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Abstract— Elevated water tanks are generally used to provide
a high fluid pressure before distribution through pipe network.
This may be the most economic mean to control the water
distribution to different locations with the needed pressure.
During earthquakes, the elevated water tanks have a very
important role because the contained water can be used to resist
fires which generally occur after earthquakes. Small numbers of
researches have been done on the seismic behavior of this type of
structures compared to the importance of the problem. The
important factors that influence the seismic behavior of such
structures are the dynamic properties of the tank itself, the
structure-soil system and the excitation time history. Soil type
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and different excitations time histories are the governing factors
in this study. A three dimensional model is constructed to
analyze the problem. Time History analysis has been performed
using the method of finite elements. In the analysis, the tank
material is assumed to be reinforced concrete. The Mohr-
Coulomb model has been used to describe the behavior of the soil
model. Kobe, Northridge and El-Centro Earthquake records are
used in this study as the bedrock Excitation. The study focuses
on the horizontal and vertical displacements of the tank. The
results show the effect of different types of supporting soil and
different excitations on the seismic response of the tank.

I. INTRODUCTION

sing water tanks is an ancient facility to store
water. Most of the ancient tanks were ground
tanks. But now and according to the vertical
development of the cities, the elevated water tanks were the
most economic mean to provide water with the required
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pressure to reach the upper floors. So, numerous of elevated
water tanks were built everywhere for that reason. Also, water
stored in the elevated water tanks is used to resist fires. As
fires generally follow earthquakes, the elevated water tanks
must be functional during and after earthquakes. For that
reason structural designers focus on studying the seismic
behavior of such structures. Elevated water tanks consist of
huge water masses at the top of slender stagings which need
critical considerations against the failure of the tank during
earthquakes. Poor performance of some elevated water tanks
in past earthquakes may be an indication of lack of knowledge
regarding the seismic behavior of the elevated water tanks.

Fig.1 Collapsed elevated water tank in Bhuj 2001 earthquake

Il. PAST FAILURES CASES

In the Bhuj 2001 earthquake in India, three elevated water
tanks collapsed completely, and many more were damaged
severely. A collapsed elevated water tank in Bhuj 2001
earthquake is shown in Fig.1. The tank was about half full
during the earthquake. Fig.2 shows also a collapsed frame-
supported elevated water tank in the Killari 1993 Earthquake.
Similar damages were also reported in the Jabalpur 1997,
Kashmir 2005 and Chilean 1960 earthquakes [12, 15, 16, 19]

,,“‘

Fig.2 Collapsed elevated water tank in Killari 1993 earthquake

I1l. LITERATURE REVIEW

The first model assumed to describe the seismic behavior of
the elevated water tank was the single lumped mass model
suggested by (Chandrasekaran and Krishna, 1954) [14]. This
concept has some disadvantages: i) neglecting the sloshing
effect of the contained water on the seismic behavior of the
tank[3], ii) neglecting the non-uniform rigidity of the
supporting structure along its height and iii) neglecting the

effect of the supporting soil on the seismic behavior. Fig.3
shows the elevated water tanks and the single lumped mass
model. M: the lumped mass and K: uniform rigidity of the
supporting frame.

To consider the seismic behavior of elevated tanks, a
mechanical model with two masses idealization was suggested
by (Housner, 1963) [13, 10]. This concept assumed that the
vessel is rigid. The pressure which occurs by the fluid when
the tank exposed to a dynamic load can be represented
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according to this idealization by two separate masses
impulsive and convective. This idealization assumed that these
masses are produced when an elevated water tank containing
fluid with free surface excited by a dynamic load. The liquid
in the lower zone of the tank vessel behaves like a mass
rigidly connected to the vessel wall and base. This mass is
called the impulsive mass. By the same way the other part of
the liquid which lay on the upper zone of the tank vessel
undergoes sloshing motions. This part of mass is called the
convective liquid mass. The supporting structure mass is also
divided into two parts; the first part to be considered the mass
of the container, roof slabs and two-third of the staging mass
and added to the impulsive mass. The remaining part of the
staging mass is considered to act directly on the tank
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foundation.This equivalent mechanical model is shown in
Fig.4 (A).

