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Abstract— Modeling the forced convection heat transfer with 

arbitrary boundary conditions and inlet temperature profile was 

studied in order to go beyond the classic, but unrealistic cases of 

imposed uniform heat flux or wall temperature as well as a flat 

temperature at the inlet. The proposed approach, known as the 

Flexible Profile Compact Thermal Model (FP-CTM), which has 

been proposed earlier to treat circular cross-section ducts, is 

generalized here to treat ducts with a rectangular cross-section. It 
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is applied to the laminar hydrodynamically fully developed flow 

but thermally developing. It offers significant advantages over 

the traditional model of convective heat transfer coefficient 

(HTC), for which correlations only exist for uniform boundary 

conditions and inlet profile.  The proposed approach makes it 

more efficient when dealing with problems with non-uniform 

conditions such as conjugate heat transfer problems. A critical 

advantage of this approach is that it uses a semi-analytic 

treatment to produce highly accurate results that are comparable 

to those produced by commercial CFD tools but with 

significantly less CPU time. Results obtained from the proposed 

approach, i.e. FP-CTM were compared with that obtained from 

Ansys Fluent. The comparison has shown that FP-CTM is very 

reliable. The maximum error compared with Fluent solver 

results was 0.01 °C for a temperature range between the inlet and 

outlet of about 50 °C. Based on the preceding comparison, the FP 

approach was used to solve different problems with different 

Semi-Analytic modeling of laminar forced 

convection in a rectangular duct for arbitrary 

boundary conditions and inlet temperature 

profile 

في أنابيب ذات   الرقائقي لحمل القسريلتحليلية  شبه )نمذجة

 (حدية وشروط دخول عامةمقطع مستطيل تحت تأثير شروط 

Rawan Y. Mokhtar, Mohamed M. Tawfik and Mohamed Nabil Sabry 
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تم دراسة نمذجة انتقال الحرارة بالحمل القسري تحت تأثير شروط حدية وشروط  -:الملخص العربي 

من أجل تجاوز الحالات التقليدية ولكن غير الواقعية من الشروط المنتظمة )تدفق حراري منتظم أو دخول عامة 

المقترح والمعروف بالنموذج النموذج تعميم  تمدرجة حرارة منتظمة( ودرجة حرارة منتظمة عند المدخل. 

لكي  ب ذات المقطع الدائريالأشكال المرنة والمستخدم من قبل في دراسة الأنابي ىالحراري المدمج المبني عل

تام التطور  رقائقيسريان  ىعل تم تطبيق النموذج المقترح يتعامل مع الأنابيب ذات المقطع المستطيل.

النموذج يعطي مميزات واضحة عن النموذج التقليدي المعتمد على   هذا .ليس حراريا  لكن هيدروديناميكيا و

للشروط المنتظمة سواء كانت عند الجدار إلا  رياضيةلا تتوفر له علاقات الحرارة بالحمل والذي  معامل انتقال

المقترح بفاعلية مع المسائل ذات الشروط غير المنتظمة مثل مسائل انتقال الحرارة النموذج يتعامل أو المدخل. 

ومن هنا تكون النتائج ذات دقة عالية  هو أنه يستخدم معاملة شبه تحليلية  النموذجالمركب. ميزة جوهرية لهذا 

 تم مقارنة . وحدة المعالجة المركزيةل أقل وقتولكن مع   CFDتقارن بتلك التي يتم الحصول عليها من برامج 
. المقارنة وضحت أن    Ansys Fluentمع نتائج برنامج  المقترح النموذجل عليها من والنتائج التي تم الحص

لفرق درجة   C° 0.01جدير بالثقة. أقصى خطأ كان  الأشكال المرنة ىالمدمج المبني علالنموذج الحراري 

الأشكال المرنة  طريقةعلى المقارنة السابقة تم استخدام  . وبناءا  C° 50حرارة بين المدخل والمخرج يصل إلى 

 لحل مسائل ذات شروط حدية وشروط دخول مختلفة.
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boundary conditions (uniform and linear heating) and inlet 

profiles (flat and non-flat inlet) using significantly fewer 

computing resources. 

I. INTRODUCTION 

ORCED convection appears in many practical 

applications such as heat exchangers design, design 

of cooling systems in integrated circuits, design of 

fins, and design of the cooling system for turbine blades. 

