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Effect of Ruptures in Some Cables on the Static and
Dynamic Analysis of Cable-Stayed Bridges
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Abstract

This paper presents the study of cables rupture effect on cable-stayed bridges. The static and dynamic
analysis for cable stayed bridge having five spans considering single plane of cables in harp shape is carried out.
This study is concerned about bridges having five spans with 140 ms for exterior spans and 280 ms for the three
interior spans. The total length of the bridge is 1120 ms. it’s carried out for harp bridges. The own weight of all
structural elements, and traffic load including impact are taken into account. In the both static and dynamic
analysis, the energy method, based on the minimization of the total potential energy (TPE) of structural
elements, via conjugate gradient technique is used. The procedure is carried out using the iterative steps to
acquire the final configurations. Then, Dynamic Analysis is carried out for the most critical case to confirm the
obtained results from static analysis. All prepared computer programs in FORTRAN language for this work and
their verifications is written by [1]. All results showed that, the most critical case is the rupture of the outer cable
(longest one). The conclusions, which have been drawn from the present work, are outlined.
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1- Introduction
Cable stayed bridges are the bridges that
have one or more towers from which

cantilever bridges and shorter than
suspension bridges.

cables support the floor beams. There are
three major classes of cable stayed bridges
harp, radiating and fan. In the harp bridges,
the cables are nearly parallel. The
Radiating is like the harp but the spacing
between cables on the deck not equal the
spacing on the tower. In the fan bridges,
the cables are connected to the top of the
towers. In the medium lengths, the harp
bridge is preferred. The cable-stayed
bridges are optimum for spans longer than

The Cables sustaining the cable-stayed
bridge may break due to catastrophic
cases, lack of maintenance over a long
period of time, or excessive corrosion of
the connection. It is also possible similar
behavior may occur due to loosening a
cable before replacing it.

Many studies on this type of bridge have
been carried out in the last half-century.
Fleming derived a stable function under
the influence of the beam element to
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modify the axial stiffness, to establish a
structural analysis model of cable-stayed
bridges using the finite element analysis
concept [2]. Hegab analyzed the structure
of a three dimensional double-cable plane
cable-stayed bridge using the energy
method with an incremental iteration
approach, and also considering the torsion
effect [3]. Nakamura Suzumura (2009)
conducted experiments on corroded
galvanized steel wires at different
corrosion levels. He found that the mixed
effects of corrosion and cyclic stresses
fractured the wires. Wolff and Starossek
[4] studied that the loss of cables can lead
to overloading and rupture of adjacent
cables. Huang et al., (2007) formulated a
method to compute the tension and
deformation of corrosion cable in an
existing cable-stayed bridge. Wu et al., [5]
studied the possibility of cable loosening
in pre-stressed concrete cable-stayed
bridge. Roland (2000) concluded that the
reduction in strength of the cable due to
deterioration increases with increase in
dead load [6]. Chin-Sheng Kao Studied the
effect of broken cables on cable-stayed
bridges with individual cases of failure and
his study is concerned for three span
bridges [7].

In the present work, Energy method is
used for the analysis, and it is a unifying
approach to the analysis of both linear and
non-linear structures by considering the
determination of equilibrium as an iterative
process of minimizing the total potential
energy, the position of equilibrium being
reached when the total potential energy is
minimum [8], [9], [10], [11], and [12]. A
summary with a step-by-step iterative
procedure is presented.

Step-by-step static response analysis by
minimization of the total potential energy
The point at which W (total potential
work) is a minimum defines the
equilibrium  position of the loaded
structure. Mathematically, the equilibrium
condition in the i-direction at joint j may
be expressed as: X;i

C:15
ow _
Jﬁ:[gﬁ]=0 ,i=1,2and 3 1)
Where:
Xjj = The displacement of joint |

corresponding to a particular degree of
freedom, direction i.

gii =The corresponding gradient of the
energy surface.

The location of the position where W is the
minimum is achieved by moving down the
energy surface along descent vector v a
distance S, until W is a minimum in that

direction, that is, to a point where:
ow

55 =0 (2)
From this point a new descent vector is
calculated and the above process is
repeated. The method is mathematically
expressing this displacement vector at the
(k+1) th iteration as:

[XTke1 = [X] k + Sk 3)
Where:

Vi = The descent vector at the kith iteration
from x, in displacement space

Sk = the step length determining the
distance along v to the point where W is a
minimum.

