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Abstract—Heat transfer has been investigated in an
equilateral triangular channel with slide length 2 cm, hydraulic
diameter Dn = 1.1547 cm with ribs fixed to the internal surface of
the channel to simulate the internal cooling channel near the
leading edge of the gas turbine blade. The simulation has been
done for two different ribs configurations (one wall ribbed and
two walls ribbed) with different pitch ratios (p/e) of 5, 7.5, 10,
12.5, Reynolds numbers varied from 20,000 to 70,000 at
stationary and rotating channel with speed of 3000 rpm, with
rotational number range from 0.39 tol.37. A numerical
investigation is conducted using a commercial package (Fluent
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6.3.26) where the flow and heat transfer characteristics were
investigated. The results show that, the heat transfer coefficient
for two walls ribbed is better than for one wall ribbed channel at
stationary condition. Also, from the results it is concluded that
the best heat transfer occurs at pitch ratio of 10 for one wall
ribbed and stationary channel, while the two walls ribbed gives
the best heat transfer at pitch ratio of 7.5 either for stationary or
rotating channel.

I. INTRODUCTION

HE gas turbine blade/vane internal cooling is
achieved by circulating the compressed air through
the cooling passages inside the turbine blade.
Leading edge of the turbine blade is critical region
which needs to be properly cooled. Leading edge

region receives extremely hot mainstream flow and high heat
transfer enhancement is required. Reviews on heat transfer
augmentation techniques applied in gas turbine blade internal
cooling are given in Ligrani (2013) and Gupta et al. (2012).
Han (1988) studied the effect of the channel aspect ratio on
heat transfer for five different channel aspect ratios (AR=1:4,
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1:2, 1:1, 2:1, 4:1). He concluded that the local heat transfer in
the narrow aspect ratio channel was higher than the wide
aspect ratio channel.

Han et al. (2000) provided in-depth information about
updated cooling techniques. The internal cooling techniques of
the gas turbine blade includes: jet impingement, rib turbulated
cooling, and pin-fin cooling. Their study of the gas turbine
blade internal cooling begins from the stationary, rectangular
cooling channels with the ribs placed on the walls of the
cooling passage. Ribs trip the boundary layer of the coolant
flow and enhance heat transfer at the higher pressure drop, the
rib effects in the stationary channel as well as in the rotating
channel have been done by several groups. Rib spacing, rib
height, rib angle, and the shape of the ribs all affect the heat
transfer enhancement.

Han et al. (2001) conducted experimental and numerical
investigation of heat transfer of internal cooling channels near
the trailing and leading edges for a stationary and rotating
blade. Aspect ratios of 4:1 and 8:1, Reynolds number ranged
from 5000 to 40000 and rotation number from 0.04 to 0.3
were considered. A 45 ° rib turbulators were attached to the
trailing and leading surfaces while the channel orientation
angle was kept at 90 ° and 135 ° with respect to the plane of
rotation. The results declared that the heat transfer differences
for the smooth tilted channel was up to 25% while for the
ribbed channel was 50-75%. Also, the channel orientation
significantly affects the leading, the outer, and the inner
surfaces and did not have much effect on the trailing surfaces.

Fu et al. (2004) studied the heat transfer in two-pass
rotating rectangular channel with 45° rib walls for two aspect
ratios of 1:2 and 1:4. The Reynolds numbers ranged from
5000 to 40000 while the rotation numbers varied from 0.0 to
0.3. Their studies considered two channel orientations with
angles of 90 ° and 45 ° with the plane of rotation. Their results
showed that the heat transfer on the trailing wall increased in
the first pass due to the rotation effect, while on the leading
wall the heat transfer reduced and the minimum recorded heat
transfer coefficient was 25% of that of the stationary channel.

Liu et al. (2006) studied the rib spacing in a 1:2 aspect
ratio channel under rotating conditions for the considered four
p/e ratios: 3, 5, 7.5 and 10. The rotating speed was fixed at 550
RPM with the channel orientation at B =90°.The Nusselt
number increased as p/e decreased. However, the friction
factor also increases with decreasing p/e ratio until a p/e ratio
of 5. As the p/e ratio further decreased to 3, the friction factor
was reduced. Thus, the p/e = 3 case showed the best thermal
performance. The results also showed that the highest thermal
performance was p/e = 5 for the stationary case and p/e = 7.5
for the rotating case.

Liu (2008) experimentally studied heat transfer and
pressure drop in an equilateral triangular channel. Three
different rib configurations (45°, inverted 45°, and 90°) were
tested at four different Reynolds numbers (10,000-40,000),
each with different rotational speeds (0-400 rpm). He
concluded that 45° angled ribs showed the highest thermal
performance at stationary condition and 90° ribs have the
highest thermal performance at the highest rotation humber of
0.58.

