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is applied to the laminar hydrodynamically fully developed flow
but thermally developing. It offers significant advantages over
the traditional model of convective heat transfer coefficient
(HTC), for which correlations only exist for uniform boundary
conditions and inlet profile. The proposed approach makes it
more efficient when dealing with problems with non-uniform
conditions such as conjugate heat transfer problems. A critical

Abstract— Modeling the forced convection heat transfer with
arbitrary boundary conditions and inlet temperature profile was
studied in order to go beyond the classic, but unrealistic cases of
imposed uniform heat flux or wall temperature as well as a flat
temperature at the inlet. The proposed approach, known as the
Flexible Profile Compact Thermal Model (FP-CTM), which has

been proposed earlier to treat circular cross-section ducts, is
generalized here to treat ducts with a rectangular cross-section. It
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advantage of this approach is that it uses a semi-analytic
treatment to produce highly accurate results that are comparable
to those produced by commercial CFD tools but with
significantly less CPU time. Results obtained from the proposed
approach, i.e. FP-CTM were compared with that obtained from
Ansys Fluent. The comparison has shown that FP-CTM is very
reliable. The maximum error compared with Fluent solver
results was 0.01 °C for a temperature range between the inlet and
outlet of about 50 °C. Based on the preceding comparison, the FP
approach was used to solve different problems with different
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boundary conditions (uniform and linear heating) and inlet
profiles (flat and non-flat inlet) using significantly fewer
computing resources.

I. INTRODUCTION

ORCED convection appears in many practical

applications such as heat exchangers design, design

of cooling systems in integrated circuits, design of
fins, and design of the cooling system for turbine blades.
Although forced convection is not a new topic (actually the
first attempt to solve laminar forced convection in circular
ducts was by Graetz in 1883 [1]), there are still unsolved
problems related to this domain such as cases with non-
uniform boundary conditions (BCs) for example in conjugate
problems. Available correlations for the heat transfer
coefficient (HTC) are all based on either uniform wall heat
flux or uniform wall temperature. Using HTC outside its
domain of validity may cause noticeable errors. In some
applications, such as turbines cooling [2], it is essential to get
accurate results for turbine safety and reliability. An
alternative is the 3D CFD simulation. Although this method
gives very accurate and reliable results, it is not suitable for
large systems composed of many components because of the
high computational time required.

In this study, a new method is proposed, which is a bridge
between the oversimplified HTC model and complicated CFD
simulation. This method, which is known as the Flexible
Profile Compact Thermal Model (FP CTM), allows using non-
uniform conditions as well as uniform ones. It also has the
advantage of allowing arbitrary inlet conditions. Another
advantage of the new approach is its flexibility in selecting the
required accuracy, which can go from the low HTC accuracy
to the accuracy of CFD simulation. The new approach can also
deal with conjugate problems with significantly less
computational time than 3D CFD simulation. Almost all
publications in the literature for convection problems consider
uniform conditions; for example, Aparecido and Cotta [3]
developed an analytic solution for forced convection in a
rectangular duct with a uniform wall temperature and fully
developed velocity profile. Morini [4] developed an analytic
solution for laminar forced convection in a rectangular duct
with axially uniform heat flux and circumferentially uniform
temperature BCs. The solution is valid in the fully developed
thermal zone. Hooman and Merrikh [5] studied forced
convection in a rectangular duct with uniform heat flux BCs
and thermally and hydrodynamically fully developed flow.
Also, Smith and Nochetto [6] performed numerical analysis
for laminar convection in rectangular ducts for aspect ratio
from 1 to 100 and also for parallel plates. They used in their
analysis axially uniform heat flux with circumferentially
uniform temperature BCs. Also, Avci and Aydin [7] used
finite volume method to study thermally developing forced
convection in a microtube. Hooman et al. [8] included viscous
dissipation in their study of forced convection in a rectangular
duct with isothermal BCs. Bennett [9] investigated forced
convection in rectangular ducts using three uniform BCs,
constant temperature, constant heat flux, and constant axial
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heat flux with constant peripheral temperature. Zukowski [10]
studied laminar forced convection in a square duct with
different combinations of constant temperature heated and
adiabatic walls. In all these studies, Nusselt number, which is
the dimensionless representation of HTC, is calculated to
model this set of problems.