Summary of the iterative procedures

The main steps in the iterative processes
required to achieve structural equilibrium
by minimization of total potential energy
may be summarized as follows:

First, before the start of the iteration
scheme

a) Calculate the tension coefficients for the
pretension forces in the cable by:

tin = [(To + %) /Lo]jn (4)

Where:

e = the elongation of cable elements due to
applied load only;

tj» = the tension coefficient of the force in
member jn ;

T, = initial force in a pin-jointed member
or cable link due to pretension;

E = modulus of elasticity;

A = area of the cable element; and

L, = the unstrained initial length of the
cable link

b) The elements in the initial displacement
vector [X,] are considered as zero.
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c¢) Calculate the lengths of all the elements
in the pretension structure using:

12 = Z(Xm (5)

Where

= element in displacement vector due to
applied load only.
d) To meet the convergency with
minimum time, the technique of scaling
matrix is used [13], [14] and [15]. The
elements in the scaling matrix are given

by:

H = diag{k;,"% k3" .. kd’?} (6)
Where:

n = total number of degrees of freedom of
all joint;

k = the 12 x 12 matrix of the element in
global co-ordinates.
The steps in the iterative procedure then
are summarized as
Step (1) Calculate the elements in the

gradient vector of the TPE, using:
fno12

= Z(k 6

n=1r=
- z (tjn(Xni + Xni — Xji
n=1

- xji)) — Fy; (7)
Step (2) Calculate the Euclidean norm of
the gradient vector, R, = [gf g,]*/?, and
check if the problem has converged. If
Ry, < Ry, Stop the calculations and print
the results. If not proceed to step (3).
Step (3) Calculate the elements in the
descent vector, v using:

[Vlk+1 = —[HI[glks1 + Bk[v]  (8)

Where:[v], = T[g]o 9)
1T o [HTT[H) (gl es
And B = = AT Al gl
_ o1ks1 [R1[G1k+1 10
[oTT[R][g]: (10)

Step (4) Calculate the coefficients in the
step-length polynomial form:

Cy = Xn=1(EAa3/2L3)y, (11a)

C3 = Xp-1(EAaya3/L}), (11b)

2
C, =Xn=1 [toas + —EA(aZ+2a1a3)] +

213 n

Shea DT (Gukay) 0 (110)

EAala2
DI S
n

f 12 12

+zz T

n=1s=1r=1
N

_ Z Ev, (11d)
n=1
Where:

o1 [(Xni - X;) + % (%ni —
in)] (.'X'ni - le’) + 12 Lo (123.)

OEA
az = Y[ (Xni — Xi1) + (xni —

in)](vni - vji) (12b)

as = 2?:1%(7% - Uji)2 (12c)
Where:

f = Number of flexural members;

P = Number of pin-jointed members and
cable links;

F = Element in applied load vector; and

Ks = Element of stiffness matrix in global
co-ordinates of a flexural element.

Step (5) Calculate the step-length S using

Newton’s approximation formula as:
4C4S343C35%+2C,S+C
4 3 2 1 (13)
12C4S%2+6C35+2C,

Sk+1 = Sk —

Where:

k is an iteration suffix and S,_,is taken as
zero

Step (6) Update the tension coefficients
using the following equation:

(tap)k+1
= (tap)k
4 EA
(L?é)ab
+ a352)ab (14)
Step (7) Update the displacement vector
using equation (4).
Step (8) Repeat the above iteration by
returning to step (1).

(a; + ays

2- Bridge Description

With reference to Fig. (1), which shows
the configuration of a five-span cable-
stayed bridge. The bridge has two equal
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exterior spans of 140 m, each, and the
interior spans are 280 m long, each. The
deck girder has a total span of 1120 m. The
bridge is symmetrical and composed of
three major elements: (a) the deck girder,
(b) four pylons and (c) eleven cables on
each side of the pylons. The cables were
6x37 classes IWRC [16] of zinc-coated
bridge ropes. All cables have an area of
61.94 cm? diameter of 10.16 cm, own
weight of 48.96 kg/m, modulus of
elasticity of 1584 t/cm?, and the maximum
failure load of 925 tons. The initial tension
in all cables was taken as 30 % of the
maximum failure load (925 tons) for the 1%
iteration then circle of solution technique
is used with 20 cycles [1]. All section
properties for cables, pylons and floor
beam are given in Table (1).

3- Analysis Considerations

The static and dynamic analysis for cable-
stayed bridge of harp shape with all
mentioned geometry and properties is
carried out. All bridge elements were
analyzed as a space structure. A uniform
load along the whole span is considered for
the analysis of cables failure. The model
considered single plane of cables with
2598 degrees of freedom with rigid
connection between deck and pylon. The
total equivalent live load for the girder
including impact effect on the bridge is
5.28 t/m'. Individual cases of cable failure
are considered, then combination ones and
all are in the same case of loading to make
the study more convenient.