Lee et al. (2014) performed experiments on heat transfer
and friction factors of fully developed turbulent flows in the
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stationary rectangular divergent channel with different parallel
angled ribs (a=30°,45° 60° and 90°) are placed to the
channel’s two opposite walls as well as to the channel’s one
sided wall only, respectively. The ribbed rectangular divergent
channel has the inclination angle of 0.72° at the left and right
walls, corresponding to Dy /Dn: = 1.16. The divergent channel
has the cross sections of 100 x 75 mm? at inlet and 100 x 100
mm? at exit. The ribbed walls are manufactured with a fixed
rib height (¢) = 10 mm and the ratio of rib spacing (p) to
height (¢) = 10. The Reynolds numbers are from 15,000 to
89,000.They concluded that the total friction factors in the 90°
angled ribbed divergent channels are somewhat lower than in
the straight ribbed cross-sectional channels; however, the
Nusselt numbers are a little greater than in the ribbed straight
cross-sectional channels.

The objective of the present study is to get the best
configuration of an equilateral triangular channel on the
leading edge with ribs at different pitch ratios to achieve the
best thermal performance for the cooling of gas turbine blade.

I1. 2. COMPUTATIONAL MODEL AND BOUNDARY
CONDITIONS

Figure (1) summarizes the dimensions and boundary
conditions used in the model. A schematic diagram shows a
channel of an equilateral triangular section of side equal to 20
mm, the total length of the channel, L, equals to 374.65 mm
and the channel hydraulic diameter Dy is 11.54 mm. The
distance from the inlet of the channel to the axis of rotation
(X-axis), is Rr = 336.55 mm. The inlet mass flow rate for the
periodic segment is corresponding to the Reynolds number
which varied from 20,000 to 70,000; with inlet temperature of
773 K. Turbulence intensity varied from 3.97 to 4.64% is used
at the inlet. This is calculated by the relationship provided by
ANSYS Fluent 6.3.26. All walls were kept at a constant
temperature of 1273 K. The ribs are placed on one wall and
two walls. The flow is considered incompressible, three-
dimensional, turbulent and steady with  constant
thermodynamic properties. The working fluid is dry air with
Prandtl number equals to 0.71. ldeal gas law is used to
calculate density variation with temperature. The grid
independence study and validations of numerical results for
both types of channels are presented separately.

Ty= constant temperature, (K)

Figure (1) Cooling channel configuration
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111. DATA REDUCTION

The present study investigates the regionally averaged heat
transfer coefficient at various locations within the rotating and
stationary triangular ducts. The heat transfer coefficient is
determined by the net heat transferred from the heated wall,
the surface area of the walls, the regionally averaged
temperature of the wall and the mean temperature of the
channel. Therefore, the heat transfer coefficient is given as:

h= Q/Asur (1)
(Tw—Tr)
Where:
. To + TL'
== me(To _Tl)JTf = 2

Asur Smooth = (Triangle perimeter (Pr) *Total internal
Channel Length)

Aqr Ribbed = Triangle Perimeter (Pr)* (Channel Length +
(Rib side length*2* Number of Ribs)) = (Pr)*(L+ 2nL,)

T = cooling fluid average temperature, Tw = wall mean

temperature.

In the present study, Leung et al. (1998) correlation is used
to provide a basis of comparison. This relation used to
calculate the Nusselt number (Nuo) for stationary triangular
duct with smooth internal surfaces, and is given as:

Nu = 0.015Re"# (2)
Therefore, the heat transfer enhancement (Nu/Nu,) is given as:
Nu (hD, /k)

S — 3
Nu, 0.015 Re%®? )

Where (Nu) is the regionally averaged Nusselt number and Dy,
4 A

Pr
The friction factor is calculated using the values of the inlet

(P;) and outlet (P,) pressures as, Fu (2005):

f= Sk (4)

4(L/Dp)GGv»)

The turbulent friction factor given by Blasius correlation is
given as:

f, = 0.079 Re™"% (5)
The friction factor ratio has been defined by Eq. (6).

P, — P 1
i = ! 1" ( Reo.zs) (6)
f,  4(L/Dy)Gev*) \0.079

One way to evaluate the performance of different ribbed
channels is to calculate the thermal performance for each
ribbed channel configuration where the performance ratio is

defined as, Fu (2005):
n= (Nu/Nu)(F/£.)(3) )

The strength of Coriolis force depends on the velocity of
the coolant (v), the channel geometry (Dn), and the rotational
speed of the channel (2). These factors can becombined to
define the rotation number, Ro, as follows:

0 * Dy

\%

Ro

8)
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1V. NUMERICAL MODELING

FLUENT®6.3.26 code is used to simulate and solve the heat
transfer problem. The first step of solving this problem is the
geometrical configuration which is established by the fluent
drawing tool known as GAMBIT which is used to create the
model. The sequences of steps involved in GAMBIT are
shown in Figure 2.