Although forced convection is not a new topic (actually the 

first attempt to solve laminar forced convection in circular 

ducts was by Graetz in 1883 [1]), there are still unsolved 

problems related to this domain such as cases with non-

uniform boundary conditions (BCs) for example in conjugate 

problems. Available correlations for the heat transfer 

coefficient (HTC) are all based on either uniform wall heat 

flux or uniform wall temperature. Using HTC outside its 

domain of validity may cause noticeable errors. In some 

applications, such as turbines cooling [2], it is essential to get 

accurate results for turbine safety and reliability. An 

alternative is the 3D CFD simulation. Although this method 

gives very accurate and reliable results, it is not suitable for 

large systems composed of many components because of the 

high computational time required. 

In this study, a new method is proposed, which is a bridge 

between the oversimplified HTC model and complicated CFD 

simulation. This method, which is known as the Flexible 

Profile Compact Thermal Model (FP CTM), allows using non-

uniform conditions as well as uniform ones. It also has the 

advantage of allowing arbitrary inlet conditions. Another 

advantage of the new approach is its flexibility in selecting the 

required accuracy, which can go from the low HTC accuracy 

to the accuracy of CFD simulation. The new approach can also 

deal with conjugate problems with significantly less 

computational time than 3D CFD simulation. Almost all 

publications in the literature for convection problems consider 

uniform conditions; for example, Aparecido and Cotta [3] 

developed an analytic solution for forced convection in a 

rectangular duct with a uniform wall temperature and fully 

developed velocity profile. Morini [4] developed an analytic 

solution for laminar forced convection in a rectangular duct 

with axially uniform heat flux and circumferentially uniform 

temperature BCs. The solution is valid in the fully developed 

thermal zone. Hooman and Merrikh [5] studied forced 

convection in a rectangular duct with uniform heat flux BCs 

and thermally and hydrodynamically fully developed flow. 

Also, Smith and Nochetto [6] performed numerical analysis 

for laminar convection in rectangular ducts for aspect ratio 

from 1 to 100 and also for parallel plates. They used in their 

analysis axially uniform heat flux with circumferentially 

uniform temperature BCs. Also, Avci and Aydin [7] used 

finite volume method to study thermally developing forced 

convection in a microtube. Hooman et al. [8] included viscous 

dissipation in their study of forced convection in a rectangular 

duct with isothermal BCs. Bennett [9] investigated forced 

convection in rectangular ducts using three uniform BCs, 

constant temperature, constant heat flux, and constant axial 

heat flux with constant peripheral temperature. Zukowski [10] 

studied laminar forced convection in a square duct with 

different combinations of constant temperature heated and 

adiabatic walls. In all these studies, Nusselt number, which is 

the dimensionless representation of HTC, is calculated to 

model this set of problems. 

Although the use of HTC in thermal analysis is widespread, 

it has many defects. First, the derived formula of HTC is only 

valid for the cases with the same BCs used in the derivation, 

which means that HTC models are BCs dependent models, 

which violates the Boundary Conditions Independence (BCI) 

criterion [11] any physically sound model should satisfy. 

Secondly, the most common BCs are either uniform 

temperature or uniform heat fluxes, none of them are realistic 

boundary conditions especially when dealing with conjugate 

problems, and it is impractical to have a formula for each BCs. 

Thirdly, inlet conditions used to derive HTC formulas are 

either flat or fully developed, of course flat inlet causes 

discontinuity at inlet, which is unrealistic. Fourthly, some 

formula used to calculate HTC may cause noticeable errors 

not only because of assuming uniform inlet and boundary 

conditions but also because of the method used to derive the 

formula. For example, the error in calculating the average heat 

transfer coefficient in the case of a uniform heat flux condition 

was discussed in [12]. Hence increasing attention is devoted to 

the use of different methods that can deal with non-uniform 

inlet and BCs and produce models that are independent of the 

imposed inlet and BCs. For example, some researchers used 

experimental data to get what is known as Discrete Green 

Function (DGF) [2], [13]. This method can predict heat 

transfer in problems with non-uniform BCs. The DGF is 

constructed using measured temperatures at different locations 

due to various heat flux sources located in different locations. 

However, obtaining DGF experimentally is not very practical, 

and also, the uncertainty in the measurements may cause 

errors in heat transfer calculations. DGF method was used in 

[14] to predict heat flux across the turbine tip gap. 

