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  الإستاتيكى التحليل على الكابلات بعض تهتك تأثير

 الكابلات ذات للكبارى والديناميكى
 

Shaaban M. Baglaty, El S. ,Naguib M. 

Egypt ura,oMans University, uraoMans Dept., Eng. Structural 

 

 الملخص
 البحث هذا إجراء تم حيث الكابلات ذات الكبارى كابلات بعض فى الحادث القطع تأثير دراسة إلى البحث يهدف     

 م 0001 إجمالى وبطول الداخلية للأبحر م 081 و الخارجيين البحرين من لكل م 041 بأطوال بحور الخمسة ذات للكبارى

 طريقة بإستخدام الكوبرى لهذا الديناميكى التحليل و الإستاتيكى التحليل من كلا إجراء تم وقد الشكل قيثارية للكبارى وذلك

 و المنشأ نوز فى المتمثلة الرئيسية الأحمال الإعتبار فى اخذا المتبادلة الإنحدارات طريقة بإستخدام الوضع طاقة تصغير

 و إعدادها تم وقد الإنشائى التحليل فى الفورتران بلغة البرامج من مجموعة إستخدام تم حيث مؤثراتهاو الحية الأحمال كذلك

 التحليل من والمستنتجة قطعها عند رىالكبا على تأثيرا الكابلاتلأكثر الديناميكى التحليل إجراء تم وقد [.0] بواسطة تحقيقها

 فى تتمثل والتى الحرجة الحالات إلى الوصول تم وجداول علاقات صور فى النتائج إعداد وبعد النهاية وفى الإستاتيكى

 .البحث من المستنتجة النتائج إلى الوصول تم هنا ومن الأول البرج فى  ( طولا الأكثر ) الخارجى الكابل إنهيار

 

Abstract 
     This paper presents the study of cables rupture effect on cable-stayed bridges. The static and dynamic 

analysis for cable stayed bridge having five spans considering single plane of cables in harp shape is carried out. 

This study is concerned about bridges having five spans with 140 ms for exterior spans and 280 ms for the three 

interior spans. The total length of the bridge is 1120 ms. it’s carried out for harp bridges. The own weight of all 

structural elements, and traffic load including impact are taken into account. In the both static and dynamic 

analysis, the energy method, based on the minimization of the total potential energy (TPE) of structural 

elements, via conjugate gradient technique is used. The procedure is carried out using the iterative steps to 

acquire the final configurations. Then, Dynamic Analysis is carried out for the most critical case to confirm the 

obtained results from static analysis. All prepared computer programs in FORTRAN language for this work and 

their verifications is written by [1]. All results showed that, the most critical case is the rupture of the outer cable 

(longest one). The conclusions, which have been drawn from the present work, are outlined. 

Keywords 

Bridge. stayed-Cable method, gradient Conjugate ,Rupture Cable  

 

ionIntroduct -1
Cable stayed bridges are the bridges that 

have one or more towers from which 

cables support the floor beams. There are 

three major classes of cable stayed bridges 

harp, radiating and fan. In the harp bridges, 

the cables are nearly parallel. The 

Radiating is like the harp but the spacing 

between cables on the deck not equal the 

spacing on the tower. In the fan bridges, 

the cables are connected to the top of the 

towers. In the medium lengths, the harp 

bridge is preferred. The cable-stayed 

bridges are optimum for spans longer than 

cantilever bridges and shorter than 

suspension bridges. 

The Cables sustaining the cable-stayed 

bridge may break due to catastrophic 

cases, lack of maintenance over a long 

period of time, or excessive corrosion of 

the connection. It is also possible similar 

behavior may occur due to loosening a 

cable before replacing it. 

Many studies on this type of bridge have 

been carried out in the last half-century. 

Fleming derived a stable function under 

the influence of the beam element to 
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modify the axial stiffness, to establish a 

structural analysis model of cable-stayed 

bridges using the finite element analysis 

concept [2]. Hegab analyzed the structure 

of a three dimensional double-cable plane 

cable-stayed bridge using the energy 

method with an incremental iteration 

approach, and also considering the torsion 

effect [3]. Nakamura Suzumura (2009) 

conducted experiments on corroded 

galvanized steel wires at different 

corrosion levels. He found that the mixed 

effects of corrosion and cyclic stresses 

fractured the wires. Wolff and Starossek 

[4] studied that the loss of cables can lead 

to overloading and rupture of adjacent 

cables. Huang et al., (2007) formulated a 

method to compute the tension and 

deformation of corrosion cable in an 

existing cable-stayed bridge. Wu et al., [5] 

studied the possibility of cable loosening 

in pre-stressed concrete cable-stayed 

bridge. Roland (2000) concluded that the 

reduction in strength of the cable due to 

deterioration increases with increase in 

dead load [6]. Chin-Sheng Kao Studied the 

effect of broken cables on cable-stayed 

bridges with individual cases of failure and 

his study is concerned for three span 

bridges [7]. 