Although the use of HTC in thermal analysis is widespread,
it has many defects. First, the derived formula of HTC is only
valid for the cases with the same BCs used in the derivation,
which means that HTC models are BCs dependent models,
which violates the Boundary Conditions Independence (BCI)
criterion [11] any physically sound model should satisfy.
Secondly, the most common BCs are either uniform
temperature or uniform heat fluxes, none of them are realistic
boundary conditions especially when dealing with conjugate
problems, and it is impractical to have a formula for each BCs.
Thirdly, inlet conditions used to derive HTC formulas are
either flat or fully developed, of course flat inlet causes
discontinuity at inlet, which is unrealistic. Fourthly, some
formula used to calculate HTC may cause noticeable errors
not only because of assuming uniform inlet and boundary
conditions but also because of the method used to derive the
formula. For example, the error in calculating the average heat
transfer coefficient in the case of a uniform heat flux condition
was discussed in [12]. Hence increasing attention is devoted to
the use of different methods that can deal with non-uniform
inlet and BCs and produce models that are independent of the
imposed inlet and BCs. For example, some researchers used
experimental data to get what is known as Discrete Green
Function (DGF) [2], [13]. This method can predict heat
transfer in problems with non-uniform BCs. The DGF is
constructed using measured temperatures at different locations
due to various heat flux sources located in different locations.
However, obtaining DGF experimentally is not very practical,
and also, the uncertainty in the measurements may cause
errors in heat transfer calculations. DGF method was used in
[14] to predict heat flux across the turbine tip gap.

Another approach has been proposed by Sabry in [15], [16],
to overcome the above difficulties, called Flexible Profile
Compact Thermal Model (FP-CTM). This approach does not
suppose uniform wall heat flux gw or uniform wall
temperature Ty. It does not suppose uniform (or flat) inlet
temperature profile Ti,. All these fields (qw, Tw and Tin) are
supposed as space functions each one is developed over a
suitable complete series. The model is a relation between the
coefficients of each series, which is a matrix that would
replace the single number in the HTC approach. It requires no
experiments to conduct. This method was successfully applied
to forced convection in circular ducts with arbitrary inlet and
boundary conditions [15]. A new definition for entrance length
was derived because the conventional definition of entrance
length (the length beyond which the HTC doesn’t change) will
not be valid when the BCs are non-uniform. The new
definition states that entrance length is the length beyond
which the effect of inlet condition disappears. In other words,
beyond entrance length the fully developed profile will take
the same shape regardless of inlet profile shape. FP CTM was
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also used to model conjugate problem in circular ducts [16].

T, (%,y,0)=T,, (x.y)

X

'VTf‘wans =0 ((X’y}waus'z)

z/ a

Fig. 1. Geometry of the Problem.

Two CTMs are constructed, one for fluid domain, which is
laminar flow in circular pipe, and the other for solid domain.
Coupling conditions at interface, which are continuity of
temperature and heat flux, are applied. It is found that even if
uniform heat flux is applied at outer wall neither heat flux nor
the temperature distribution is uniform at the solid-liquid
interface. Results obtained from CTM are in good agreement
with numerical simulation using ANSYS package. In some
cases, such as microchannels, ducts cross section is usually
rectangular, not circular [17]-[20]. The aim of the present
work is to extend the FP-CTM previously developed for
circular duct to the case of laminar flow in rectangular ducts,
to inherit its advantages: high precision, low CPU time and
ability to treat arbitrary boundary conditions and inlet.

I1. PROBLEM DESCRIPTION

Steady laminar forced convection in a rectangular duct is
studied with constant physical properties. The fluid is
considered to be hydrodynamically fully developed but
thermally developing. Boundaries include duct walls, duct

inlet (z'=0), and duct outlet (z'=L). The duct has
dimensionless width a (in x-direction) and height b (in y-

direction) as well as length L, in the z-direction, as shown in
Fig. 1. All the variables are in dimensionless form.

A. Hydrodynamic problem
Laminar hydrodynamically fully developed flow under the

’

. . P . .
action of a pressure gradient % subject to the classical no-
z

slip boundary condition, is considered. The velocity profile is
thus composed of a single component along the duct axis
w'(x’, y'). Axial velocity obeys the Navier—Stokes equation
in the z-direction, in which convective term identically
vanishes due to the fully developed assumption:
o’w’ o*w'  1dP’

1”2 + 12 :__!:_C (1)
OX oy p dz

where p is the dynamic viscosity and C is a constant. This is
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to be solved within the plane (X', y')together with the non-

slip boundary condition at the walls of the duct:
W, |wa||s: 0 (2)

The pressure gradient will be expressed in terms of
velocity head and friction coefficient F, using the classical
model:

! 2
PPl )
dz 2D,
where Dy is the hydraulic diameter, and U is the average
velocity over the cross-section. The friction coefficient can be
expressed in terms of Poiseuille number Po = F Re (Re is
Reynolds number). In order to transform the problem into the
dimensionless form, average velocity, U, can be taken as the
characteristic velocity. Any suitable characteristic length Lecn
can be used (in this analysis, the hydraulic diameter, Dy, is
taken as the characteristic length). In the sequel, all
dimensionless quantities will take the same symbol as their
dimensional counterpart but without the dashes. Hence, the
dimensionless version of the Navier-Stokes equation (1) will
take the form:

ow o'w  (Po

PWRIrFvinin ey

ox~ oy 2
This is a simple Poisson’s equation in 2D. It can be easily

solved, together with the dimensionless BCs, numerically by a
finite volume code to get the velocity field.

