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 الخلاصة:
السج دسخاث هي الحشَٗ ّالشبنت رٌّوْرج ال ششٗاى دق٘ق عذدٗا باسخخذام حشمت مشة دم ب٘ضاء فٖ حوج هحاماة     

 ،ً٘ت علٔ حشمت مشاث الذم الب٘ضاءلذساست حأث٘ش الخاص٘ت الغ٘ش ًْ٘حّْ .FLUENTبشًاهح  ضويي ٗالذٌٗاه٘نَ٘ الوْخْد

مشة الذم  الٌخائح أىأظِشث . ئع الحإّ لنشة الذم الب٘ضاء موائع ًْ٘حًْٖ ّهشة أخشٓ موائع غ٘ش ًْ٘حًْٖحوج هعاهلَ الوا

(. ّلدعل الوحْسٕ)بغض الٌظش عي ّضعِا  هحْس الششٗاىًحْ ّدائوا حخحشك الذم  سشعت الب٘ضاء حخحشك بسشعت أقل هي

ضافت هعادلت خذٗذة إء علٔ حشمت مشة الذم الب٘ضاء ّرلل باالحوش ث الذمخز فٔ الاعخباس حأث٘ش مشاالٌوْرج أمثش ّاقع٘ت حن الأ

( ُّٖ هعادلت السشٗاى لنشاث الذم الحوشاء. FLUENTالوْخْدٍ فٖ  UDFللوعادلاث الحاموت للسشٗاى )باسخخذام طشٗقت 

ّخذ أى مشة  ح٘ث ،ب٘ضاءلٔ حغ٘٘ش فٖ الٌخائح ًخ٘دت القْٓ الوخبادلت ب٘ي مشاث الذم الحوشاء ّالإإضافت حلل الوعادلت أدث 

 .فٖ حالت السشٗاى الغ٘ش ًْ٘حًْٖ وحْسٕعلٔ ّضعِا ال أّ الدذاس بٌاء حْسالوالذم الب٘ضاء حخحشك باحداٍ 
 
 

Abstract 
     The motion of a leukocyte (White Blood Cell) within a straight vessel, representative of an arteriole, is 

simulated using dynamic meshing and a six-degree-of-freedom model within FLUENT (FLUENT Inc.). The fluid 

is modelled as both Newtonian and non-Newtonian to simulate the bulk effects of blood. The results showed that 

the leukocyte lags the undisturbed velocity profile and migrates towards the centreline at all radial locations. 

Haematocrit is also modelled as a scalar transported by the flow and a model is introduced via a User-Defined 

Function (UDF) to generate a force based on the haematocrit effect. This additional forcing results in inward 

radial migration and outward radial migration based on the WBC radial position for the non-Newtonian case. 
 

 

Keywords 
Blood – Leukocyte – Haematocrit – Six-degree-of-freedom model – Radial migration. 
 
 

1. Introduction 
     Blood is a suspension of many different 

particles within a fluid called plasma. The 

interaction between these particles results 

in complex flow dynamics and a non-

Newtonian flow. The particles include the 

oxygen carrying Red Blood Cells (RBCs), 

disease fighting White Blood Cells 

(WBCs) and platelets, (Fung, 1996). 

Leukocytes (WBCs) are closely linked to 

the body’s immune system. They constitute 

a Newtonian cytoplasm surrounded by a 

membrane and are typically spherical in 

shape (Schmid-Schönbein, 1987 and 

Alexandrova & Antonova, 2012). As the 

flow rate decreases and the vessels become 

narrower both WBCs and platelets are 

driven towards the wall by Brownian 

motion. This process is known as 

margination and is highly important for the 

body’s immune system as the WBCs and 

platelets are required at the walls of 

capillaries (Freund, 2007). Since WBCs are 

rigid spheres, the motion of a WBC in 

blood can be simulated as a sphere moves 

in a vessel. 