Figure 3 shows the duct geometry and the numerical grid
generated using GAMBIT grid generator for this study. After
the geometry exported to FLUENT 6.3.26 then the problem
specification scale, boundary conditions, solution, and errors
are entered to Fluent according to the present problem. Figure
(4) shows the steps involved in solving the problem in Fluent.

V. GRID INDEPENDENCY TEST

To choose a suitable computational grid, a grid
independency test is performed using different grid sizes in the
solutions. The numbers of cells used in the present analysis are
18,767 & 30,865 & 60,909 & 466,299 & 720,419 & 939,014
and 1,349,797 cells in stationary smooth channel. The
parameter used to check the grid independency is the mean
Nusselt number. Comparisons of the mean Nusselt number are
shown in Figures 5 and 6. The maximum difference in Nusselt
number is 5.52% between (18,767) and (30,865) grid points
and the minimum difference in Nusselt number is 0.35%
between 939,014 and 1,349,797 grid points. Therefore, all the
results presented in the following discussions are based on the
(1,349,797) grid points.

el Geometry Creation |
%| Grid Generation |

%| Examine Mesh Quality |
GAMBIT

| Boundary Assignment |

— | Continuum Zone |

1 Export Mesh to Fluent |

Figure (2) Steps involved in exporting mesh file from
GAMBIT

Figure (3) Computational grid of an equilateral triangular channel with ribs
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Fluent 6.3.26

Importing Mesh

Mesh check, Scale and Units
defining

Define the Model (Solver
viscous and Energy)

Define the material and
operating conditions

Define the boundary
conditions for each boundary

Initialize the solution, set
monitor residuals, iterate and

get the results

Figure (4) Steps involved in solving the problem in Fluent

46

a4 1

Grid Independency Test
e Average Nusselt Number
. 1 . 1

0] 400000 800000 1200000

No. of cells

Figure (5) Averaged Nusselt number for different grids

8

Grid Independency Test

Relative error in Nusselt Number
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VI. RESULTS AND DISCUSSION

6.1 Results Validation

In order to validate the results of Computational Fluid
Dynamics (CFD) model wused in the present study,
comparisons were performed for the average Nusselt number
and friction factor. The previous works are performed in case
of smooth equilateral triangular channel. Figure (7) shows a
reasonably good agreement of these comparisons with the
previous work of Leung et al. (1998). The comparison of the
average Nusselt number results as shown in Figure (7-a),
shows that the maximum difference in average Nusselt
number is (4.9%) at low Reynolds number and (2.7%) at high
Reynolds number. Also, the present study friction factor
results are compared with the Blasius correlation (Cengel,
2006), as shown in Figure (7-b) and the maximum deviation of
friction factor is 4% at low Reynolds number and 2.2% at high
Reynolds number.

In the present study, the results are considered for one-wall
and two-wall ribbed equilateral channel, respectively, at
different pitch ratios of (5, 7.5, 10, and 12.5) and Reynolds
number ranged from 20,000 to 70,000.

The heat transfer and pressure losses are investigated for
stationary and rotating channel.

Nusselt Number Relative Error %
D

2 | 2 | 2 |
0
0 400000 800000 1200000
No. of cells

Figure (6) Number of cells versus percentage of error in averaged
Nusselt number

160
140 |- /
120 |
2 100 |
80 -
i Nusselt number comparison
60 |- + + +CFD
B e |_cung et al. (1998)
40 l Il l Il l Il
20000 40000 60000 80000
Re
(a) Average Nusselt Number
0.007
T - .
L Friction factor comparison
+ + t+c
0.0065 e Blasius
0.006 |-
’1\ L
0.0055 |-
0.005 |-
0.0045 I (] I (] I (]
20000 40000 60000 80000
Re

(b) Friction Factor
Figure (7) Comparison between present study and previous studies
of stationary smooth equilateral triangular channel at different
Reynolds numbers
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6.2 Stationary channel
6.2.1 The case of one wall ribbed channel