In the present work, Energy method is 

used for the analysis, and it is a unifying 

approach to the analysis of both linear and 

non-linear structures by considering the 

determination of equilibrium as an iterative 

process of minimizing the total potential 

energy, the position of equilibrium being 

reached when the total potential energy is 

minimum [8], [9], [10], [11], and [12]. A 

summary with a step-by-step iterative 

procedure is presented. 

Step-by-step static response analysis by 

minimization of the total potential energy 

The point at which W (total potential 

work) is a minimum defines the 

equilibrium position of the loaded 

structure. Mathematically, the equilibrium 

condition in the i-direction at joint j may 

be expressed as: xji 

  

    
                                 (1) 

Where: 

xji = The displacement of joint j 

corresponding to a particular degree of 

freedom, direction i. 

gji =The corresponding gradient of the 

energy surface. 

The location of the position where W is the 

minimum is achieved by moving down the 

energy surface along descent vector v a 

distance Sv until W is a minimum in that 

direction, that is, to a point where: 
  

  
                                                    (2) 

From this point a new descent vector is 

calculated and the above process is 

repeated. The method is mathematically 

expressing this displacement vector at the 

(k+1) th iteration as: 

[X] k+1 = [X] k + Skvk                             (3) 

Where: 

vk = The descent vector at the kith iteration 

from xk in displacement space  

Sk = the step length determining the 

distance along vk to the point where W is a 

minimum. 

Summary of the iterative procedures 

The main steps in the iterative processes 

required to achieve structural equilibrium 

by minimization of total potential energy 

may be summarized as follows: 

First, before the start of the iteration 

scheme 

a) Calculate the tension coefficients for the 

pretension forces in the cable by: 

         
  

  
     

  
                        (4) 

Where: 

e = the elongation of cable elements due to 

applied load only; 

tjn = the tension coefficient of the force in 

member jn ; 

To = initial force in a pin-jointed member 

or cable link due to pretension; 

E = modulus of elasticity; 

A = area of the cable element; and 

Lo = the unstrained initial length of the 

cable link 

b) The elements in the initial displacement 

vector [Xo] are considered as zero. 
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c) Calculate the lengths of all the elements 

in the pretension structure using: 

  
            

 
 

   

                                

Where: 

X = element in displacement vector due to 

applied load only. 

d) To meet the convergency with 

minimum time, the technique of scaling 

matrix is used [13], [14] and [15]. The 

elements in the scaling matrix are given 

by: 

          
    

    
    

       
    

        

Where: 

n = total number of degrees of freedom of 

all joint; 

k = the 12 x 12 matrix of the element in 

global co-ordinates. 

The steps in the iterative procedure then 

are summarized as 

Step (1) Calculate the elements in the 

gradient vector of the TPE, using: 

              

  

   

  

   

                  

  

   

                             

Step (2) Calculate the Euclidean norm of 

the gradient vector,       
   

     , and 

check if the problem has converged. If 

        stop the calculations and print 

the results. If not proceed to step (3). 

Step (3) Calculate the elements in the 

descent vector, v using: 

                                  

Where:                                 (9) 

And        
      

              

    
            

 

                     
      

           

    
         

             (10) 

Step (4) Calculate the coefficients in the 

step-length polynomial form: 
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Where: 

               
 

 
      

   

                 
   

  
                  (12a) 

                     
   

                   (12b) 

    
 

 
         

  
                    (12c) 

Where: 

f = Number of flexural members; 

P = Number of pin-jointed members and 

cable links; 

F = Element in applied load vector; and 

Ksr = Element of stiffness matrix in global 

co-ordinates of a flexural element. 

Step (5) Calculate the step-length S using 

Newton’s approximation formula as: 

        
          

         

               
     (13) 

Where: 

k is an iteration suffix and     is taken as 

zero 

Step (6) Update the tension coefficients 

using the following equation: 

        

       

 
  

   
    

        

         
                                              

Step (7) Update the displacement vector 

using equation (4). 

Step (8) Repeat the above iteration by 

returning to step (1). 

 

2- Bridge Description 
With reference to Fig. (1), which shows 

the configuration of a five-span cable-

stayed bridge. The bridge has two equal 
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exterior spans of 140 m, each, and the 

interior spans are 280 m long, each. The 

deck girder has a total span of 1120 m. The 

bridge is symmetrical and composed of 

three major elements: (a) the deck girder, 

(b) four pylons and (c) eleven cables on 

each side of the pylons. The cables were 

6x37 classes IWRC [16] of zinc-coated 

bridge ropes. All cables have an area of 

61.94 cm
2
, diameter of 10.16 cm, own 

weight of 48.96 kg/m, modulus of 

elasticity of 1584 t/cm
2
, and the maximum 

failure load of 925 tons. The initial tension 

in all cables was taken as 30 % of the 

maximum failure load (925 tons) for the 1
st
 

iteration then circle of solution technique 

is used with 20 cycles [1]. All section 

properties for cables, pylons and floor 

beam are given in Table (1). 