There are many parameters which affect 

the motion of the particle and the most 

commonly investigated include the 

Reynolds number (
VB

MaxBW

a

Va



28
Re  ), 

particle to vessel radius ratio ( ) and 
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particle to fluid density ratio ( ' ). In the 

Re number definition equation aW, ρB, VMax, 

μB and aV represents the WBC radius, the 

blood density, the maximum axial velocity, 

the blood dynamic viscosity and the vessel 

radius, respectively. The motion of the 

particle is typically described by three 

parameters: the translational velocity (VT), 

the radial migration velocity (Vr) and the 

non-dimensional radial position at which 

the particle reaches equilibrium 

(
VR a  ). 

Considering a neutrally buoyant sphere 

convicted within a Poiseuille flow, Karnis 

et al. (1966) demonstrated experimentally 

that the sphere will translate with a velocity 

slightly lower than the undisturbed local 

velocity. Thus, the translational velocity 

exhibits a parabolic profile similar to the 

Poiseuille profile, with the peak at the 

centreline and the lowest velocity near the 

wall. This result has been confirmed both 

numerically and experimentally by Feng et 

al. (1994) and Feng & Michaelidis (2002) 

using a finite element method. The 

difference between the undisturbed local 

velocity and the particle velocity is known 

as the slip velocity (
Su ) and has been 

shown to depend on ' . Yu et al. (2004) 

demonstrated that dense particles lag the 

fluid to a greater extent resulting in a larger 

slip velocity, whilst lighter particles 

actually lead the flow, giving negative slip 

velocities. 

By the symmetry of the velocity profile, it 

can be seen that the centreline will be an 

equilibrium position in a radial sense. 

However, Feng et al. (1994) explain that it 

is an unstable one as once the particle 

moves away from the centreline and it will 

not return. The curvature of the velocity 

profile results in a rotation of the sphere as 

if it was rolling along the closest wall 

resulting in a Magnus type lift force 

directed towards the wall and radial 

migration (Matas et al., 2004). 

Segré & Silberberg (1961) carried out a 

comprehensive set of experiments at low 

Reynolds numbers which demonstrated 

that a sphere will migrate away from both 

the centreline and the wall to an 

equilibrium position of roughly   = 0.63. 

Also, Karnis et al. (1966), Cox & Mason 

(1971) and Matas et al. (2004) calculated 

experimentally the non-dimensional radial 

position at which the particle reaches 

equilibrium. While, the numerical 

investigations conducted by Feng et al 

(1994), Yu et al. (2004), Yang et al. 

(2005), Pan & Glowinski (2005) and 

Pozrikidis (2005) found that as the particle 

size increases or the Reynolds number 

decreases, the equilibrium position moves 

closer to the centre. The β values ranged 

from 0 to 0.85 for both experimental and 

numerical investigations. 

Furthermore, collisions of WBCs with 

RBCs lead to discrete changes in the 

particles radial position. Freund (2007) 

studied the particle histories to highlight 

the stochastic behaviour of the WBC in the 

existence of RBCs. He concluded that the 

WBC equilibrium position was near the 

edge of the RBC cell-free-layer.  Collisions 

with RBCs lead to discrete changes in the 

particles radial position and this clearly 

demonstrates the importance of modelling 

individual particles. Also, Fedosov et al. 

(2012) concluded that the RBC aggregation 

increases the WBC margination rate. 

Mahdi et al. (2014) studied experimentally 

the motion of leukocyte in a venue. They 

could not calculate the forces acting on the 

leukocyte in all the directions. 

Based on the previous review, the aim of 

the present paper is to create a realistic 

numerical model which is capable to 

simulate the dynamic motion of a 

leukocyte or white blood cell through an 

arteriole. The WBC motion is based on the 

forces and torques it experiences as it is 

convicted by the fluid. Then, the non-

Newtonian behaviour of the carrying fluid 

is examined to study its effect on the WBC 

motion. Finally, the effects of erythrocyte 

or red blood cell (RBC) concentration 

(haematocrit) on WBC margination are 

presented. 
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2. Mathematical model 
2.1. Governing equations 

The mass and momentum conservation 

equations for an incompressible flow can 

be written as  

0. 
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where ρ, μ, 


V , p and 


S denote the density, 

the viscosity, the velocity field, the 

pressure and the source term. 