4)

B. Thermal problem

Unlike the velocity profile, the temperature profile is
considered to be developing, including an entrance zone
followed by a thermally developed zone. The solution will
address arbitrary inlet and BCs. Steady-state heat transfer in
the fluid is governed by the dimensional energy equation:

' 21! 20! 2
’ﬂzkf (3Tf2+<3Tf2+8'l'2f 5)
oz’ ox's oy oz

where Tf' is the fluid temperature, while physical properties

pr (density), cs (heat capacity) and ks (thermal conductivity) of
the fluid are all assumed constant.

p; Cr W

In order to obtain Tf' from (5), BCs should be imposed on
all boundaries, i.e., walls, as well as at fluid inlet (z' = 0)and

outlet (z' = L). However, the condition at the outlet is

usually ignored in literature as it would only affect a small
portion near the duct outlet, especially at high Peclet number
(Pe). Boundary conditions can take any shape. Without loss of
generality, it will be assumed that all imposed fields will be
expressed in terms of entering heat flux at the walls:

ke (NVTY)| e = G (6)
Notice that both wall heat flux gy, and wall temperature
T{ | @re assumed totally arbitrary, none of them is

considered uniform. Temperature everywhere in the fluid
domain T/(x', y’, z') will be obtained, including at the walls
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T{ |.ans» @S @ function of qg, . This final expression, relating
Qr, With T/ |, 1S the required, flexible profile (FP) form of

the compact thermal model (CTM). It will also allow us to
deal with any type of boundary conditions (Dirichlet,
Neumann, or Robin). Using it together with any given
boundary condition of the three types would directly give both
fields q;, and T/ |, -

For fluid at duct inlet(z' = 0):
T (x,y,0) =Ty (xy) )
Where T, is the fluid inlet temperature profile, also assumed
arbitrary (or flexible). Without loss of generality and for

convenience, reference temperature will be fluid bulk
temperature at inlet. Hence, by definition;
IA,(-EL w)[,_ dxdy’=0 ®)

where A’ is the cross-sectional area of the duct. In order to
non-dimensionalize the thermal problem, additional required
characteristic quantities are either heat flux g, or temperature

difference AT, , any of them can be deduced from imposed

BCs. Having one of them, the other will be obtained from:
ki ATen/ Len = Qen. Using this relation, the dimensionless
governing equation becomes (again using the same symbols as
those of dimensional variables but without the dashes):
oT, _&°T, o°T,  &°T,

Pe w 9
6z ox*  oy* oz? ©)
where Pe is Peclet number defined as:
Pe = LU (where ot is the thermal diffusivity)
Ol
Notice that the hydraulic diameter Dy, is taken as characteristic
length L.
Thermal inlet and BCs become:
n VTf |wa||s = O ((X’ y) walls ’ Z) (10)
T, (X, y,0) =T, (X, ¥) (11)

The solution of the energy equation will be split into two
solutions. The first solution Tep gives the fully developed
profile (this solution satisfies the energy equation and imposed
heat flux gw BCs only), whereas the second Ten gives the
entrance zone profile (this solution, when added to the fully
developed solution, guarantees the satisfaction of the inlet
condition). Superposing the two solutions gives the total
solution to the problem.

METHODOLOGY

T (%,Y.2) =Tep (X, ¥,2) + Ty (XY, 2) (12)
Fields Trp and Ten satisfy:
2 2 2
PewaTFDzaT;D+a T;D+a TSD (13)
oz OX oy oz
n'VTFD|wa||s = O (14)
2 2 2
Pew 0Ty _ 0 T,;N +a T,;N +6 TEN (15)
0z OX oy oz
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n .VTEN |wa||s =0 (16)

Ten (X,Y,0) =T, (X, ¥) =T (X,y,0) (17)
Noticing that the field Ten has no energy source (16), then
from the First Law, the bulk temperature of Teny may only
slightly vary from its inlet value due to axial conduction. Such
variations are negligible except for vanishing Pe.