Figure 8 depicts the effect of pitch ratio (p/e) on average
Nusselt number (Nu) for one wall ribbed. As shown,
theNusselt number increases with the increasing of pitch ratio
till its maximum at p/e = 10 and then decreases with further
increasing of the pitch ratio. It may be due to the effect of the
pitch ratio on the turbulent flow formation between ribs. A
flow separation appears at the tips of ribs causing a circulation
zone between ribs. For the low pitch ratio, the circulation
zones are created without reattaching points between ribs. As
the pitch ratio increases the area of circulated flow increases
which enhance the heat transfer. By increasing the pitch ratio,
the opportunity of formation a reattaching point between ribs
increases which leads to further enhancement till a formation
of dead zones appears. By increasing the dead zone formation,
the heat transfer decreases with increasing pitch ratio as shown
in Figure 9 which agrees with Sundberg (2006) flow behavior.
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240
g o *
200 e
x X
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Figure (8) Nusselt number vs. rib pitch ratio for one wall ribbed channel at
different Reynolds numbers

Figure 10 represents the variation of friction factor ratio
(f/f.) with the pitch ratio variation. The figure indicates that
the friction factor ratio increases with the pitch ratio increasing
until it reaches its maximum value at p/e = 10 and then
decreases with further increasing in rib pitch ratio. Also, it is
clear that the friction factor ratio increases with the increasing
of Reynolds number.

The effect of pitch ratio (p/e) on the thermal performance
(n) of the channel cooling is illustrated in Figure 11. It can be
noticed that, the thermal performance increases as the pitch
ratio increases until it reaches its maximum value at p/e = 10
and then decreases with further increasing of the pitch ratio.
Also, it’s seen from the figure that, the thermal performance
decreases with the increase of Reynolds number due to the
increasing of friction losses over the increasing of heat transfer
enhancement as the Reynolds humber increases.
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6.2.2 The case of two walls ribbed channel

Figure (12) shows the relation between average Nusselt
numbers (Nu) and pitch ratio (p/e). The figure indicates that
the average Nusselt number increases with the increasing of
pitch ratio until it reaches its maximum value at p/e = 7.5 and
then decreases with further increases in rib pitch to height
ratio. It is noticed that, for the two walls ribbed, the maximum
Nusselt number is obtained at pitch ratio lower than that of
one wall ribbed, which reflects the effect of turbulence
intensity over the pitch ratio variation.

Figure (13) depicts the effect of pitch ratio (p/e) on the
friction factor ratio (f/f,). As observed from the figure, the
friction factor ratio increases with the pitch ratio increasing
until it reaches its maximum at

p/e =7.5 and then decreases with further increasing of the
pitch ratio.

Figure (14) shows the relation between the thermal
performance (n) and pitch ratio (p/e). The figure indicates that
the thermal performance increases with the increasing of the
pitch ratio and the maximum thermal performance value
occurs at p/e = 12.5.

6.2.3 Comparison between smooth, one wall and two walls
ribbed channel

As shown in the previous results, the best Nusselt number
occurs at pitch ratios of 10, 7.5 for one and two walls ribbed
channel, respectively. Figure (15) shows a comparison
between the best pitch ratios for one-wall, and two-wall ribbed
channel with smooth channel at different Reynolds numbers.
The figure indicates that the one wall ribbed channel at pitch
ratio of 10 gives an enhancement of approximately 42% when
compared with the smooth channel. The two walls ribbed
channel enhances the heat transfer in the range of 72.3% to
82.4% according to Reynolds number variation when
compared with the smooth channel.

6
Sationary
onewall ribbed
B + + +-Re 20000
e ¢ 8E
5.5 - @ s % xham
L] x = ) R 00
| X X
A A
5
o I
= I o o o X
45 - o~
- - + °
<
4}
-+
3 5 I 1 I 1 I 1 I 1 I

2.5 5 7.5 10 125 15
p/e
Figure (10) Friction factor ratio versus rib pitch ratio for one wall
ribbed channel

0.88
+
0.84 +
+ o O
0.8 o ) ¢
. 2 X <~)5
= X
+
0.76 |
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onewall ribbed
? § ¢ onim
0.72 1 X ¢ f fmem
X X X Re 6000
+ + + Re 7000
0.68 L | L | L | L | L

25 5 75 10 125 15
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Figure (11) Thermal performance versus rib pitch ratio for one wall
ribbed channel
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E
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B [ )
120 f < o >
<
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40 " 1 " 1 " 1 " 1
25 5 75 10 125 15
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Figure (12) Mean Nusselt number versus rib pitch ratio for two walls
ribbed channel

20
! =
+ s s suimw
18 |- x 2R e
== L ok Re 70000
L o A o
16 % [ ] X
o A o A
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- -+
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Figure (13) Friction factor ratio versus rib pitch ratio for two walls
ribbed channel
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Figure (14) Thermal performance versus rib pitch ratio for two walls

ribbed channel
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Figure (15) Comparison between averages Nusselt number of smooth, one
wall ribbed and two walls ribbed channel at various values of Reynolds

number
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6.3 Rotating channel
6.3.1 Smooth channel at rotating speed of 3000 rpm

The behavior of flow and heat transfer are investigated and
the comparison with the stationary smooth channel at a
Reynolds number ranges from 20,000 to 70,000, rotation
number ranges from 0.39 to 1.37 and for the rotating channel
with a speed of 3000 rpm.