4- Analysis of Results

Figures (3) to (39) and Table (2) showed
some of the results obtained from the
analysis:

1. Figs. (3) to (13) showed the comparison
between vertical deflection of the deck for
the most critical cases of analysis either in
individual cases or combination ones. It
showed that the maximum vertical
deflection occurs when the outer cable is
broken in the 1% pylon or in the 2" one,

C:17

and it decreases as the broken cable is
away from the outer cable. When the
combination cases are carried out, the
vertical deflection is more than the
allowable deflection for the bridge if seven
cables are broken in the same time.

2. Figs. (14) to (24) showed the
comparison between bending moment for
the most critical cases of analysis, it
showed that the maximum bending
moment increased by 147.3 % when the
outer cable ruptured.

3. Figs. (25), (28) and (31) showed the
comparison between the displacement of
the joints at the mid-spans due to dynamic
analysis.

4. Figs. (26), (29) and (32) showed the
comparison between the velocity of the
joints at the mid-spans due to dynamic
analysis.

5. Figs. (27), (30) and (33) showed the
comparison between the acceleration of the
joints at the mid-spans due to dynamic
analysis.

6. Figs. (25) to (39) showed the
comparison between the normal force and
bending moment of the joints at the mid-
spans due to dynamic analysis.

7. All the dynamic results and curves
confirmed the obtained results from the
static analysis.

8. Table (2) represented the final tension
force in all cables for each individual cable
failure, and it shows that when a cable is
broken the force is distributed to the
surrounding cables. The distribution takes
place up to two cables towards the pylon
and to the first largest cable towards the
center. Also the maximum final tension
force in all cables reached when the outer
cable is broken and don’t reach the
breaking load of the bridge so there is no
danger on the bridge stability for these
cases.

5- Major Conclusions

1. The most critical case of cables failure is
when the outer cable either in the 1% pylon
or in the 2" one is broken. Therefore,
when replacing these cables one must
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assess the effects on the internal forces of
the bridge to ensure its safety.

2. No danger on the cable stayed bridge if
any of individual cable failure case occurs.
3. When a cable in a cable-stayed bridge
breaks, the adjacent cables will experience
a significant increase in cable forces. As
such, for future replacement of the existing
cable-stayed bridges, it is crucial to assess
the increment of cable force that may
occur in the adjacent cables in order to
prevent yielding failure in the adjacent
cables.

4. When the outer cable of a cable-stayed
bridge breaks, the tower may undergo a
significant horizontal displacement, and
the center of the deck may experience
significant vertical displacement. It is
therefore required that a thorough
assessment of the increased displacement
be made in advance when replacing the
outer cables.

5. From dynamic analysis, all results
obtained from static analysis are approved
that there is a big effect on the bridge from
the outer cable rapture.
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Fig. (1): Configuration of the Bridge
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Fig. (2): Numbering of Bridge Cables
Properties of Sections Loads
Stretural Element | Description of Structrual Elements | Moldulus of Elasticity Area | Inertia@X | Inertia @ Y | Inertia @Z | Dead Load | Live Load
t/em?2 m2 md md m4 t/m tim
Pylon Hollow rectangular R.C. section 300 5.76 17.66 74 159 144 0
Deck Steel box girder 2100 0.625 114 30.5 31.64 5.78 5.28
Cables Spiral strand 1584 0.00619354 0.04896167 0

Table (1): Properties of Sections used
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. . %@hangedndinaliension@ueoRablefbreak
Cable@No. | Finalfensionton)
1 2 3 4 5 6 7 8 9 10 11

1 377.981 163.44 | 81.09 | -11.94 | -37.74 | -41.45| -37.77 | -24.34| -5.31 | 10.7 | 20.77
2 246.458 50.42 50.2 | 18.9 | -2.95 | -11.6 |-12.81| -9.15 | -2.99 | 3.05 | 7.52
3 169.186 11.92 | 26.33 39.32 | 21.18 | 5.49 | -4.26 | -7.86 | -6.89 | -3.44 | 0.54
4 136.553 -1.94| 8.85 |29.49 43.06 | 24.65 | 6.55 | -4.94 | -9.54 | -9.16 | -6.12
5 128.706 -6.56 | 0.29 15 | 36.18 46.7 | 243 | 4.26 | -8.17 | -12.88( -13.26
6 133.376 -6.8 | -3.27 |4.893 | 18.88 | 39.98 47.78 | 22.88 | 1.2 |-12.45|-18.88
7 145.116 -5.09| -3.89 | -0.62 | 5.78 | 18.8 | 42.96 48.84 (22.22| -1.6 |-17.85
8 157.113 291 -29 | -26 | -1.27 | 3.45 [ 17.92 | 43.51 52.66 | 24.74 | -1.68
9 162.978 -8.19| -1.45 | -2.38| -3.41 | -3.64 | 0.55 | 15.71 | 43.99 64.52 | 37.9
10 157.708 0.023 [ -0.232| -1.21 | -2.78 | -4.68 | -5.92 | -1.7 | 14.65 |48.47 99.08
11 162.978 031 0.23 |-0.25]| -1.22 | -2.84 | -5.17 | -6.07 | -1.24 | 16.77 | 83.49

