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Abstract: - In the present work< an experimental
investigation on the adsorption and desorption operations in
an internally cooled solid desiccant bed has been made.
Experimental system involves a finned tube heat exchanger
containing particles of silica gel, which is tested at different
air flow rates and different of particles silica gel. The inlet
and exit air temperature and relative humidity, air velocity,
the inlet and exit water temperature and water flow rate are
measured. Moisture removal rate is calculated. The results
show that the internally cooling significantly enhances the
performance of desiccant bed and the adsorption process
can be done at nearly isothermal process. The enhancement
in bed performance can be more than 50% due to internal
cooling. Moisture removal rate sharply increases by
increasing air flow rate in both adsorption and desorption
processes. Increasing the regeneration temperature
significantly improves the desorption performance of the
bed for example by increasing it from 41.5 °C to 63 °C the
moisture removal rate increases from 2.8 g/s to 5.4 g/s.

1. INTRODUCTION
ecently, desiccant cooling systems receive
considerable attention as an effective
technology in dehumidification processes.
Such systems can be operated by low grade energies like
solar energy or waste heat. Reviews on the desiccant
systems have been performed [1-3], and vast amount of

works such as performance analysis and experimental
study of dehumidification rotor [4-7] has been done.
Evaluating and predicting the performance of solid
desiccant beds are studied by many researchers [8-10].
Several researches studied the performance and using
liquid desiccant in air conditioning application [11-13].
The released adsorption heat significantly decreases the
performance of the desiccant systems because of the
increase of vapor pressure on the desiccant surface. Many
investigations are carried out in view to reduce the effect
of heat on the bed adsorptivity. Higher air flow rates [14]
and a cooling coil in the core of the fluidized bed [15]
were proposed to eliminate the effect of adsorption heat.
Increasing desiccant material utilization by continuous
particle mixing in a fluidized bed was proposed by
Hamed et al. [8]. Intercooling the desiccant bed
eliminated the effect of the heat of adsorption and
increased the desiccant material utilization [16].
However, many theoretical and  experimental
investigations for internally cooled liquid desiccant
dehumidification systems were carried out [17-20].

In this study, solid desiccant bed is internally
cooled by a finned tube heat exchanger as shown in Fig. 1
Experimental setup for silica gel bed is constructed, and
the performance of the bed in adsorption and desorption
modes is investigated.
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Fig. 2 Flow diagram of the experimental setup.

2. EXPERIMENTAL SETUP

The experimental test rig consists of : i) the silica
gel packed bed ii) finned tube heat exchanger used as
internally cooler using cooling water with different flow
rates from an infinite sources shown in Fig. 1. iii) Set of
manual valves to switch on the bed for adsorption and
desorption modes, iv) air blower, v) hot water tank with
electric heater. Which undergoes the adsorption process
in the desiccant bed. The condition of the inlet air to the
bed is determined by measuring the temperature and
relative humidity at the air exit. The adsorption test bed is

a parallelogram from galvanized steel (30x28.8x28 mm).
Two screens are used as flow strainers at the inlet and exit
of the silica gel bed. A flow diagram of the experimental
test rig is shown in Fig. 2. The inlet and exit air and water
temperatures are measured using DS18B20 digital
thermometer. The inlet and exit air relative humidity are
measured using capacitive hygrometer. Air velocity is
measured using hot wire anemometer and water flow rate
is measured using peddle wheel flow meter. Measured
parameters and equipment uncertainty are listed in table 1
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Table (1) Measured Parameters and Equipment Uncertainty

Parameters Devices Accuracy Resolution
Air Velocity Hot wire +0.1m/s 0.1 m/s
Air dry bulb temperature DS18B20 digital thermometer +0.5°C 0.1 °C
Air relative humidity Capacitive hygrometer + 3% RH 0.1 % RH
Water flow rate Peddle wheel flow meter + 0.01 kg/s 0.001 kg/s
3. RESULT AND DISCUSSION:
3.1 The Moisture Removal rate:- 2
The air mass flow rate can be calculated from the - Adsorption , at m"4=0.125 kgis,
fOIIOWIng equatlon! 397 -\ D=2mm ,Horizontal flow
; 36 1 o~
;= pa A Un, @ ~ o
N
~

Where Uy, is the mean air velocity at the exit which is
measured. Then the moisture removal rate can be
calculated as follow

MRR = rha X (Wout - Win) (2)

Throughout this discussion, the effect of the internal
cooling on the performance of the desiccant bed is
investigated using the experimental data of adsorption
and desorption tests for different air flow rates, different
cold and hot water flow rates and different sizes of silica
gel particles.