Another approach has been proposed by Sabry in [15], [16], 

to overcome the above difficulties, called Flexible Profile 

Compact Thermal Model (FP-CTM). This approach does not 

suppose uniform wall heat flux qw or uniform wall 

temperature Tw. It does not suppose uniform (or flat) inlet 

temperature profile Tin. All these fields (qw, Tw and Tin) are 

supposed as space functions each one is developed over a 

suitable complete series. The model is a relation between the 

coefficients of each series, which is a matrix that would 

replace the single number in the HTC approach. It requires no 

experiments to conduct. This method was successfully applied 

to forced convection in circular ducts with arbitrary inlet and 

boundary conditions [15]. A new definition for entrance length 

was derived because the conventional definition of entrance 

length (the length beyond which the HTC doesn’t change) will 

not be valid when the BCs are non-uniform. The new 

definition states that entrance length is the length beyond 

which the effect of inlet condition disappears. In other words, 

beyond entrance length the fully developed profile will take 

the same shape regardless of inlet profile shape. FP CTM was 

F 
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also used to model conjugate problem in circular ducts [16]. 

Two CTMs are constructed, one for fluid domain, which is 

laminar flow in circular pipe, and the other for solid domain. 

Coupling conditions at interface, which are continuity of 

temperature and heat flux, are applied. It is found that even if 

uniform heat flux is applied at outer wall neither heat flux nor 

the temperature distribution is uniform at the solid-liquid 

interface. Results obtained from CTM are in good agreement 

with numerical simulation using ANSYS package. In some 

cases, such as microchannels, ducts cross section is usually 

rectangular, not circular [17]–[20]. The aim of the present 

work is to extend the FP-CTM previously developed for 

circular duct to the case of laminar flow in rectangular ducts, 

to inherit its advantages: high precision, low CPU time and 

ability to treat arbitrary boundary conditions and inlet. 

II. PROBLEM DESCRIPTION 

Steady laminar forced convection in a rectangular duct is 

studied with constant physical properties. The fluid is 

considered to be hydrodynamically fully developed but 

thermally developing. Boundaries include duct walls, duct 

inlet ( )z 0 = , and duct outlet ( )z L = . The duct has 

dimensionless width a (in x-direction) and height b (in y-

direction) as well as length L, in the z-direction, as shown in 

Fig. 1. All the variables are in dimensionless form. 

A. Hydrodynamic problem 

Laminar hydrodynamically fully developed flow under the 

action of a pressure gradient 
dP

dz




, subject to the classical no-

slip boundary condition, is considered. The velocity profile is 

thus composed of a single component along the duct axis 

( )w x ,  y   . Axial velocity obeys the Navier–Stokes equation 

in the z-direction, in which convective term identically 

vanishes due to the fully developed assumption: 
2 2

2 2

w w 1 dP
C

dzx y

   
+ = = −

   
 (1) 

where   is the dynamic viscosity and C is a constant. This is 

to be solved within the plane ( )x ,  y  together with the non-

slip boundary condition at the walls of the duct: 

wallsw | 0 =                                                                             (2) 

The pressure gradient will be expressed in terms of 

velocity head and friction coefficient F, using the classical 

model: 
2

h

dP F U

dz 2D

 
=


                                                                      (3) 

where Dh is the hydraulic diameter, and U is the average 

velocity over the cross-section. The friction coefficient can be 

expressed in terms of Poiseuille number Po = F Re (Re is 

Reynolds number). In order to transform the problem into the 

dimensionless form, average velocity, U, can be taken as the 

characteristic velocity. Any suitable characteristic length Lch 

can be used (in this analysis, the hydraulic diameter, Dh, is 

taken as the characteristic length). In the sequel, all 

dimensionless quantities will take the same symbol as their 

dimensional counterpart but without the dashes. Hence, the 

dimensionless version of the Navier-Stokes equation (1) will 

take the form: 

 (4) 

This is a simple Poisson’s equation in 2D. It can be easily 

solved, together with the dimensionless BCs, numerically by a 

finite volume code to get the velocity field. 

