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 ملخـص
التغيير الجذرى فى  ان عملية حصر الإلكترونات أو الثقوب داخل طبقة رقيقة من مواد أشباة الموصلات تؤدى إلى     

ولعل هذا المبدأ يمكن تطويرة والإستفادة منه بتقليل عدد الإتجاهات أو المحاور التى . سلوك كل من الإلكترونات والثقوب

فى اتجاة واحد والسماح له ( أو الثقب)وذلك ابتداءً من تقييد حركة الإلكترون . يمكن للإلكترونات أو الثقوب الحركة خلالها

أو عن طرق السماح له بالحركة فى اتجاة واحد وتفييد حركتة , الإتجاهين الآخرين فيما يعرف بالمستوى الكمى بالحركة فى

وفى نهاية المطاف فإنة بإمكاننا تقييد حركته فى جميع الإتجاهات فيما , فى الإتجاهين الآخرين وهذا مايعرف بالخط الكمى

 .يعرف بالنقطة الكمية

ذا البحث هو إيضاح ماسبق عن طريق الإستنتاج الرياضى ورسم منحنيات كلاً من مستويات مانود التركيز عليه فى ه

 (the energy levels, the wave function and the density of states )  الطاقة ودالة الموجة وكثافة المستويات

 . لكل من المستوى الكمى والخط الكمى والنقطة الكمية

Abstract  
     The reduction in dimensionality produced by confining electrons (or holes) to a thin semiconductor layer 

leads to a dramatic change in their behavior. This principle can be developed by further reducing the 

dimensionality of the electron's environment from a two-dimensional quantum well to a one-dimensional 

quantum wire and eventually to a zero-dimensional quantum dot. The dimensionality refers to the number of 

degrees of freedom of the electron momentum, so the electron is confined across two directions within a 

quantum wire, rather than just the one in a quantum well. In a quantum dot the electron is confined in all three-

dimensions, thus reducing the degrees of freedom to zero. Our scope in this paper is to drive and plot the 

theoretical formulation of the energy levels, the wave function and the density of states of each quantum well, 

wire and dot structures. 
 

Keywords 
Energy levels and wave function of finite / infinite potential quantum well, wire and dot, density of states of 

quantum well, wire and dot structures. 

 
 

I. Introduction 
To generate or receive an infrared 

wavelength it is important to have an 

infrared device that has energy levels with a 

difference that equals of the energy of the 

desired infrared wavelength. Because the 

energy levels of the natural atoms have 

certain differences while the infrared band 

has a continuous wide range of wavelengths, 

it should search for another physical 

technique to allow us to detect or generate 

any infrared wavelength. This technique is 

called "quantum structure". 

Semiconductor quantum structures of 

different shapes, e.g. well, wire and dot have 

been grown and a shift in the energy level 

due to the dimensional quantization has 

been found from photoluminescence 

measurements. A heterojunction results in a 

sudden jump in the value of the band-gap 

energy at the interface between the two 

semiconductor materials. Such a jump 

corresponds to a potential barrier, which can 

block the movement of charge carriers 

through the junction. This allows the 

possibility of creating regions in the 

semiconductor where one or both charge 
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carriers can be confined. Two 

heterojunctions may be located side by side 

to confine the carriers to a specific region of 

the material. These are called double 

heterostructures. Energy levels in such 

structures may be easily calculated if the 

potential barriers are of infinite height and 

the structures have simple geometry such as 

cubes, wells, cylinders or spheres. The 

barrier height is about          in most 

cases, since the well material is covered by 

the barrier material. Actual energy levels are, 

therefore, very different from those obtained 

by assuming the barrier potential to be 

infinite. However, for the design of lasers 

and other electro-optical devices using 

dimensional quantum-confinement 

structures, the energy levels will be required 

to be known properly. To find the energy 

levels for wells with finite barrier height, the 

Schrodinger equation must be solved by 

satisfying the boundary conditions imposed 

by the geometry of the structure [1]. The 

rapid changes in the number of carriers 

leads to electron transport phenomena due 

to which stimulated emission and 

electromagnetic radiations are occurred [2]. 

The semiconductor structures whose sizes 

are small enough that their quantum effects 

may be significant are called quantum 

structures [3]. The energy distribution of the 

electrons in the quantum structures is 

narrower than that in the bulk structures. 

Therefore, the optical gain concentrates on 

certain energy (wavelength). As a result, in 

the quantum structure lasers, a low 

threshold current, a high speed modulation, 

a low chirping, and a narrow spectral 

linewidth are expected [3]. The infrared 

detection mechanism is based on the 

intraband photoexcitation of electrons from 

confined states in the conduction band wells 

or dots into the continuum. The emitted 

electrons drift towards the collector in the 

electric field provided by the applied bias, 

and photocurrent is created [4]. 