Within the FLUENT software, the 

moments, pressure forces and shear forces 

are calculated and integrated along with the 

WBC automatically when the six-degree-

of-freedom (SDOF) model is selected. 

Then, the translational and angular 

velocities of the centre of gravity of the 

WBC can be computed using the following 

equations (Fluent Inc.); 





GT f

m
V

1
        (3) 

















WWWW LML  1       (4) 

where 


TV , m and Gf


 are the WBC 

translational motion, the WBC mass, and 

the force vector due to gravity, 

respectively. While 




W , L , WM


 and 


W are the angular motion, the inertia 

tensor, the WBC moment vector and the 

WBC angular velocity vector, respectively. 

After the computation of translational and 

angular motions, the new WBC coordinates 

and position can be determined by using 

the dynamic mesh technique which is 

implemented in FLUENT software. 

The distribution of Haematocrit, H, 

throughout the vessel can be modelled as a 

scalar. This scalar is convected with the 

flow based on the following transport 

equation (Bressloff et al., 2009).  

0. 











 

HΓHV
t

H



      (5) 

where 


V  and Γ are the convective velocity 

and the diffusion coefficient, respectively. 
 
 

3. Numerical approach 
     The problem is simulated numerically 

using FLUENT 6.3.26 software (ANSYS 

Inc.). A user-defined-function (UDF) of 

SDOF model is introduced to simulate the 

motion of the sphere. Also, a user-defined-

scalar (UDS) is used to add a new 

haematocrit conservation equation. The 

only model constant in Eq. (5) that needs to 

be defined is the diffusion coefficient (Γ). 

This constant defines how quickly the 

haematocrit diffuses through the flow and 

has a large impact on the overall 

haematocrit profile. A constant Γ value of 

1e-8 is taken to ensure that the haematocrit 

profile at the location of the WBC is 

representative of a real blood flow 

(Bressloff et al., 2009). The option for a 

non-Newtonian power law fluid is built 

into FLUENT. The value of the 

consistency index (K), power index (n), 

viscosity at zero shear rate and viscosity at 

infinite shear rate (non-Newtonian model 

parameters) are 0.017 Pa
n
, 0.708, 0.0035 

Pa.s and 0.056 Pa.s, respectively, (Shibeshi 

& Collins 2003). 
 

3.1 Geometry and Grid  

A straight vessel of constant circular cross-

section is used to represent an arteriole, 

with the WBC modelled as a rigid sphere 

of constant density. Both Newtonian and 

non-Newtonian fluids are considered as a 

carrying fluid that is representative of 

blood. Typical parameters for flow in an 

arteriole are given in Table 1. 
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Parameter Value 

Vessel / arteriole radius, 
Va  

 

Arteriole length, l 100 μm 

WBC radius, 
Wa  

 

Va /
Wa  5 

WBC density, 
W  1070 kgm

-3 

Blood density, 
B  1061.5 kgm

-3 

Blood dynamic viscosity, 
B  0.00345 Pa.s 

Blood mean velocity, VM  0.00375 ms
-1 

Re 0.0185 
 

Table 1. Typical parameters for flow in an 

arteriole (Freund, 2007) 
 

The geometry and mesh were generated in 

GAMBIT software (ANSYS Inc.) using 

tetrahedral elements. A cylinder with the 

origin located at the center of one face, is 

extruded to form a solid rod. The 

representation of the white blood cell is 

introduced by cutting out a spherical hole. 

Four homogenous meshes (A-D) were 

applied to the unsteady case, where the 

WBC is allowed to move freely. The 

meshes A, B, C and D have roughly 

12,000, 63,000, 163,000 and 1,136,000 

cells respectively. There was a relatively 

small variation between the results for 

meshes C and D. This suggests that mesh C 

is quite accurate enough to be used in the 

next simulations. 
 