From the Second Law, temperature differences will damp
out due to heat transfer within the fluid. Hence, sooner or
later, this field will tend to become uniform after a certain
distance from the inlet. Reference temperature may be easily
adjusted to let this uniform value tend to zero. After such
distance, the only remaining field would be Tep. This gives
another more useful definition of the entrance length and the
fully developed temperature profile, applicable for non-
uniform boundary conditions, for which the classical concept
was unusable. This shows that the initial temperature profile
has an effect that appears in Ten only, which gradually
vanishes when fluid progresses in the duct. Hence a more
rational definition of the entrance length would be the distance
required for the field component Ten to reach, for example,
1% of its value at the inlet. The remaining field Tep is thus the
fully developed profile, even though it may change along the
duct because heating is not uniform.

IV. SEMI-ANALYTIC SOLUTION OF THE THERMAL PROBLEM

Semi-analytic solution means that we will apply an
analytical pretreatment to the problem leading to a reduced
one that can be easily solved numerically, i.e., requiring much
fewer computing resources than if the problem was considered
fully numerical.

The heat source at the wall gq is an arbitrary function of
space, in terms of which the general solution needs to be
obtained. Heat is assumed to be added symmetrically at the
upper and lower walls only. Other vertical walls are assumed
adiabatic. The case where all walls are heated could be
obtained from this one by superposition, which allows a
certain degree of freedom if heating was different on vertical
and horizontal walls. In order to obtain the general solution, it
would be normal to develop gm Over a complete functional
series in z. Each term in the series represents a specific
excitation for which we can find a solution, i.e., corresponding
temperature field. Superposing all solutions would constitute
the general solution to any arbitrary heat source. The
expansion could be in terms of Taylor or Fourier series or any
other convenient series capable of representing the heat source
grw With rather few terms. Taking Taylor series, truncated after
N terms:

O (2) = (VT 0= 20000 25 (NFT) o 00=0 (1)

As for inlet, the inlet profile can take any shape. There is
no restriction on it, contrary to classical approaches where it is
systematically assumed flat. So, the remaining condition in
equation (11). Condition at the outlet (z=L) is ignored, as is
usually the case in the literature.

x:O,a:
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A. Fully developed solution
The fully developed part of the temperature field will be
obtained in terms of coefficients gz, using the following
general form:
Z| 0 '

Tro (X,¥,2) (19)

Substituting all series developments (18), and (19) in the
partial differential equation (13) and the boundary condition
(14), equating like powers of z to zero gives us:

o*f, o°f,

P + EY: =S, (x,y) (20)

S (x,y)=(i+1)Pew(x,y)f., (x,y)-(i+2)(i+1)f (X, y)
@n

n'Vfi|y=gb:qf,i; n'Vfi|X=0 (22)

This system of equations will be solved recursively from the
highest value of i downwards (from i=N+1 to i=0). For each
value of i, it is only needed to solve the 2D Poisson’s equation
for the same geometry and same type of boundary conditions;
only source functions are different. But before that, some
essential notes must be mentioned.

Note 1: Consistency condition

Integrating both sides of (20) over the cross-sectional plane
of the duct, using Gauss theorem and boundary condition (22)
we get:

2aq ; =J'ASi(x,y) dxdy

where A is the cross-sectional area.

Using (23), and defining Sjayg as the area average of S;, noting
that the above equation is in a dimensionless form, we
conclude that:

2
Si,atvg = (B) CIf,i

Hence, Si (X, y) is not arbitrary since it should satisfy (24).

(23)

24

Note 2: Arbitrary constants

The unknown function f; (X, y) appearing in differential
equation (20) and boundary condition (22) always appears
differentiated. Hence, its solution is only defined up to an
arbitrary additive constant. Let us temporarily designate a

particular solution by g; (x,y), then:

fi (X!y)zgi (le)+ci (25)
where Cj is a yet arbitrary constant. The value of this constant
will be fixed while solving the equation of the lower order
value of i. In fact, Si1 (X, y) contains fi (X, y), which in turn
contains C;. By imposing the condition (24) for i-1, we
immediately get the value of C;.

Note 3: The reference temperature

All values of integration constants C; from i=N+1 to i=1
can be obtained using the procedure depicted in the previous
note as a function of gr;. As for Co, its value should be fixed
otherwise. Notice that, by virtue of (19) the function fo (X, y) is
simply the inlet profile of the fully developed temperature
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field Teo (X, v, 0). Hence, the constant Co will be split into the
sum of two constants. One of them will counterbalance the

bulk temperature of g;, the other will simply be the bulk

temperature of the fully developed part at inlet Trpy. The later
will be fixed after solving for the entrance length part.