B. Thermal problem 

Unlike the velocity profile, the temperature profile is 

considered to be developing, including an entrance zone 

followed by a thermally developed zone. The solution will 

address arbitrary inlet and BCs. Steady-state heat transfer in 

the fluid is governed by the dimensional energy equation: 

2 2 2

f f f f

f f f 2 2 2

T T T T
c w k

z x y z

      
   = + +

       
 

 (5) 

where fT   is the fluid temperature, while physical properties 

ρf (density), cf (heat capacity) and kf (thermal conductivity) of 

the fluid are all assumed constant. 

In order to obtain fT   from (5), BCs should be imposed on 

all boundaries, i.e., walls, as well as at fluid inlet ( )z   0 = and 

outlet ( )z   L = . However, the condition at the outlet is 

usually ignored in literature as it would only affect a small 

portion near the duct outlet, especially at high Peclet number 

(Pe). Boundary conditions can take any shape. Without loss of 

generality, it will be assumed that all imposed fields will be 

expressed in terms of entering heat flux at the walls: 

( )f f fwwalls
k . T q  =n   (6) 

Notice that both wall heat flux 
fwq and wall temperature 

f wallsT | are assumed totally arbitrary, none of them is 

considered uniform. Temperature everywhere in the fluid 

domain ( )fT x ,  y ,  z     will be obtained, including at the walls

2 2

2 2

w w Po

2x y

   
+ = − 

   

 

 
 

Fig. 1. Geometry of the Problem. 

a
b

z

z L=

L

y

x

0z =

( ) ( )f inT x, y,0 T x, y=

( )( )f fwwalls walls
T q x, y ,z =n
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f wallsT | , as a function of 
fwq . This final expression, relating 

fwq  with 
f wallsT | , is the required, flexible profile (FP) form of 

the compact thermal model (CTM). It will also allow us to 

deal with any type of boundary conditions (Dirichlet, 

Neumann, or Robin). Using it together with any given 

boundary condition of the three types would directly give both 

fields 
fwq  and 

f wallsT | . 

For fluid at duct inlet ( )z   0 = : 

( ) ( )f inT x , y ,0 T x , y     =  (7) 

Where 
inT is the fluid inlet temperature profile, also assumed 

arbitrary (or flexible). Without loss of generality and for 

convenience, reference temperature will be fluid bulk 

temperature at inlet. Hence, by definition: 

( )in z 0A
T w dx dy 0

=
    =  (8) 

where A  is the cross-sectional area of the duct. In order to 

non-dimensionalize the thermal problem, additional required 

characteristic quantities are either heat flux
chq or temperature 

difference 
chT , any of them can be deduced from imposed 

BCs. Having one of them, the other will be obtained from: 

kf Tch / Lch = qch. Using this relation, the dimensionless 

governing equation becomes (again using the same symbols as 

those of dimensional variables but without the dashes): 

                                 (9) 

where Pe is Peclet number defined as:  

                       (where  f is the thermal diffusivity) 

Notice that the hydraulic diameter Dh is taken as characteristic 

length Lch. 

Thermal inlet and BCs become: 

( )( )f fwwalls walls
T q x, y ,z =n                                         (10) 

                                                (11) 

III. METHODOLOGY 

The solution of the energy equation will be split into two 

solutions. The first solution TFD gives the fully developed 

profile (this solution satisfies the energy equation and imposed 

heat flux qfw BCs only), whereas the second TEN gives the 

entrance zone profile (this solution, when added to the fully 

developed solution, guarantees the satisfaction of the inlet 

condition). Superposing the two solutions gives the total 

solution to the problem. 

 (12) 

Fields TFD and TEN satisfy: 

 (13) 

 (14) 

 (15) 

 (16) 

 (17) 

Noticing that the field TEN has no energy source (16), then 

from the First Law, the bulk temperature of TEN may only 

slightly vary from its inlet value due to axial conduction. Such 

variations are negligible except for vanishing Pe. 

From the Second Law, temperature differences will damp 

out due to heat transfer within the fluid. Hence, sooner or 

later, this field will tend to become uniform after a certain 

distance from the inlet. Reference temperature may be easily 

adjusted to let this uniform value tend to zero. After such 

distance, the only remaining field would be TFD. This gives 

another more useful definition of the entrance length and the 

fully developed temperature profile, applicable for non-

uniform boundary conditions, for which the classical concept 

was unusable. This shows that the initial temperature profile 

has an effect that appears in TEN only, which gradually 

vanishes when fluid progresses in the duct. Hence a more 

rational definition of the entrance length would be the distance 

required for the field component TEN to reach, for example, 

1% of its value at the inlet. The remaining field TFD is thus the 

fully developed profile, even though it may change along the 

duct because heating is not uniform. 