In case of elevated tanks with flexible vessels (generally
steel vessels), the previous mechanical model was modified by
(Haroun and Housner, 1981) [8, 18]. This development
assumed that when the tank is exposed to base excitation, the
contained fluid undergoes like three parts: i) the upper part
with the free surface and mass mc (convective mass), ii) the
liquid in the lower part of the vessel with mass mr (rigid mass)
and iii) the liquid in the intermediate part of the vessel which
oscillates with the vessel wall with mass mi (impulsive mass).
This mechanical model is illustrated in Fig.4 (B).
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Fig.3 Elevated water tanks and the lumped mass model
e
—ﬂ—dﬂ‘;ﬂ— s
/2 /2
= I %2 k72 || p o .
—‘ ’n|— _:_r O jf}
— . B
R

Supporting structure
(with rigidity K)

Equivalent mechanical model

(rigid vessel wall)
(Housner, 1963)

(A)

upporting structure
(with rigidity K)

Equivalent mechanical model

(flexible vessel wall)
(Haroun and Housner, 1981)

(B)

Fig.4 Mechanical models of the elevated water tanks

Many researches modified the previous mechanical models
to consider the soil-structure interaction. Considering the soil-
structure interaction is very important because the supporting
soil isn’t rigid enough material to be treated as a fixed support.
(Livaoglu and Dongangun, 2006; Dutta, et al., 2004, 2009)[5,
6] used flexible support for the tank to overcome this problem.

Recently and after spread of computers and Finite Element
softwares, many programs can execute both static and
dynamic analysis for such structures like ADINA and ANSYS

[1, 2]. These programs have large data, variety of material
models and element groups. Many researches used these
programs in the seismic analysis of elevated tanks [7, 8, 15,
17]. This technique will be used in this research.

IV. MODEL DESCRIPTIONS
The elevated tank physical model which is considered in
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this study is assumed to be a reinforced concrete elevated tank
with shaft staging and has the geometry and concrete
dimensions as shown in Fig.5.The figure also shows the
naming methodology for the models to easily distinguish
between them. The 6 characters ID for each model is a useful
way to identify the parameters considered. The first 2
characters refer to the tank case (full or empty), the second 2
characters refers to the excitation used (KO for Kobe
earthquake, NO for Northridge earthquake and EL for El
Centro earthquake) and the last 2 characters refer to the soil
type (S1 for stiff clay, S2 for very stiff clay, S3 for dense sand
and S4 for very dense sand). The study models were built
using 2D solid elements for the shaft, vessel wall and the
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vessel roof. The raft of the tank and the vessel's base were
modeled as 3D solid elements. Mohr-coulomb model was used
to describe the nonlinear behavior of the soil domain. The
water contained by the tank was modeled using a potential-
based fluid material. The reinforced concrete material was
assumed to have a modulus of elasticity E of 20.0 GPa,
density of 2500 kg/m3 and Poisson's ratio (v) =0.25. The water
has bulk modulus of 2.0 GPa and density of 1000 kg/m3. The
mechanical properties of the different soil types which are
considered in this study are shown in Table 1 [4]. 3D Finite
Element model of the elevated water tank developed by the
ADINA program is illustrated in Fig.6