. 90 (x.y)w(x,y)dxdy
J.W(X, y)dxdy

From the previous discussion, it can be concluded that we
have N+2 coefficients C; to obtain from i=0 to N+1 and also
N+2 conditions, which are to satisfy reference temperature
condition (26) in addition to the N+1 conditions (24) applied
for i=0 to N. This explains why expansion (19) has been
truncated after i = N+1. In this study, numerical method (finite
volume method) is used to solve the set of 2D Poisson’s
equations.

Defining a suitable metric for the wall temperature Trrp
(either the average or the maximum or any other metric), we
get an expression for it from (19) in the form of a polynomial
in z. Coefficients of this polynomial can be represented as a
vector T¢rp. Above sketched solution relates these coefficients
to the wvector containing coefficients of the polynomial
representing wall heat flux gr in the form of the matrix
relation:

Tf,FD = Rf,FD Q¢ (27)
where Riep is the thermal resistance matrix that generalizes
the scalar HTC (or precisely its inverse).

The solution of the fully developed forced convection
problem in a straight duct of the rectangular cross-section due
to arbitrary wall heat flux is thus obtained. The original 3D
convection/diffusion problem has been transformed into a set
of simple 2D Poisson’s equations with given boundary
conditions. The obtained field still does not satisfy inlet
conditions. Hence it is only valid sufficiently far from the
inlet. Thus, entrance solution is obtained in the next section in
order to satisfy inlet conditions.

(26)

0=~ FDb

B. Entrance solution

The entrance field Ten will be expanded over a series that
decays exponentially along the duct length; thus, the only field
that remains at a long distance from entry is the fully
developed field.

7/» z

Teu (%, Y.2)=D Ah, xy)ePe (28)

where constants A; and A; and functions h; are yet to be
determined. It should be noted that although the entrance field
has no heating source at the wall (16), its bulk temperature
may still vary along z due to axial conduction at both tube
ends. The above equation (28) means that the bulk
temperature of the entrance field is assumed zero at infinity,
i.e. sufficiently far from the inlet. The bulk temperature of the
entrance field at inlet Tenp iS not necessarily zero. To get an
expression for it, let us split each expansion function into one
that has zero bulk h;(x,y) and a constant bulk temperature hiy:
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3 J‘ w(x,y)h; (x,y)dxdy Where M is the maximum number of eigenvalues C(_)nsidered.
h; (x,y) =hi (x,y)+hy; hy == (29) Itis expected to have very few terms as the exponential decays
i ib ib
JW(X, y)dxdy rapidly with A;.
A

Hence, from (28) and (29) we can easily deduce that: From (27) and (35) the average wall temperature on the

T[°C

Tow = 2, A, G | 4" l9 (a)
Substituting (28) into the partial differential equation (15) and 35 \ /
equating coefficients of same exponential power gives the set 3 \ /
of differential equations: 55 \ 2=0.04 m /

2 2 ; ;

6 hi _l_a hi +7\« W+£ h =0 (31) 2 \ I_3D Zln;u|atlon /

o o P | | 15 \\ _mode //
Which should be solved together with the boundary condition 1 X 7
(corresponding to (16)): 05 sl

n Vhl |wa||s =0 (32) 0 Y[m

There is a trivial solution to the system (31) and (32), 0 0.002 0.004 0.006 0.008  0.01

which is simply hi(x, y) = 0. We are seeking other non-trivial 55 T [°C] (b)

solutions, which is typically an eigenvalue problem A; being
eigen values, and h; are eigenfunctions. It is to be noted that
for high Pe, the second term between parentheses in the LHS