3.2 Boundary Conditions 

The boundary conditions are taken as a 

constant pressure of 585.66 kPa at the inlet 

to obtain a realistic value of the blood 

velocity in an arteriole as given in Table 1 

and an atmospheric pressure at the outlet. 

The no slip boundary is applied to the 

vessel wall and the WBC surface. The 

haematocrit value at the wall and inlet are 

taken as zero and 0.45, respectively, whilst 

the outlet and WBC are set as zero flux. 
 

 

4. Results and discussion 
     The motion of a WBC in a microvessel 

was investigated numerically in both 

steady and unsteady states. Furthermore, 

the flows of the WBC in Newtonian and 

non-Newtonian liquids were studied to 

understand the effect of changing fluid 

properties on the motion and trajectory of 

the WBC. 
 

4.1 Steady State Flow Patterns and 

Forces 

Figure (1) illustrates the streamlines around 

a WBC. It is indicated that the flow is 

highly viscous as it remains attached 

around the sphere and there is no wake. 

Furthermore, the influence of the sphere 

quickly dissipates, showing that the results 

will not be affected by the domain length. 

The forces acting on the sphere in axial and 

radial directions at different radial 

locations are drawn against the 

dimensionless radial position (r) in Figs. 

(2&3), respectively. In each of these 

figures, the force has been normalized by 

dividing it by the dynamic pressure based 

on the mean velocity. 

2

2

M

D
V

f
C


          (6) 

Fig. (1). Streamlines coloured by velocity 

magnitude on the xz-plane  
 

It is obvious that the axial drag force is the 

dominant force on the WBC and causes the 

axial translation. The axial force 

demonstrates a roughly parabolic profile, 

similar to the Poiseuille profile. This 

suggests that the WBC will translate with a 

higher velocity when at the centreline than 

when closer to the wall. Also, the axial 

force values on a sphere moves in a 

Newtonian liquid is much higher than that 

moves in a non-Newtonian liquid at the 

same conditions and these differences 

decrease when the particle moves closer to 

the wall. 
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Fig. (2). Axial drag coefficient on WBC at 

different radial locations 

 
 

Fig. (3). Radial drag coefficient on WBC at 

different radial locations 
 

On the other side, the radial force on the 

WBC exhibits a roughly linear variation 

with radial location as shown in Fig. (3). It 

is found that the dimensionless equilibrium 

position (β) occurs between 0.4 - 0.6 which 

agrees with the findings of Feng et al. 

(1994) (0.45 < β < 0.6) and Yang et al. 

(2005) (0.57 < β < 0.7). This suggests that 

the WBC should move away from both the 

centreline and the wall. Also, the radial 

force amplitude is higher in the Newtonian 

case than the non-Newtonian case. 
 

4.2 Dynamic Flow Patterns 

Initially, the WBC is released at the centre 

of the vessel and has little impact on the 

flow, which remains close to a Poiseuille 

profile for both Newtonian and non-

Newtonian flows. The non-Newtonian 

power law fluid exhibits a velocity profile 

which is slightly blunter than the Poiseuille 

profile whilst the opposite can be seen for 

the Newtonian fluid as shown in Fig. (4). 

Fig. (4). Axial fluid velocity profiles at the 

inlet 
 

Figure (5) illustrates the velocity contours 

for the non-Newtonian case at different 

initial radial positions ( 0.0,  0.5,  0.78r  ). 

It is found that the WBC has a reduced 

impact on the flow in comparison to the 

steady state solution as it is now being 

convected by the fluid. However, as the 

WBC exists closer to the wall, the effect on 

the flow becomes more pronounced.  
 

4.3 Axial & Slip Velocity of WBC 

Figure (6) shows the WBC translational 

(axial) velocity along with the fluid 

velocity distribution in both Newtonian and 

non-Newtonian cases. The axial velocity of 

the particles was seen to lag the fluid 

velocity slightly which agrees enough with 

the results of Feng et al. (1994) and Feng & 

Michaelidis (2002). The slip velocity 

appears to increase with the radial location. 