VESSEL DIAMETER | 12.00m .
FATER ALLOWABLE | 5.00 m

VESSEL WALL THICK.|0.40 m ..
VESSEL ROOF THICK.|0.20 m ‘

VESSEL BASE THICK.|1.00 m f

SHAFT HEICHT 25.00m

SHAFT DIAMETER  |8.00 m

SHAFT THICK. 0.50 m

RAFT DIAMETER 12.00m L (AR N1

RAFT THICK. 1.60 m DRIFT CALCULATION
EMBEDMENT DEPTH |2.00 m
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Fig.5 Geometry, concrete dimensions, drift calculation,

naming methodology for the models used in the research

A TIME 1000040
)
|
N
A

"

mw,

5
N

Fig.6 3D Finite Element model developed by ADINA program
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TABLE 1. MECHANICAL PROPERTIES OF SOIL TYPES CONSIDERED
. . . - Angle of q
Soil Description Den5|13y Cohesion Compressive izl Angle of P0|_sson
type (kg/m®) (KPa) modulus (MPa) friction (6) dilation(y) ratio(v)
S1 Stiff clay 1800 80 10 1 0.00001 0.4
S2 Very stiff clay 1860 150 20 1 0.00001 0.4
S3 Dense sand 1800 1 80 36 6 0.4
S4 Very dense sand 1900 1 150 41 11 0.4
TABLE 2. CONSIDERED EARTHQUAKES DATA
Earthquake Date Magnitude PGA
Kobe January 1995 6.9 0.821¢g
Northridge January 1994 6.7 02179
El-Centro May 1940 7.1 0.350 g

PGA of 0.2 g in this study. The 40 second records consists of
20 seconds excitation followed by 20 seconds without

Three earthquake time histories which are considered in
this study; Kobe, Northridge and El-Centro earthquakes. Table

2 shows these earthquakes data. The acceleration time  movement
histories and corresponding displacement time histories for
them are shown in Fig.7. All the records are scaled to have a
02 — Kobe -~ 6
~ _ £
z o1 €4
5§ - § 2
T 0 — E 0 —
3 ] _
% 01— 82—
& 54—
5 —]
'0-2\‘\‘\‘\‘ ‘6\‘\‘\‘\‘
0 10 20 30 40 0 10 20 30 40
Time (sec) Time (sec)
02 — . ~ 3
~ _ Northridge £ -
C) & 2 —
- 01— = |
g — é 1]
© — |
5 30—
8 01— 3 _
g - g1
'0-2\‘\‘\‘\‘ '2\‘\‘\‘\‘
0 10 20 30 40 0 10 20 30 40
Time (sec) Time (sec)
_ 2/ El-Centro £ 47
2 S 09—
Z 01 — = |
cC
= ] g 4
© — ]
5 0] S 8 —
g 01— 3 N
¢ @12
[a}
L L L e L L R B
0 10 20 30 40 0 10 20 30 40
Time (sec) Time (sec)

Fig.7 Acceleration time histories and displacement time histories for Kobe, Northridge and El-Centro Earthquakes
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V. RESULTS OF THE STUDY

The results obtained from the study will be represented in
this section. The effect of the supporting soil on the seismic
response will be shown considering each excitation separately
for both full and empty models. Fig.8 shows the drift time
history and the vertical displacement for empty tank models
with Kobe earthquake as seismic excitation considering
different types of soil (TEKOS1, TEKOS2, TEKOS3 and
TEKOS4). The maximum drift for TEKOSL is 43.70 cm at
time 14.86 sec, 52.35 cm at time 9.58 sec for TEKOS2, 18.99
cm at time 9.74 sec for TEKOS3 and 9.69 cm at time 8.68 for
TEKOSA4.

The drift time history and the vertical displacement related
to the full tank models (TFKOS1, TFKOS2, TFKOS3 and
TFKOS4) are shown in Fig.9. The maximum drift for

C: 11

TFKOSL1 is 39.63 cm at time 14.20 sec, 48.47 cm at time 9.08
sec for TFKOS2, 14.96 cm at time 8.00 sec for TFKOS3 and
9.24 cm at time 5.42 for TFKOS4

The previous results shown in Fig.8 and Fig.9 are related
to tank models analyzed considering Kobe earthquake as
bedrock excitation for both cases; full and empty. While
results shown below in Fig.10 and Fig.11 are related to those
models analyzed considering Northridge earthquake.