 

3- Analysis Considerations 

The static and dynamic analysis for cable-

stayed bridge of harp shape with all 

mentioned geometry and properties is 

carried out. All bridge elements were 

analyzed as a space structure. A uniform 

load along the whole span is considered for 

the analysis of cables failure. The model 

considered single plane of cables with 

2598 degrees of freedom with rigid 

connection between deck and pylon. The 

total equivalent live load for the girder 

including impact effect on the bridge is 

5.28 t/m'. Individual cases of cable failure 

are considered, then combination ones and 

all are in the same case of loading to make 

the study more convenient. 

 

4- Analysis of Results 

Figures (3) to (39) and Table (2) showed 

some of the results obtained from the 

analysis: 

1. Figs. (3) to (13) showed the comparison 

between vertical deflection of the deck for 

the most critical cases of analysis either in 

individual cases or combination ones. It 

showed that the maximum vertical 

deflection occurs when the outer cable is 

broken in the 1
st
 pylon or in the 2

nd
 one, 

and it decreases as the broken cable is 

away from the outer cable. When the 

combination cases are carried out, the 

vertical deflection is more than the 

allowable deflection for the bridge if seven 

cables are broken in the same time. 

2. Figs. (14) to (24) showed the 

comparison between bending moment for 

the most critical cases of analysis, it 

showed that the maximum bending 

moment increased by 147.3 % when the 

outer cable ruptured. 

3. Figs. (25), (28) and (31) showed the 

comparison between the displacement of 

the joints at the mid-spans due to dynamic 

analysis. 

4. Figs. (26), (29) and (32) showed the 

comparison between the velocity of the 

joints at the mid-spans due to dynamic 

analysis. 

5. Figs. (27), (30) and (33) showed the 

comparison between the acceleration of the 

joints at the mid-spans due to dynamic 

analysis. 

6. Figs. (25) to (39) showed the 

comparison between the normal force and 

bending moment of the joints at the mid-

spans due to dynamic analysis. 

7. All the dynamic results and curves 

confirmed the obtained results from the 

static analysis. 

8. Table (2) represented the final tension 

force in all cables for each individual cable 

failure, and it shows that when a cable is 

broken the force is distributed to the 

surrounding cables. The distribution takes 

place up to two cables towards the pylon 

and to the first largest cable towards the 

center. Also the maximum final tension 

force in all cables reached when the outer 

cable is broken and don’t reach the 

breaking load of the bridge so there is no 

danger on the bridge stability for these 

cases. 

 

5- Major Conclusions 

1. The most critical case of cables failure is 

when the outer cable either in the 1
st
 pylon 

or in the 2
nd

 one is broken. Therefore, 

when replacing these cables one must 
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assess the effects on the internal forces of 

the bridge to ensure its safety. 

2. No danger on the cable stayed bridge if 

any of individual cable failure case occurs. 

3. When a cable in a cable-stayed bridge 

breaks, the adjacent cables will experience 

a significant increase in cable forces. As 

such, for future replacement of the existing 

cable-stayed bridges, it is crucial to assess 

the increment of cable force that may 

occur in the adjacent cables in order to 

prevent yielding failure in the adjacent 

cables. 

4. When the outer cable of a cable-stayed 

bridge breaks, the tower may undergo a 

significant horizontal displacement, and 

the center of the deck may experience 

significant vertical displacement. It is 

therefore required that a thorough 

assessment of the increased displacement 

be made in advance when replacing the 

outer cables. 

5. From dynamic analysis, all results 

obtained from static analysis are approved 

that there is a big effect on the bridge from 

the outer cable rapture. 
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1 2 3 4 5 6 7 8 9 10 11

1 377.981 163.44 81.09 -11.94 -37.74 -41.45 -37.77 -24.34 -5.31 10.7 20.77

2 246.458 50.42 50.2 18.9 -2.95 -11.6 -12.81 -9.15 -2.99 3.05 7.52

3 169.186 11.92 26.33 39.32 21.18 5.49 -4.26 -7.86 -6.89 -3.44 0.54

4 136.553 -1.94 8.85 29.49 43.06 24.65 6.55 -4.94 -9.54 -9.16 -6.12

5 128.706 -6.56 0.29 15 36.18 46.7 24.3 4.26 -8.17 -12.88 -13.26

6 133.376 -6.8 -3.27 4.893 18.88 39.98 47.78 22.88 1.2 -12.45 -18.88

7 145.116 -5.09 -3.89 -0.62 5.78 18.8 42.96 48.84 22.22 -1.6 -17.85

8 157.113 -2.91 -2.9 -2.6 -1.27 3.45 17.92 43.51 52.66 24.74 -1.68

9 162.978 -8.19 -1.45 -2.38 -3.41 -3.64 0.55 15.71 43.99 64.52 37.9

10 157.708 0.023 -0.232 -1.21 -2.78 -4.68 -5.92 -1.7 14.65 48.47 99.08

11 162.978 0.31 0.23 -0.25 -1.22 -2.84 -5.17 -6.07 -1.24 16.77 83.49

%	change	in	final	tension	due	to	cable	break
Final	Tension	(ton)Cable	No.