IV. SEMI-ANALYTIC SOLUTION OF THE THERMAL PROBLEM 

Semi-analytic solution means that we will apply an 

analytical pretreatment to the problem leading to a reduced 

one that can be easily solved numerically, i.e., requiring much 

fewer computing resources than if the problem was considered 

fully numerical. 

The heat source at the wall qfw is an arbitrary function of 

space, in terms of which the general solution needs to be 

obtained. Heat is assumed to be added symmetrically at the 

upper and lower walls only. Other vertical walls are assumed 

adiabatic. The case where all walls are heated could be 

obtained from this one by superposition, which allows a 

certain degree of freedom if heating was different on vertical 

and horizontal walls. In order to obtain the general solution, it 

would be normal to develop qfw over a complete functional 

series in z. Each term in the series represents a specific 

excitation for which we can find a solution, i.e., corresponding 

temperature field. Superposing all solutions would constitute 

the general solution to any arbitrary heat source. The 

expansion could be in terms of Taylor or Fourier series or any 

other convenient series capable of representing the heat source 

qfw with rather few terms. Taking Taylor series, truncated after 

N terms: 

( ) ( ) ( )
N i

fw y 0,b f ,i x 0,ai 0
q z T q z ; T 0= ==

=  =  =n ng g  (18) 

As for inlet, the inlet profile can take any shape. There is 

no restriction on it, contrary to classical approaches where it is 

systematically assumed flat. So, the remaining condition in 

equation (11). Condition at the outlet (z=L) is ignored, as is 

usually the case in the literature. 

2 2 2

f f f f

2 2 2

T T T T
Pe w

z x y z

   
= + +

   

ch

f

L U
Pe =



( ) ( )f inT x, y,0 T x, y=

( ) ( ) ( )f FD ENT x, y,z T x, y,z T x, y,z= +

2 2 2

FD FD FD FD

2 2 2

T T T T
Pe w

z x y z

   
= + +

   

FD fwwalls
T q =n

2 2 2

EN EN EN EN

2 2 2

T T T T
Pe w

z x y z

   
= + +

   

EN walls
T 0 =n

( ) ( ) ( )EN in FDT x, y,0 T x, y T x, y,0= −
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A. Fully developed solution  

The fully developed part of the temperature field will be 

obtained in terms of coefficients qf,i, using the following 

general form: 

  (19) 

Substituting all series developments (18), and (19) in the 

partial differential equation (13) and the boundary condition 

(14), equating like powers of z to zero gives us: 

 (20) 

 (21) 

i f ,i iy 0,b x 0,a
f q ; f 0

= =
 =  =n n  (22) 

This system of equations will be solved recursively from the 

highest value of i downwards (from i=N+1 to i=0). For each 

value of i, it is only needed to solve the 2D Poisson’s equation 

for the same geometry and same type of boundary conditions; 

only source functions are different. But before that, some 

essential notes must be mentioned. 

 

Note 1: Consistency condition 

Integrating both sides of (20) over the cross-sectional plane 

of the duct, using Gauss theorem and boundary condition (22) 

we get: 

                                               
 (23) 

where A is the cross-sectional area. 

Using (23), and defining Si,avg as the area average of Si, noting 

that the above equation is in a dimensionless form, we 

conclude that: 

 (24) 

Hence, Si (x, y) is not arbitrary since it should satisfy (24). 

 

Note 2: Arbitrary constants 

The unknown function fi (x, y) appearing in differential 

equation (20) and boundary condition (22) always appears 

differentiated. Hence, its solution is only defined up to an 

arbitrary additive constant. Let us temporarily designate a 

particular solution by ( )ig x, y , then: 

( ) ( )i i if x, y g x, y C= +  (25) 

where Ci is a yet arbitrary constant. The value of this constant 

will be fixed while solving the equation of the lower order 

value of i. In fact, Si-1 (x, y) contains fi (x, y), which in turn 

contains Ci. By imposing the condition (24) for i-1, we 

immediately get the value of Ci. 