Figure (16) represents the variation of local Nusselt
number (Nuy) along the stream direction (Z/Dy). It’s clear that
the local Nusselt number decreases along the streamwise
direction due to the boundary layer development.

Figure (17) depicts the effect of rotation on heat transfer at
different Reynolds numbers (Re). The figure indicates that: in
case of rotation, the heat transfer is enhanced through the
channel. This enhancement may be due to the effect of
generated vortices during rotation. When compared with the
stationary to smooth channel, the enhancement is ranged from
47.4% to 184.3% according to Reynolds number variation.

Figure (18) depicts the effect of rotation on friction factor
ratio (f/f,) with different Reynolds numbers (Re) for smooth
channel. It can be seen that, the friction factor ratio decreases
more sharply at low Reynolds number than that of stationary
channel with the increasing of Reynolds number.

Figure (19) describes the thermal performance of the
rotating channel when compared with the stationary channel.
The comparison shows an enhancement of the thermal
performance from 31.5% to 82.3% according to the Reynolds
number variation. Also, it can be noticed that the trend of the
thermal performance variation with Reynolds number is
affected strongly by the friction factor ratio trend as described
by Eq. (7)

300
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250 o & ORomtion
200 |-
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Figure (16) Nusselt number along the stream direction (Z/Dh) for stationary and rotation of smooth channel

6.3.2 Two walls ribbed channel at rotating speed 3000 rpm

From the previous discussion, it can be concluded that the
two walls ribbed stationary channel and smooth rotating
channel enhance the heat transfer and the thermal
performance, so it’s important to investigate the case of two
walls ribbed and rotational channel.

Figure (20) describes the local Nusselt number (Nuy) along
the stream direction (Z/Dy). It’s seen that at different rib pitch
ratios the local Nusselt number at entrance has its maximum
value at p/e of 7.5 and decreases along the stream direction
due to the developed thermal boundary layer.

Figure (21) depicts the effect of pitch ratio (p/e) on average

Nusselt number (Nu) for two-wall ribbed with rotating
channel. The figure shows that the average Nusselt number
increases with the pitch ratio increasing till it reaches its
maximum value at p/e = 7.5 and then decreases with further
increase in rib pitch to height ratio.
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Figure (17) Nusselt number versus Reynolds number for stationary and

rotating smooth channel
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Figure (18) Friction factor ratio versus Reynolds number for stationary and
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Figure (20) Nusselt number variation for rotating two walls ribbed channel at different pitch ratios
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Figure (21) Average Nusselt number versus pitch ratio for rotating two walls ribbed channel at different Reynolds numbers
3. The average Nusselt number for one wall ribbed
channel at stationary condition increases with increasing
VII. CONCLUSION the pitch ratio up to 10 and then decreases with further
Investigation of flow and heat transfer in a smooth and increasing in pitch ratio. Also, the friction factor ratio
ribbed equilateral triangular channels under rotational and increases with increasing the pitch ratio up to 10 and then
stationary conditions are conducted. Computations are decreases with the increasing of pitch ratio. _
performed at Reynolds number (Re) ranging from 20000 to 4. The average Nusselt number for two walls ribbed
70000, rotation number (Ro) from 0 to 1.37, pitch ratio of 5, channels at stationary and rotating conditions takes its
7.5, 10, and 12.5. It can be concluded that: maximum increasing at pitch ratio of 7.5.
1. For one wall ribbed channel, there is an enhancement 5. The thermal performance for one wall ribbed channel
in the heat transfer by about 42% when compared with the at stationary condition increase with the pitch ratio
smooth channel. increasing until it reaches its maximum value at p/e = 10
2. For two walls ribbed channel, the enhancement in the and then decreases with further increase in the rib pitCh
heat transfer is ranged from 72.3% to 82.4% according to ratio. _
the Reynolds number variation, when compared with the 6. Thermal performance decreases with the Reynolds

smooth channel. number increase.
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For smooth channel with rotation, the results show an
enhancement ranged from 47.4% to 184.3% and 31.5% to
82.3% in heat transfer and the thermal performance
respectively, when compared with the stationary smooth
channel.
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