(%) break cable to due tension final in Change (2): Table 

Case Cable	No. Case Cable	No. Case Cable	No.

1 1 1 11 41 1,2

5 5 2 11,10 42 1,2,3

11 11 3 11,10,9 43 1,2,3,4

12 12 11 22 45 12,13

16 16 12 22,21 46 12,13,14

22 22 13 22,21,20 47 12,13,14,15

23 23 21 33,32 49 23,24

27 27 22 33,32,31 50 23,24,25

33 33 23 33,32,31,30 51 23,24,25,26

34 34 31 44,43

38 38 32 44,43,42

44 44 33 44,43,42,41

Individual	cases Combination	cases Combination	cases

study of Cases (3): Table 
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cases) (Combination beam floor the of deflection Vertical (12): Fig. 

 

 

 

 

-0.15	

-0.1	

-0.05	

0	

0.05	

0.1	

0	 140	 280	 420	 560	 700	 840	 980	 1120	

Span	,m	

Ini al	Case	

Case	(21)	

Case	(22)	

Case	(23)	

D
e
fl
e
c
o
n
	,
m

	



 

Mansoura Engineering Journal, (MEJ), Vol. 39, Issue 3, September 2014       04 C: 

 

 

 

 

 

 

 

 

 

 
-5000	

-4000	

-3000	

-2000	

-1000	

0	

1000	

2000	

3000	

4000	

0	 140	 280	 420	 560	 700	 840	 980	 1120	

Span	,m	

Case	12	

Ini al	

Case	15	

Case	22	

B
e
n
d
in
g
	M

o
m
e
n
t	
,	
t.
m
	

	

-0.12	

-0.07	

-0.02	

0.03	

0.08	

0	 140	 280	 420	 560	 700	 840	 980	 1120	

Span	,m	

Ini al	Case	

Case	(31)	

Case	(32)	

Case	(33)	

D
e
fl
e
c
o
n
	,
m

	

cases) (Combination beam floor the of deflection Vertical (13): Fig. 
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cases) (Individual beam floor the of Moment Bending (14): Fig. 

 

 

 

 

 

 

cases) (individual beam floor the of Moment Bending (15): Fig. 
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cases) individual( beam floor the of Moment Bending ):17( Fig. 
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cases) (Combination beam floor the of Moment Bending (18): Fig. 

 

cases) (individual beam floor the of Moment Bending (16): Fig. 
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cases) (Combination beam floor the of Moment Bending (19): Fig. 

 

cases) (Combination beam floor the of Moment Bending (20): Fig. 

 

cases) (Combination beam floor the of Moment Bending (21): Fig. 
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cases) (Combination beam floor the of Moment Bending (23): Fig. 
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cases) (Combination beam floor the of Moment Bending (22): Fig. 

 

-8000	

-6000	

-4000	

-2000	

0	

2000	

4000	

6000	

8000	

0	 140	 280	 420	 560	 700	 840	 980	 1120	

Span	,m	

Case	49	

Ini al	

Case	50	

Case	51	

B
e
n
d
in
g
	M

o
m
e
n
t	
,	
t.
m
	

	

cases) (Combination beam floor the of Moment Bending (24): Fig. 
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2 the at joint-mid the of Acceleration (27): Fig. 
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span 3rd the at joint-mid the of Velocity (29): Fig. 

 

span 3rd the at joint-mid the of Displacement (28): Fig. 

 

span 3rd the at joint-mid the of  Acceleration ):30( Fig. 
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 span 4th the at joint-mid the of Acceleration (33): Fig. 

 

Fig. (31): Displacement of the mid-joint at the 4th span 

 

Fig. (32): Velocity of the mid-joint at the 4th span 
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span 2nd the at joint-mid the of Force Normal (34): Fig. 

 

span 3rd the at joint-mid the of Force Normal (36): Fig. 

 

Fig. (35): Bending Moment of the mid-joint at the 2nd span 
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span 3rd the at joint-mid the of Moment Bending (37): Fig. 

 

span 4th the at joint-mid the of Force Normal (38): Fig. 

 

span 4th the at joint-mid the of Moment Bending (39): Fig. 
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