (sec).

(a) The waveform of the three phase currents

A

(¢) RNN output (2)

(d) RNN output (3)

() RNN output (4)

Fig.7 Response of RNN fault classifier to internal
b-c fault at 70% of stator.

(a) The waveform of the three phase-currents

R

() RNN output (4)
Fig.8 Response of RNN fault classifier network to
a-g fault at 53% of stator winding.
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(a) The waveform of the three phase currents

(b) RNN output (1)

() RNN output (4)

Fig.9 Response of RNN fault classifier network for
b to c to g fault at 67% of stator winding.

(a) The waveform of the three phase currents

R Sk i b e

(d) RNN output (3)

(f) RNN output (4)

Fig.10 Response of RNN fault classifier network to
three-phase to ground fault at 63% of stator

winding.
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The classifier’s outputs show that the
network correctly and rapidly classifies
the different types of faults at different
locations evening in the presence of fault
resistance. The networks succeed in
classifying the fault within 4 samples from
fault inception. The average time nzeded to

classify the fault types is about 3ms.
8. Conclusion

This paper proposes schemes for
detecting and classifying faults in stator
winding of synchronous generator using
RNN. The detection and classification
networks make their decisions based on a
quarter cycle information of the 3-phase
current at two ends of stator windings. The
detection and classification of fault tasks
are not affected by the fault type and
location, prefault power, fault resistance
and fault inception time. Test results show
that the proposed modules are highly
reliable and very fast in detecting and
classifying faults, using the 3-phase current
measurements at two ends of stator
windings of the synchronous generator.
This makes the RNN highly useful
conventional

candidates to replace

modules.
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