 

Note 3: The reference temperature 

All values of integration constants Ci from i=N+1 to i=1 

can be obtained using the procedure depicted in the previous 

note as a function of qf,i. As for C0, its value should be fixed 

otherwise. Notice that, by virtue of (19) the function f0 (x, y) is 

simply the inlet profile of the fully developed temperature 

field TFD (x, y, 0). Hence, the constant C0 will be split into the 

sum of two constants. One of them will counterbalance the 

bulk temperature of 
'

ig , the other will simply be the bulk 

temperature of the fully developed part at inlet TFDb. The later 

will be fixed after solving for the entrance length part. 

( ) ( )'

0
A

0 FDb

A

g x, y w x, y dxdy
C T

w(x, y)dxdy
= − +




                               (26) 

From the previous discussion, it can be concluded  that we 

have N+2 coefficients Ci to obtain from i=0 to N+1 and also 

N+2 conditions, which are to satisfy reference temperature 

condition (26) in addition to the N+1 conditions (24) applied 

for i=0 to N. This explains why expansion (19) has been 

truncated after i = N+1. In this study, numerical method (finite 

volume method) is used to solve the set of 2D Poisson’s 

equations. 

Defining a suitable metric for the wall temperature Tf,FD 

(either the average or the maximum or any other metric), we 

get an expression for it from (19) in the form of a polynomial 

in z. Coefficients of this polynomial can be represented as a 

vector Tf,FD. Above sketched solution relates these coefficients 

to the vector containing coefficients of the polynomial 

representing wall heat flux qf in the form of the matrix 

relation: 

                                                                  (27) 

where Rf,FD is the thermal resistance matrix that generalizes 

the scalar HTC (or precisely its inverse). 

The solution of the fully developed forced convection 

problem in a straight duct of the rectangular cross-section due 

to arbitrary wall heat flux is thus obtained. The original 3D 

convection/diffusion problem has been transformed into a set 

of simple 2D Poisson’s equations with given boundary 

conditions. The obtained field still does not satisfy inlet 

conditions. Hence it is only valid sufficiently far from the 

inlet. Thus, entrance solution is obtained in the next section in 

order to satisfy inlet conditions.  

B. Entrance solution 

The entrance field TEN will be expanded over a series that 

decays exponentially along the duct length; thus, the only field 

that remains at a long distance from entry is the fully 

developed field. 

                                   (28) 

where constants Ai and i and functions hi are yet to be 

determined. It should be noted that although the entrance field 

has no heating source at the wall (16), its bulk temperature 

may still vary along z due to axial conduction at both tube 

ends. The above equation (28) means that the bulk 

temperature of the entrance field is assumed zero at infinity, 

i.e. sufficiently far from the inlet. The bulk temperature of the 

entrance field at inlet TENb is not necessarily zero. To get an 

expression for it, let us split each expansion function into one 

that has zero bulk ih (x, y) and a constant bulk temperature hib: 

( ) ( )
N 1 i

FD ii 0
T x, y,z f x, y z

+

=
= 

( )
2 2

i i

i2 2

f f
S x, y

x y

 
+ =

 

( ) ( ) ( ) ( ) ( )( ) ( )i i 1 i 2S x, y i 1 Pe w x, y f x, y i 2 i 1 f x, y+ += + − + +

( )f ,i iA
2aq S x, y dx dy= 

i,avg f ,i

2
S q

b

 
=  

 

f ,FD f ,FD f=T R q

( ) ( )
i z

Pe
EN i ii

T x, y,z A h x, y e

−

= 



M: 14                         RAWAN Y. MOKHTAR, MOHAMED M. TAWFIK AND MOHAMED NABIL SABRY 

 

( ) ( )
( ) ( )i

A
ii ib ib

A

w x, y h x, y dxdy
h x, y h x, y h ; h

w(x, y)dxdy
= + =




 (29) 

Hence, from (28) and (29) we can easily deduce that: 

ENb i ibi
T A h=                                                                  (30) 

Substituting (28) into the partial differential equation (15) and 

equating coefficients of same exponential power gives the set 

of differential equations: 

                                     (31) 

Which should be solved together with the boundary condition 

(corresponding to (16)): 

                                                                      (32) 

There is a trivial solution to the system (31) and (32), 

which is simply hi(x, y)  0. We are seeking other non-trivial 

solutions, which is typically an eigenvalue problem λi being 

eigen values, and hi are eigenfunctions. It is to be noted that 

for high Pe, the second term between parentheses in the LHS 

of equation (31) can be neglected, which transforms it into a 

Sturm-Liouville problem having an orthogonal set of 

eigenfunctions. Physically, this means neglecting axial 

conduction through the fluid domain if fluid velocity is high 

enough, which is the case for most practical problems. In the 

general case, considered here, where Pe is not necessarily 

large, eigenfunctions still exist but are no longer orthogonal. 