2=0.04 m

of equation (31) can be neglected, which transforms it into a
Sturm-Liouville problem having an orthogonal set of 1.5 1 T_3D|simulation
eigenfunctions. Physically, this means neglecting axial =T model
conduction through the fluid domain if fluid velocity is high 1
enough, which is the case for most practical problems. In the
general case, considered here, where Pe is not necessarily 0.5
large, eigenfunctions still exist but are no longer orthogonal. X [m]
To obtain eigenvalues and eigenfunctions of (31), it is 0
possible to transform it into an algebraic eigenvalue problem 0 0.005 0.01 0.015 0.02
through discretization. The resulting eigenvalue problem can
be solved using any standard numerical computational Fig. 2. Comparison between the proposed model and 3D simulator in the
modeling software (such as Matlab, Scilab or Octave). Finally, entrance zone as a function of y (a) and x (b).
in order to obtain constants A;, the inlet boundary condition is rocl ,
e 55 1=t (a)
to be satisfied.
Let us rewrite (17) as: 50 1\ /
T = Teo (X ¥.0) = Tegy | = (T + T ) + 2 Achi(X,Y) (33) 45 \ | z2=0.2 ml /
The term between squared brackets of (33) is the part having \ 13D simulation /
no bulk of Tep (X, v, 0), i.e. of the function fo(x, y) obtained 40 N\ T-model 7
above for fully developed flow. It depends linearly on all \ B /
expansion coefficients gs;i for i=0 to N, which are all known, 35 b ———
since the second term on the RHS of (33) also has zero bulk Y [m
temperature, we deduce: 30
Tepp + Toy =0 (34) 0 0.002 0.004 0.006 0.008 0.01
Hence, obtaining coefficients A; is straightforward by 55 F°c] b)
multiplying both sides of (33) by w(xy)hi(xy) and 50
integrating over the cross-sectional area A. Using obtained A, 2= m
Teno Can be directly obtained from (30) and hence Teps from 45 - : :
(34). T_3D slmlwlatlon
Temperature field Teny can thus be obtained; hence the 40 M
temperature at any point in the duct is obtained from (12). 35
Defining a suitable metric for the wall temperature (either | X [m
the average or the maximum or any other metric) Tren, We get: 30 -
M —hiz 0 0.005 0.01 0.015 0.02
Tf,EN (Z) = i:le,EN,i e’ (35)

Fig. 3. Comparison between the proposed model and 3D simulator in the
fully developed zone as a function of y (a) and x (b).
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horizontal walls and the vertical walls will be obtained, based
on which CTM will be constructed as it will be shown in VI.

V. VALIDATION

In order to test the proposed model, i.e. FP model, a case
study is performed and compared with 3D simulator (Ansys
Fluent) results. Air is used as the working fluid with constant
physical properties. The aspect ratio of the rectangular cross-
section duct equals 2. The dimension of the rectangular duct

3 5 TwaII-Tbqu[oc]
30 — == - —— —_—

10 + - uniform heat flux

5 // linear_helat flux

0

5 z[m]

0 0.1 0.2 0.3 0.4
Fig. 4. Twa-Touk for two different heating distributions, uniform and linearly
heating.

was 0.01, 0.02, 0.4 m. For simplicity, heating was on the top
and bottom walls only. Heating on the other two walls can be
done with the same approach. Heating on only two walls
allows a degree of freedom to treat cases with different
heating rates on horizontal and vertical walls. The air was
flowing at a Peclet number Pe=40. The characteristic length
Len is hydraulic diameter, (Dn =4A/p) and the characteristic
heat flux, gcn equals 10 W/m2,

Linear heating was used in the analysis (qin*z where
gin = 1). Again, for simplicity, flat profile was used at the inlet
(0 °C). The cells of the mesh were square with dimensions
1x1 mm?. This mesh was suitable for the used CPU. The
maximum error compared with Fluent solver results was
0.01 °C for a temperature range between inlet and outlet of
about 50 °C. Temperature profiles are shown in Fig. 2 for a
duct cross-section in the entrance zone. Fig. 3 shows
temperature profiles in the fully developed zone. Profiles are
given as a function of either x or y, both for a line passing
through the duct center.

VI. RESULTS AND DISCUSSION

Fig. 4 compares Twai— Toux for a flat inlet temperature
field (0 °C) and two different heating distributions: uniform
(qon =30) and linearly increasing (qin =1). As expected, the
difference between the wall temperature and the bulk
temperature is constant in the fully developed zone in the case
of uniform heating. As can also be expected for linear heating,
the difference between the wall temperature and the bulk
temperature is increasing linearly.

Two different inlet profiles are shown in Fig. 5, a flat
(0 °C) and a non-flat profiles (-2*1000*T,, *h,(x,y) °C) (dotted

lines). They were applied for the same linearly increasing
heating profile. In the same figure is shown the fully
developed profile at the inlet (solid line) for reference. The

M: 15
35 T{eo€]
e Fully developed profile at inlet
25
= == Flatinlet
15
= = non-flatinlet
5
e ———————
-5
-15
-— - - -—
) -
-25 B I -
.35 Y[m
0 0.002 0.004 0.006 0.008 0.01
Fig. 5. Temperature profiles at inlet.
35 TwaII'Tbqu [OC]
30 Tmodel for non-flat inlet
25 //
20 —
= == = Tmodel for flat inlet /
15 —
10 //
5 \_”/
-
O -
- z[m]
0 0.1 0.2 0.3 0.4
Fig. 6. Temperature difference for two different inlet profiles with linear
heating.
5 T[C] a)
\ ====-non-Flatinlet /
0 ~ | P
Saal 7—— Flat inlet \ JPiad
-5 \~\s 'r” 7\
SSe——e- -~ 2=0.04m
s £=0.02m -~
-10 . .
\\gl\ ""1
15 T T Y[m]
0 0.002 0.004 0.006 0.008 0.01
60 -T°C] b)
50 -\ - flat/inlet = |= non-Flat inlet
;i \ \ z=0.2m //
el
30
20
z=0.1m
10
T ———————" | Y[m]
0
0 0.002 0.004 0.006 0.008 0.01