 

II. Model description and 

theoretical background 
In the next sections, a theoretical 

comparison between different quantum 

structures (well, wire and dot) is presented 

by using constant quantum parameters such 

as quantum dimensions, effective mass, etc...  

The theoretical calculations of energy levels 

of quantum structures are determined using 

time independent Schrodinger equation. In 

quantum well structure, Schrodinger 

equation is solved in one dimensional only 

while the other two dimensions are still 

unchanged as in bulk structure. On the other 

hand, the contrary in the case of quantum 

wire structure; i.e. the Schrodinger equation 

must be solved in two dimensions only 

leaving the other dimension unchanged as in 

bulk structure. Additionally, in quantum dot 

structure, it is solved in all three dimensions. 

In the following, our scope is to briefly 

outline the basic characteristics of each one 

of the quantum family of optical devices. 
 

II.1- Structure of quantum well 
In this category of optical devices, the active 

layer takes the structure of quantum well. If 

the underlined device contains one potential 

well, it is called single quantum well device 

(SQW), while that has plural QWs is known 

as multiple quantum well (MQW) as shown 

in Fig. (1) [3, 5]. 
 

 
Figure  1 (a) SQW, (b) MQW 
 

II.1.1- The infinite potential 

quantum well 
It is assumed that a carrier exists in a square 

potential well, as shown in Fig. (2). 
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Figure 2 one-dimensional infinite potential 

quanta well 

 

By restricting the Schrodinger equation of 

this square potential well to the one-

dimensional potential of interest here (z-

dimensional), then the Schrodinger equation 

for a particle of mass   in a potential well 

aligned along the z-axis (as in Fig. (2)) [3, 5, 

6] would be: 

 
  

  

  

   
                           

Outside of the well, the potential 

energy        , and hence the only 

possible solution of the wave function 

outside of the well is        . So 

     inside the well will be 

        
 

  
                   

 
  

  
                                                                  

 : denotes the wave vector while  stands 

for an integer representing a series of 

solutions. The energy of the confined states 

is given by [7]: 

                             

 
      

     
                                                     

Figs (3 & 4) display the results of 

calculations of the lowest three energy states 

of an electron in a GaAs well of width 

   surrounded by hypothetical infinite 

barriers. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3 Solution of one-dimensional infinite 

potential quantum well 
 

 

 

 

 

 

 

 

 

 
Figure 4 First three energy levels versus well 

width for an electron in a GaAs infinite potential 

well 

 

II.1.2- The finite potential 

quantum well 
Suppose a single particle of mass    

confined within a region           with 

potential energy          bounded by 

potential barriers           as shown in 

Fig.(5). By solving the time independent 

Schrodinger equation for this potential 

system, the obtained three solutions are 
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Figure 5 one-dimensional finite potential quanta 

well 
 

In the above expressions B, P, Q and C are 

some constants and the relations among 

them can be obtained through the boundary 

conditions at z=0 and z=L. This means that 

the first two solutions; i.e. Eqs.(4 & 5), 

along with their first derivatives must be the 

same at       , while the second, Eq.(5), 

and third, Eq.(6), solutions along with their 

derivatives must be the same at       . The 

result of this equating gives us a 

homogeneous system of equations that has 

solutions, only if the determinant of the 

system vanishes 

 

                                                                          
    
  

                                            

 

                                                  

This condition leads to     
                        

 
   

     
                                                          

 

Solving this equation as a function of    will 

give the allowed values of    for which the 

particle in this finite potential well has 

available energy states. The corresponding 

energies become 
                  

 
    

   
                                                              

Eq. (9) can be rewritten in the form 
                          

 
  

 
 
 

        
                                                      

Comparing the last equation with the two 

trigonometric formulae given by: 

      
     

       
                   

 
         

          
         

The two following conditions can be 

obtained as,   

        
  

 
  

 

 
         

     
  

 
  

 

 
                  

 

This leads to get:  

 

 
  

   

 
    

  

 
                            

Where  

                       
    

  
                                  

To plot those formulas as a function of  
  

 
 , 

it is useful to rewrite the above expression 

for      as 

 

 
      

 
 

   

 
   

               
 

 
              

Where,  

    
  

 
     

 

 
                 

  

 
 

    
 

 
                                        

 

Now, one can plot 

    
  

 
       

  

 
          

 

 
     as a 

function of 
 

 
   for various values for   .  

     
Figure 6 Graph to determine bound states a 

finite potential quantum well 

 

The points of intersection of the curve 

   
 

 
     with the      and      curves will 

then give the    values for an allowed 

energy levels of the particle in this potential 

[7]. This is illustrated in Fig. (6) Where 
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there are four curves given for different 

values of V. The important feature of these 

curves is that the number of points of 

intersection is finite, there are only a finite 

number of values of   that solve Eq. (16). 