Also, the WBC slip velocity increases 

when it flows in a non-Newtonian liquid. 

The translational velocity profile correlates 

well with the axial force component shown 

in Fig. (2). The axial force decreases with 

radial position and results in a lower 

translational velocity. Both the axial force 

and axial velocity component are linked to 

the parabolic fluid velocity profile. 

 

r 
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r = 0.0       r = 0.5      r = 0.78 

b) 
 

Fig. (5). Velocity contours for the non-

Newtonian case on a) xz-plane at the 

vessel axis and b) xy-plane at the WBC 

centre for different initial radial positions 
 
 

Fig. (6). A WBC translational velocity at 

different radial locations 
 

4.4 Radial Migration 

The WBC moves in the radial direction as 

well as the axial one. The radial velocity is 

much smaller in magnitude than the 

translational velocity. The comparison 

between Figs. (6&7) shows that a displaced 

sphere from the vessel centreline in the x-

direction migrates back towards the 

centreline with a velocity approximately 

three to four orders of magnitude lower 

than the axial velocity. 

As the radial velocities are relatively low, it 

is not possible within the current time 

constraints to demonstrate a WBC moving 

from the wall to the centreline or vice-

versa. Only the radial velocities at different 

radial locations can be extracted and used 

to produce a profile across the vessel, 

(Freund, 2007). 

 

 
Fig. (7). A WBC radial velocity at different 

radial locations 
 

Figure (7) depicts the WBC radial 

velocities against the radial locations. The 

WBC migrates towards the centre of the 

vessel in all radial positions. The radial 

velocity increases at larger radial 

displacements. There is no equilibrium in 

the radial position for the WBC flows in 

the Newtonian liquid. On the other hand, 

the non-Newtonian fluid induces a radial 

equilibrium position at the centreline. 
 

4.5 Prediction of WBC Trajectories 

Based on Figs. (6&7), it is possible now to 

generate relations to describe the 

translational and radial velocity variations 

as a function of the radial distance. The 

relations for the WBC which moves in a 

Newtonian liquid can be written as; 
 

 8.11/)( rVrV MaxT         (7) 

0011.00032.0/)(  rVrV Maxr       (8) 
 

and for the WBC moving in the non-

Newtonian liquid, the relations become; 
 

 2.21/)( rVrV MaxT         (9) 

rVrV Maxr 0061.0/)(       (10) 
 

It is noted that these relations of the 

translational and radial velocities can 

provide a useful technique to predict the 

WBC velocity trajectory. 

x 

z 

x 

y 

 

a)  
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Figure (8) illustrates the WBC trajectory as 

it migrates downstream the vessel in a non-

Newtonian liquid. This is achieved by 

using the above concluded relations to 

calculate the WBC velocity at any given 

location and then iterate through time. 
 

Fig. (8). Estimated particle trajectories for 

WBCs released at different radial locations 

(non-Newtonian fluid) 
 

The estimated trajectories show that the 

WBCs will migrate towards the centreline 

of the channel. Also, the WBC translates in 

the axial direction 1,000 times the vessel 

diameter to migrate towards the centreline. 
 

4.6 Haematocrit-Leukocyte Interaction 

The model is modified to take into account 

the effect of haematocrit distribution on the 

WBC motion. The haematocrit distribution 

in arterioles and microvessels are 

characterized by the existence of cell-free 

layer near the wall. A constant Γ value of 

1e-8 in the haematocrit conservation 

equation provides the required haematocrit 

distribution (Bressloff et al., 2009). 

The effect of the haematocrit distribution 

on the forcing in the z-direction is 

negligible and the forcing exhibits a 

parabolic distribution similar to the classic 

Poiseuille profile as that shown in Fig. (2). 