Fig. 7. Temperature profiles at different axial positions.
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values of Twai—Toux corresponding to both inlet profiles are
shown in Fig. 6. They are different only in the entrance region.
The difference gradually vanishes as fluid progresses in the
duct. This confirms what was stated early in [15] about
entrance length. The inlet profile has an effect that appears for
some distance from the inlet. Beyond that distance
temperature profile is the same for a given heating profile.

For flat inlet, there is almost no entrance length. This
means flat inlet, in this case, is almost the fully developed
profile at the inlet. This is confirmed by Fig. 5.

As for non-flat inlet, the values of Twai—Toui first decrease
then start increasing again. This is because heating near the
inlet is minimal (almost vanishing), while radial conduction
inside fluid layers dominates in this region. Identical results
were obtained by Fluent solver. This plays a significant role in
decreasing the difference between wall and bulk temperatures.
As the fluid progresses, heating from walls increases and starts
to affect the fluid temperature profile.

Fig. 7 depicts temperature profiles across duct section at
different sections along the duct, both in the entrance region
(@) and the fully developed region (b), confirming what was
stated above about the entrance length, regarding Fig. 6.

The results were obtained for a relatively short duct
(L/D,=30), the CPU time required for Ansys Fluent

simulation is around six minutes to solve the whole problem
(64 seconds for the thermal problem) while it is nearly two
seconds for the proposed approach. Increasing the duct length
will considerably increase the CPU time for any CFD
simulator while it will remain the same for the proposed
approach.

Another important advantage of the proposed approach is
that once the model is constructed; any other set of boundary
conditions can be applied with much less time, as reported at
the end of this section, compared to CFD simulator which will
solve the equations for each time the boundary conditions
change.

The FP approach combines between the accurate results
and the reasonable computing time required to get the
solution. These advantages stem from the semi-analytical
solution of the energy equation using the flexible profiles; the
resulting equations (2D Poisson's equations for the fully
developed field and an eigenvalue problem for the entrance
field) are much simpler compared to the full 3D energy
equation. So, this makes this approach very useful when
dealing with large scale problems that require highly accurate
results.

FP CTM construction

Using (27) and (35) the average wall temperature on the
horizontal and the vertical walls can be obtained, based on
which FP CTM is constructed. But before that the exponential
function is approximated with a polynomial of the fourth order
in z to able to add the two vectors of coefficients.

Al

|:TwaIIH :|: |:RHH |QHV :||:qwaIIH :|+|:EH:| A
TwaIIV RVH RW qwaIIV EV A2
3

RAWAN Y. MOKHTAR, MOHAMED M. TAWFIK AND MOHAMED NABIL SABRY

where Twanms and Twanv are two vectors representing the
coefficients of [z°z"2°%,2°2"]. This means the average wall

temperature on the horizontal and the vertical walls are two
polynomials in axial position (z). The coefficients of each
polynomial are presented in vector form (Twanx and Twaiv).

Run, Ruv, Rvh, Rvy are four matrices representing the
fully developed field. Run and Ruy represent the coefficients
of the horizontal wall temperature in case of imposing heat
flux (all of its coefficients equal one) on the horizontal and
vertical walls respectively while Ryny and Ryy represent the
coefficients of the wvertical wall temperature in case of
imposing heat flux (all of its coefficients equal one) on the
horizontal and vertical walls respectively:

0.178586 —0,00191Pe+00‘;£ 0.063226 70,00196Pe+@
e e
2.649634 0.178586 + 2.632271 1.324817 0‘063226+1'3162355
R Pe Pe’ R Pe P
B 0 1.324817 B 0 0.662408
Pe Pe
0 0 0 0
0 0 ] | o 0
0.126451 70.00393Pe+M 0.322158 70.00891Pe+M
2.649634 0126451+ 2,63371 1.324817 0.322158+1'316§55
R | e Pe | e Pe
" 0 1.324817 Thwe 0 0.662408
Pe Pe
0 0 0 0
0 0 | | o 0
250 T[°C]
200

® T3D_wall e TCTM_wall

150
100
50

0
0 0.1 0.2 0.3 0.4

Fig. 8. The average wall temperature on the horizontal walls.