The drift time history and the vertical displacement for
TENOS1, TENOS2, TENOS3 and TENOS4 can be seen in
Fig.10. The maximum drift for TENOSL is 9.10 cm at time
18.76 sec, 4.40 cm at time 10.94 sec for TENOS2, 3.02 cm at
time 11.42 sec for TENOS3 and 3.52 cm at time 7.54 for
TENOS4.
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Fig.8 Drift time history and the vertical displacement for TEKOS1, TEKOS2, TEKOS3 and TEKOS4
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The drift time history and the vertical displacement for
TFNOS1, TFNOS2, TFNOS3 and TFNOS4 are illustrated in
Fig.11. The maximum drift for TFNOS1 is 9.15 cm at time
18.96 sec, 4.96 cm at time 11.12 sec for TFNOS2, 1.93 cm at
time 14.22 sec for TFNOS3 and 2.54 cm at time 7.56 for
TFNOS4.

The previous results shown in Fig.8 and Fig.9 are related
to tank models analyzed considering Kobe earthquake as
bedrock excitation for both cases; full and empty. While
results shown below in Fig.10 and Fig.11 are related to those
models analyzed considering Northridge earthquake.

The drift time history and the vertical displacement for
TENOS1, TENOS2, TENOS3 and TENOS4 can be seen in
Fig.10. The maximum drift for TENOSL1 is 9.10 cm at time
18.76 sec, 4.40 cm at time 10.94 sec for TENOS2, 3.02 cm at
time 11.42 sec for TENOS3 and 3.52 cm at time 7.54 for

MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 41, ISSUE 2, JUNE 2016

TENOS4.

The drift time history and the vertical displacement for
TFNOS1, TFNOS2, TFNOS3 and TFNOS4 are illustrated in
Fig.11. The maximum drift for TFNOS1 is 9.15 cm at time
18.96 sec, 4.96 cm at time 11.12 sec for TFNOS2, 1.93 cm at
time 14.22 sec for TFNOS3 and 2.54 cm at time 7.56 for
TFNOS4

The results shown below in Fig.12 and Fig.13 are related
to those models analyzed considering El-Centro earthquake.

Fig.12 shows the drift time history and the vertical
displacement for TEELS1, TEELS2, TEELS3 and TEELSA4.
The maximum drift for TEELS1 is 45.38 cm at time 12.48 sec,
27.56 cm at time 16.20 sec for TEELS2, 13.32 cm at time 6.68
sec for TEELS3 and 12.35 cm at time 2.34 for TEELSA4.
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Fig.8 Drift time history and the vertical displacement for TEKOS1, TEKOS2, TEKOS3 and TEKOS4
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Fig.13 Drift time history and the vertical displacement for TFELS1, TFELS2, TFELS3 and TFELS4

The drift time history and the vertical displacement for
TFELS1, TFELS2, TFELS3 and TFELS4 can be seen in
Fig.13. The maximum drift for TFELS1 is 41.54 cm at time
12.66 sec, 22.73 cm at time 12.32 sec for TFELS2, 11.64 cm
at time 6.04 sec for TFELS3 and 10.52 cm at time 2.36 for
TFELS4.

VI.

Numerical modeling of elevated water tanks resting on
different soils considering different excitations are
developed. The analysis of the results leads to many
important conclusions.

CONCLUSION
A.

A summary of the most general conclusions are as
follows:

Different types of soil strongly affects the response of the
elevated water tanks; the rigid soils reduce the value of
drift and the maximum value of drift occurs at a time near
the time of PGA of the earthquake records.

The drift and vertical displacements are completely
independent (vertical displacements have been detected
under the vertical symmetric axis of the structure) because
of the random nature of the seismic action and the
nonlinear behavior of the soil.

The seismic response of the elevated water tanks strongly
changed with different excitations in spite of the same
PGA.

It is observed that the maximum drift values in case of full
tanks are less than the maximum drift values of empty
tanks
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