Moreover, the applied haematocrit forcing 

for the non-Newtonian case results in a 

change in the radial migration patterns as 

shown in Fig. (9). As mentioned before, 

with no haematocrit forcing, the WBC is 

seen to migrate towards the centreline at all 

radial locations. While with the addition of 

forcing based on haematocrit distribution, 

the WBC migration can be split into two 

regions. Below 0.55r  , the WBC still 

migrates towards the centreline, but at a 

reduced rate. Outside of this radial 

location, the WBC migrates towards the 

wall with an increased rate. This suggests 

that the WBC migration depends upon the 

initial radial location. An unstable 

equilibrium position exists at the critical 

location between the two regions. The 

same results are obtained for the radial 

velocity and illustrated in Fig. (10). These 

results concur with the findings of Freund 

(2007). WBCs likely tend to migrate 

towards the wall. 
 

Fig. (9). Radial drag forcing coefficient with 

haematocrit forcing vs. radial location 

for the non-Newtonian case 
 

 

Fig. (10). Radial migration velocity with 

haematocrit forcing vs. radial location 

for the non-Newtonian case  
 

 

5. Conclusions 
     A model has been developed to allow a 

white blood cell (WBC) to move through a 

microvessel using dynamic meshing and 

six-degree-of-freedom (SDOF) model. The 
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WBC motion is based on the pressure and 

shear forces on its surface. The haematocrit 

distribution is introduced to the model by 

using a new haematocrit scalar transport 

equation to take into account the effects of 

the haematocrit distribution on the WBC 

motion. The following conclusions are 

drawn: 

 The WBC transitional velocity in the 

axial direction is lower than the fluid 

velocity for both the Newtonian and 

non-Newtonian flows. 

 The slip velocity increases for the 

WBC flow in a non-Newtonian liquid 

than that in Newtonian liquid. Also, it 

increases as it releases closer to the 

wall. 

 The WBC radial velocity magnitude is 

much lower than the transitional 

velocity magnitude and it always 

migrates to the centreline (does not 

depend on the initial WBC radial 

position). 

 New correlations are developed for the 

particle axial and radial velocities for 

both Newtonian and non-Newtonian 

carrying fluids. This enables to 

estimate the WBC trajectories released 

at different locations. 

 Haematocrit forces and the initial 

WBC radial position have a great 

effect on its equilibrium radial 

position. The WBC migrates towards 

the wall at normalized radial position r 

less than 0.55 and moves to the wall at 

r higher than 0.55. These results agree 

in some sense to the distribution of 

WBCs within a microvessel which 

exists in the literature (Freund, 2007). 

The main agreement is that near the 

wall the WBC is shown to migrate 

towards the wall, this matches the high 

probability of WBCs being located 

near the wall. 
 

 

Nomenclature 
Roman Characters 

a Radius, m 

CD Drag coefficient 

f Force, N 

g Gravitational acceleration, m/s
2
 

H Haematocrit 

K Consistency index for Power law 

model, Pa
n
 

l Arteriole length, m 

L Inertia tensor, kg 

m Mass, kg 

M Moment vector, N.m 

n Power or index for Power law model 

p Pressure, N/m
2
 

r Normalized radial position (R/aV) 

R Radial position, m 

RBC Red blood cell 

Re Reynolds number 

S  Source term, kg/(m
2
s

2
) 

t Time, s 

u, v, w Velocity components, m/s 

V  Velocity vector, m/s 

WBC White blood cell 

x, y, z Cartesian position components, m 

 

Greek Characters 
 

  Dimensionless equilibrium position  

Γ Diffusion coefficient, kg/(m
2
s)  

  Particle to vessel radius ratio 
  Dynamic viscosity, Pa.s 

  Density, kg/m
3
 

'  Density ratio 


  Angular velocity vector, rad/s 




  Angular motion, m
2
/s

2
 

 

Subscripts 

B Blood 

G Gravitational 

M Mean 

Max Maximum 

r Component in a radial direction 

S Relative velocity between WBC and 

undisturbed flow 

T Translation 

V Referring to Vessel 

W Referring to WBC 

x, y, z Component in specified 

Cartesian coordinates 
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