Correspondingly, there will only be a finite 

number of allowed values of  for the 

particle, and there will always be at least one 

allowed value. To determine the 

corresponding wave functions is a straight 

forward. The first step is to show, by using 

Eq. (16) and the equations for 

              that 
                                            
                                                                                  

                  
 

 
                   

                                                 
                                               

                                                

The constant B is determined by 

                                    
 

  

                                               

The result found is that      
    
 

  
 

 
 

 
    

                                                                  

Figure (7) summaries the application of the 

method to a GaAs single quantum well, 

surrounded by barrier of height     meV. 

 
Figure 7 Eigen functions      for the first 

three energy levels of the        GaAs well 

with constant effective mass           

and V=100meV
 II.1.3- Density of States of 

Quantum Well Structure 
The density of states is defined as the 

number of states per energy per unit volume 

of real space: 

                     

 
  

  
                                                                  

In   space, the total number of states   is 

equal to the volume of the sphere of radius  , 

divided by the volume occupied by one state 

and divided again by the volume of real 

space, so 

        
  

  
  

    

     
         

  

  

  
   

  
  

 
     

  
 
 

 
                

This finally gives the density of states in 

bulk as: 

             

 
 

   
 
   

  
 
 
       

 
                                           

The density of states in quantum well 

systems follows analogously; however this 

time, as there are only two degrees of 

freedom, successive states represented by 

values of    and     fill a circle in   space, 

as illustrated in Fig. (8).  

Figure 8 
 

The total number of states per unit cross-

sectional area is given by the spin 

degeneracy factor, multiplied by the area of 

the circle of radius    divided by the area 

occupied by each state, and divided by the 

area in real space. 
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Now, the density of states in (2D) can be 

defined as 

                        
    

  

 
    

  

  

  
                      

As the in-plane dispersion curves are still 

described by parabolas, then reuse can be 

made of equation (23), as follows: 

        

 
 

  
 
   

  
 
 
        

 
                                      

By substituting for k in terms of the 

energy  , using equation (7), the density of 

states for a single subband in a quantum well 

system can be obtained as, 

            

 
  

   
                                                   

If there are many     confined states within 

the quantum well system then the density of 

states    at any particular energy is the sum 

over all subbands below that point, which 

can be written succinctly as: 

                 
  

   

 

   

     

                               
Where,   is the unit step function [5, 7, 8, 9, 

10, 11]. Fig. (9) gives an example of the 

two-dimensional density of states for a 

particular quantum well with       

showing the first three confined levels that 

have energies values of Fig. (4). 
 

Figure 9 Density of states for the one-

dimensional quantum well for        and 

          (brown line) and that for the bulk 

structures (blue line) 

 

II.2-  Structure of Quantum Wire 
Fig. (10) gives a simple outline of how 

quantum wires might be fabricated. Any 

charge carriers are still confined along the 

heterostructure growth (z-) axis, as they 

were in the quantum well, but they are now 

confined along an additional direction y-axis. 
 

Figure 10 Structure of quantum wire 
 

II.2.1- The Infinite Potential 

Quantum Wire 
By considering the case of an infinite 

potential at the sides of the wire with  

- The wire having zero potential, and  

- The wire running in the X- direction 

as shown in Fig. (10), the Schrodinger 

equation can be written as, 

  
  

   
 

  

   
 

  

   
 

  

   
          

                       

                                                   
 

Where V1=0. This equation can be 

decomposed into the following three 

equations (a, b and c): 
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The confined states of a quantum wire are 

therefore described by the two principal 

quantum numbers      and     [4,6], which 

give the components of energy as: 

                     

 
      

 

     
                                                    

 

                     

 
      

 

     
                                                       

Thus, the total energy due to confinement, 

          , is: 

                   
    

   
   

  
 

  
  

 
  

 

  
                                   

Fig. (11) displays the confinement energies 

    for           equal to (1,1), (1,2),(2,1), 

and (2,2) as a function of the side length 

     . In the case of       a square 

cross-sectional wire, the confinement 

energies of the (1, 2) and (2, 1) states are 

equal; however clearly this will not be the 

case for a rectangular cross-section wire, 

which has      .   

 
Figure 11 First three energy levels versus well 

width for an electron in a       infinite 

potential quantum wire 

II.2.2- The finite potential quantum 

wire 
Fig. (12) (a) illustrates the two-dimensional 

confinement potential        . For this 

system, it is not possible to write the 

potential        as a sum of two 

independent potentials      and       , and 

thus it is not possible to separate the y- and 

z-motions. However, a very loose 

approximation may be to write the potential 

as in Fig. (12) (b). 