Table (2): Change in final tension due to cable break (%)

IndividualXases Combination@ases Combinationases
Case Cable@No. Case CableNo. Case Cable@No.

1 1 1 11 41 1,2

5 5 2 11,10 42 1,2,3

11 11 3 11,10,9 43 1,2,3,4

12 12 11 22 45 12,13

16 16 12 22,21 46 12,13,14

22 22 13 22,21,20 47 12,13,14,15

23 23 21 33,32 49 23,24

27 27 22 33,32,31 50 23,24,25

33 33 23 33,32,31,30 51 23,24,25,26

34 34 31 44,43

38 38 32 44,43,42

Table (3): Cases of study
44 44 33 44,43,42,41
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* Initial case: case of analysis without ruptures in cables
Fig. (3): Vertical deflection of the floor beam (individual cases)
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Fig. (15): Bending Moment of the floor beam (individual cases)
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Fig. (16): Bending Moment of the floor beam (individual cases)
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Fig. (17): Bending Moment of the floor beam (individual cases)
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Fig. (18): Bending Moment of the floor beam (Combination cases)
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Fig. (19): Bending Moment of the floor beam (Combination cases)
70002
60002
E o —Case17
B —Initial?
40002 na
5 —Casef2
g 0 —Casell3
é 20002
10002 — N ] — ] A —
M
2, /A 1\ /A n
3 = <= WA=/
S 10008 Y / V
D 70002 \/
-30002 SpanGm@
-40002
0zl 1408 2802 4202 5602 7002 8402 9802 11208
Fig. (20): Bending Moment of the floor beam (Combination cases)
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Fig. (21): Bending Moment of the floor beam (Combination cases)




M. Naguib, S. El Bagalaty and M. Shaaban C:27

80008
=Case21[
€ 60002 =Initial®
—Case220
‘£ 40002 —Case23
(]
€
é 20002
o Avj\ N A\ N\ /L JANFN /L
}g ‘~.‘\~..I' \~', \~" N—" ~F \\’I \\.“’—’,, ~—
)]
m-@olﬂ V
SpanEme
-40002
02 1402 2802 4-20 5602 7008 84002 9801 11205?
Fig. (22): Bending Moment of the floor beam (Combination cases)
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Fig. (23): Bending Moment of the floor beam (Combination cases)
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Fig. (24): Bending Moment of the floor beam (Combination cases)
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Fig. (25): Displacement of the mid-joint at the 2" span
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Fig. (26): Velocity of the mid-joint at the 2" span

25

20 1

15 1

10 4

5 4

ot

Accleration (m/s2)

-5 41 I

M i, &

-15 i

‘ —Initial Case  —1st Cable Rapture ‘

-20

‘ ‘ ‘ ‘ Time (Sec.)

-25

[} 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Fig. (27): Acceleration of the mid-joint at the 2™ span
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Fig. (28): Displacement of the mid-joint at the 3rd span
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Fig. (29): Velocity of the mid-joint at the 3rd span
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Fig. (30): Acceleration of the mid-joint at the 3rd span
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Fig. (31): Displacement of the mid-joint at the 4th span
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Fig. (32): Velocity of the mid-joint at the 4th span
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Fia. (33): Acceleration of the mid-joint at the 4th span
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Fig. (34): Normal Force of the mid-joint at the 2nd span

2000

-2000

-4000 T

Bending Moment (t.m)
==L

e

-6000 i fHT

13==

==

-8000 1

‘ —Initial Case —-1st Cable Rapture

-10000 l l l l

12 16 20 24 28 32 36 40 48

56

60

Fig. (35): Bending Moment of the mid-joint at the 2nd span
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Fig. (36): Normal Force of the mid-joint at the 3rd span
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Fig. (37): Bending Moment of the mid-joint at the 3rd span
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Fig. (38): Normal Force of the mid-joint at the 4th span
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Fig. (39): Bending Moment of the mid-joint at the 4th span
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