OwatH and Quwarv are two vectors representing the
coefficients of the horizontal and vertical wall heat fluxes
polynomials.

q q
qwaIIH = |:qf: j| ' qwaIIH = |:q:\\//:|

Ex and Ey are two matrices representing the entrance field:

1.4164e-09 -0.0004526 -0.0015552 0.0083941 -0.0020441 9.8572e-10
-7.1665e-09  0.004736 0.01705 -0.042613  0.021634  -1.0796e-08

Pe Pe Pe Pe Pe Pe
1.5519e-08 -0.016744 -0.061385 0.092279 -0.076487  3.8868e-08

E, = Pe? Pe? P2 [\Ev=| pe? Pe? Pe?
-1.6142e-08  0.02393 0.088718 -0.095984  0.10931  -5.6176e-08

Pe? pe’ pe’ pe’ Pe? pe’
6.522e-09 -0.011905 -0.044467 0.03878 -0.054383  2.8156e-08

Pe* Pe* Pe* Pe* Pe* Pe*

The constructed FP CTM can deal with different
combinations of uniform and linear heating as well as different
inlet profiles. With just a fraction of second (0.01 second) any
case can be obtained, unlike the commercial CFD software
which need to solve the problem from beginning at each time
the inlet or the wall conditions change.
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CTM is tested using the following conditions:

QoH, Gin, Jov, av values are 2, 0, 0, 2 respectively; the inlet
profile is flat (0 °C).

Fig. 8 compares the average temperature for the horizontal
walls obtained from the constructed model with that obtained
from Ansys Fluent. The maximum absolute error is 1.2 °C for
a temperature range between inlet and outlet of about 200 °C.
This error results from approximating the exponential function
to polynomial one and also truncating the entrance series
solution after three terms due to the fast decay of the
exponential function.

VI1l. CONCLUSION

The previously proposed approach, i.e. Flexible Profile
Compact Thermal Model (FP-CTM) has been extended to deal
with forced convection in rectangular ducts. It has maintained
the main advantages which are:

- The ability to deal with any arbitrary wall boundary
conditions (non-uniform wall heat flux or non-uniform
wall temperature).

- The ability to deal with any inlet temperature profile,
not necessarily flat inlet.

- The ability to obtain detailed temperature distribution
inside the duct with any precision required.

- A very high computational efficiency since a very
small error compared to standard Finite VVolume code
for a computational time that is significantly less.

These advantages stem from the analytical pretreatment of
the energy equation in its 3D form, resulting in a quite simple
2D problem to be solved numerically to obtain the temperature
field everywhere in the whole domain. Results were cast in the
form of a matrix that can be reused for any other set of
boundary conditions to predict the temperature field using a
negligible CPU time.

NOMENCLATURE
Latin symbols
A’ Dimensional cross-section area of m?
the duct
A Dimensionless cross-section area of -
the duct
Ai Expansion coefficient of Eq. (28) -
a Dimensionless rectangle width -
b Dimensionless rectangle depth -
Ci Additive constant, see Eq. (25) -
Ct Heat capacity J/kg.K
Dy Hydraulic diameter m
F Friction coefficient -
g, (x.y) Particular solution of Eq. (20) -
hi Expansion function of Eq. (28) -
k Thermal conductivity W/m.K
L Duct length -
M Number of terms of Eq. (35) -
N Number of terms of Eq. (18) -
P’ Pressure Pa
Pe Peclet number -
Po Poiseuille number -
q Wall heat flux W/m?
R Thermal resistance matrix -
Re Reynolds number -
T Dimensional temperature °C
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Dimensionless temperature -

Average velocity m/s
Dimensional axial velocity m/s
Dimensionless axial velocity -

! Dimensional coordinates in the m
cross-section plane of the duct
Dimensionless coordinates in the -
cross-section plane of the duct

! Dimensional axial coordinate m

Dimensionless axial coordinate -

Greek symbols

o Thermal diffusivity
A Eigenvalue

u Dynamic viscosity
p Fluid density
Subscripts

ch Characteristic

EN Entrance

f fluid

FD Fully Developed

H Horizontal

in Inlet

\Y Vertical

w wall

Abbreviations

BC
CFD
CTM
FP
HTC
2D
3D
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Boundary Condition
Computational Fluid Dynamics
Compact Thermal Model
Flexible Profile

Heat Transfer Coefficient
Two-dimensional
Three-dimensional
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