3.2 Adsorption mode

The effect of the internal cooling on the exit air
temperature, humidity ratio and moisture removal rate in
the adsorption mode is shown in Fig. 3.
Figure 3 shows this effect at different cooling water flow
rates at m,=0.125 kg/s and Fig. 4 at mh,= 0.02 kg/s, both
figures at silica gel particles diameter is 2 mm white color
(type A). Generally, by increasing the cooling water flow
rates the exit air temperature decreases, the exit air
humidity ratio decrease and the removal rate increases.
Also from these results, the maximum increase in air exit
temperature is about 6 °C at m,= 0.125 kg/s and about 4
°C at m,=0.02 Kkg/s, moreover air exit temperature
decreases at low air flow rate and low cooling water
temperature due to the internal cooling so the adsorption
process nearly takes place isothermally. Without internal
cooling the exit air temperature increases significantly
due to the adsorption process. The difference between T,
out Without internal cooling and with internal cooling may
reach to more than 20 °C at low air flow rate. This
decrease in T, o Significantly enhances the adsorption
process. Outlet air humidity ratio decreases with internal
cooling than without internal cooling and the difference
between them reaches more than 5 g/kg. The moisture
removal rate (MRR g/s) increases by internal cooling. For
the nearly same inlet air humidity ratio the increase in
MRR due to internal cooling may be more than 50%.

Figure 5 shows the bed performance at
different cooling water flow rates at m,= 0.1202
kg/sand silica gel particles diameter is 5 mm yellow
color (type B). From the figure, the same trend
nearly as 2 mm particles size can be observed. But
the effect of internal cooling is not so high because
of low inlet air temperature and humidity ratio
because of uncontrolled outdoor conditions.
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Fig. 3 Exit air temperature, humidity ratio and moisture removal
rate for silica gel bed (adsorption mode at rit,= 0.125kg/s, D = 2

mm, horizontal flow)
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Fig. 4 Exit air temperature, humidity ratio and moisture removal
rate for silica gel bed (adsorption mode at riz,.= 0.02kg/s, D = 2
mm, horizontal flow)

3.3 Desorption mode

In The effect of the internally heating on the exit
air temperature, humidity ratio and moisture removal rate
in the desorption mode is shown in Figs. 6-9.

Figure 6 shows this effect at different heating
water flow rates at m,= 0.125 kg/s and fig. 7 at m,= 0.02
kg/s both figures at silica gel particles diameter 2 mm.
Figure 8 shows this effect at different heating water flow
rates at m,= 0.1202 kg/s at silica gel particles diameter 5
mm. From these results, in general, the exit air
temperature and humidity ratio increase by increasing
water flow rate which leads to moisture removal rate
increases. In some cases, the exit air temperature
increases and the moisture removal rate decreasing by
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Fig. 5 Exit air temperature, humidity ratio and moisture removal
rate for silica gel bed (adsorption mode at sz,= 0.1202 kg/s, D =5
mm, horizontal flow)

decreasing the water flow rate this may be because of the
different bed moisture content at the beginning of
experiments.

Figure 9 shows the effect of heating water
temperature on desorption process. By increasing the
heating water temperature the exit air temperature
increases and the ability of air to absorb water vapor from
bed increases which causes the exit air humidity ratio and
moisture removal rate increase. By increasing the
regeneration temperature from 41.5°C to 63°C the
increase in moisture removal rate can be more than 100%
at some times.
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Fig. 6 Exit air temperature, humidity ratio and moisture removal
rate for silica gel bed (desorption mode at rit,= 0. 125 kg/s, D = 2
mm, horizontal flow)

Fig.7 Exit air temperature, humidity ratio and moisture removal
rate for silica gel bed (desorption mode at rit,= 0. 02 kg/s, D = 2
mm, horizontal flow)
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5. CONCLUSION
The maximum increase in air exit temperature is
about 6 °C at m,= 0.125 kg/s and about 4 °C at m,=
0.02 kg/s, moreover air exit temperature decreases
at low air flow rate and low cooling water
temperature due to the internal cooling so the
adsorption process nearly takes place isothermally.
It was found that the moisture removal rate rises
with increase cooling water flow rate. On the other
hand, the exit air temperature decreases as the
cooling water flow rate increases. However the
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humidity ratio decreases with higher value of
cooling water flow rate. This means that the
dehumidification is improved with increasing the
cooling water flow rate through the bed. The
enhancement in bed performance can be more than
50% due to internal cooling.

It was found that the moisture removal rate
decreases with decreasing the process air flow rate.
Through the study it was observed that the
desorption process takes place more rapidly than
the adsorption one and enhances significantly by
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increasing the regeneration temperature for
example by increasing it from 41.5 °C to 63 °C the
moisture removal rate increases from 2.8 g/s to 5.4
afs.

(5) Regeneration temperature less than 60°C are
sufficient to regenerate the bed at the specify
experimental outdoor conditions.

6. NOMENCLATURES
The cross section area of
desiccant bed exit (m?).
The diameter of desiccant
particles (mm).
The air mass flow rate (kg/s).
The water mass flow rate (kg/s).
The moisture removal rate (g/s).
The exit air means velocity (m/s).
The inlet air temperature (°c).
The exit air temperature (°c).
The inlet water temperature (°c).
The inlet air humidity ratio (kg water
vapor / kg dry air).
The exit air humidity ratio (kg water
vapor / kg dry air).
The density of air (kg/m?®).
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