 
Figure 12 (a) Rectangular finite potential 

quantum wire, (b) approximate form for the 

potential 

The approximation occurs in the 'corner 

regions' outside of the wire where the two 

quantum well potential barrier heights V 

sum to give 2V. So the Schrodinger equation 

for the y-z cross-sectional confined motion 

in a quantum wire is given by  

 
  

   

  

   
             

                           

And 

     
  

   

  

   
             

                       

The final outcome is the same, namely that 

as the independent potentials      and      

are simply those of a finite quantum well, 

then the solutions for both the wave 

functions and the confinement energies 

follow as a finite quantum well. 

II.2.3- Density of States of 

Quantum Wire Structure 
In the bulk crystal, the three degrees of 

freedom for the electron momentum mapped 

out a sphere in k-space, while in a quantum 

well the electron momentum fill 

successively circles, continuing this 

argument for a quantum wire with just one 

degree of freedom, the electron momentum 
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then fill states along a line. Therefore, 

proceeding with the same argument as 

before, the total number of states N is then 

equal to the length of the line in k-space 

(  ), divided by the length occupied by one 

state (     ), and divided by the length in 

real space (see Fig. (13) ). 

 

 
 

Figure 13 The occupation of states in k-space 

along a one-dimensional quantum wire    

 

                 
 

    
   

 

 

  
  

 
                             

Where, the '2' factor accounts for spin 

degeneracy. Therefore: 

          
    

  
 

 

 
                                                                            

                        

 
 

 
 
   

  
 
 
          

 
                                  

 

If there are many     confined states within 

the quantum wire with subband minima  , 

then the density of states at any particular 

energy is the sum over all the subbands 

below that point [4, 7, 8], which can be 

written as: 

 

             
   

  
 
 
 

 

   

 
 

       
 
 

    

                                     

 

    Fig. (14) gives an example of the 1D 

density of states, for a square cross-section 

GaAs quantum wire surrounded by infinite 

barriers with            that has 

energy levels values of Fig. (11). 

 
Figure 14 The density of state in one-

dimensional infinite quantum wire 
 

II.3- Structure of Quantum Dot 
Cuboids quantum dots, perhaps more 

specifically designated as quantum boxes 

can be thought of as simply a generalization 

of the rectangular cross-section quantum 

wires, in which there is additional 

confinement along the remaining x-axis as 

shown in Fig. (15). This additional 

confinement removes the remaining degree 

of freedom in the particle's momentum.  
Figure 15 Structure of quantum dot 

 

II.3.1- The Infinite Potential 

Quantum Dot 
Considering the case of an infinite potential 

separating the inside of the box from the 

outside, then the Schrodinger equations 

within the box is given by: 

      
  

   

  

   
    

                                                

  
  

   

  

   
    

                                                   

    
  

   

  

   
    

                                                    
  



 

Mansoura Engineering journal (MEJ), Vol. 39, Issue 4, December 2014                                                    E: 27 

The solutions are just the solutions to 

infinitely deep quantum wells, of widths 

        and    respectively. 

The confinement energy within this 

quantum box follows as: 

           

 
    

   
   

  
 

  
  

  
 

  
 

 
  

 

  
                                      

The three-dimensional nature of the 

confinement thus requires three quantum 

numbers,      and    to label each state. 

 

II.3.2- The finite Potential 

Quantum Dot 
Finite-barrier quantum boxes could be 

gleaned from three decoupled one-

dimensional quantum well calculations in a 

similar manner to the finite barrier quantum 

wire. However, in this case any perturbative 

correction would have to account for eight 

corner-cubes of additional potential    and 

twelve edge-cuboids of additional potential 

    .  Alternatively, a full three-dimensional 

solution can be constructed by expanding 

the wave function as a linear combination of 

infinite well solutions. 

II.3.3- Density Of States Of 

Quantum Dot Structure 
For brevity, by letting              , 

the energies are written as 

                  
      

                                                                           
 

          

 
    

   
   

  
 

  
                                                       

           

 
    

   
   

  
 

  
                                                       

            
  
  

 
    

   
   

  
 

  
                                                       

It should be noted that the energies are 

completely discrete [5, 7, 8]. The density of 

states         is a delta function, which is 

written as 

                 

        

     

                       
Figure 16 shows the density of states in the 

three-dimensional quantum well (quantum 

box). 

 
Figure 16 Density of states of quantum dot 

 

Conclusions 
Wave function and energy level equations of 

quantum well, wire, and dot are presented 

and plotted under specific parameters of 

quantum structures. After that the density of 

states of bulk, quantum well and wire 

structures are calculated. It can be seen that 

successive reductions in the degrees of 

freedom for the electron motion, lead to 

reductions in the functional form of      by 

factor of      . 
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