To obtain eigenvalues and eigenfunctions of (31), it is 

possible to transform it into an algebraic eigenvalue problem 

through discretization. The resulting eigenvalue problem can 

be solved using any standard numerical computational 

modeling software (such as Matlab, Scilab or Octave). Finally, 

in order to obtain constants Ai, the inlet boundary condition is 

to be satisfied. 

Let us rewrite (17) as: 

( ) ( ) ( )iin FD FDb FDb ENb ii
T T x, y,0 T T T A h x, y− − = + +     (33) 

The term between squared brackets of (33) is the part having 

no bulk of TFD (x, y, 0), i.e. of the function f0(x, y) obtained 

above for fully developed flow. It depends linearly on all 

expansion coefficients qf,i for i=0 to N, which are all known, 

since the second term on the RHS of (33) also has zero bulk 

temperature, we deduce: 

FDb ENbT T 0+ =  (34) 

Hence, obtaining coefficients Aj is straightforward by 

multiplying both sides of (33) by ( ) ( )iw x,y h x,y  and 

integrating over the cross-sectional area A. Using obtained Ai, 

TENb can be directly obtained from (30) and hence TFDb from 

(34). 

Temperature field TEN can thus be obtained; hence the 

temperature at any point in the duct is obtained from  (12). 

Defining a suitable metric for the wall temperature (either 

the average or the maximum or any other metric) Tf,EN, we get: 

( )
iz

M
Pe

f ,EN f ,EN,ii 1
T z T e

−

=
=   (35) 

where M is the maximum number of eigenvalues considered. 

It is expected to have very few terms as the exponential decays 

rapidly with i. 

From (27) and (35) the average wall temperature on the 

2 2

i i i

i i2 2 2

h h
w h 0

x y Pe

   
+ +  + = 

   

i walls
h 0 =n

 

 
Fig. 2. Comparison between the proposed model and 3D simulator in the 

entrance zone as a function of y (a) and x (b). 
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Fig. 3. Comparison between the proposed model and 3D simulator in the 

fully developed zone as a function of y (a) and x (b). 
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horizontal walls and the vertical walls will be obtained, based 

on which CTM will be constructed as it will be shown in VI. 

V. VALIDATION 

In order to test the proposed model, i.e. FP model, a case 

study is performed and compared with 3D simulator (Ansys 

Fluent) results. Air is used as the working fluid with constant 

physical properties. The aspect ratio of the rectangular cross-

section duct equals 2. The dimension of the rectangular duct 

was 0.01, 0.02, 0.4 m. For simplicity, heating was on the top 

and bottom walls only. Heating on the other two walls can be 

done with the same approach. Heating on only two walls 

allows a degree of freedom to treat cases with different 

heating rates on horizontal and vertical walls. The air was 

flowing at a Peclet number Pe=40. The characteristic length 

Lch is hydraulic diameter, (Dh =4A/p) and the characteristic 

heat flux, qch equals 10 W/m2. 

Linear heating was used in the analysis (q1H*z where 

q1H = 1). Again, for simplicity, flat profile was used at the inlet 

(0 °C). The cells of the mesh were square with dimensions 

1x1 mm2. This mesh was suitable for the used CPU. The 

maximum error compared with Fluent solver results was 

0.01 °C for a temperature range between inlet and outlet of 

about 50 °C. Temperature profiles are shown in Fig. 2 for a 

duct cross-section in the entrance zone. Fig. 3 shows 

temperature profiles in the fully developed zone. Profiles are 

given as a function of either x or y, both for a line passing 

through the duct center. 

VI. RESULTS AND DISCUSSION 

Fig. 4 compares Twall – Tbulk for a flat inlet temperature 

field (0 °C) and two different heating distributions: uniform 

(q0H =30) and linearly increasing (q1H =1). As expected, the 

difference between the wall temperature and the bulk 

temperature is constant in the fully developed zone in the case 

of uniform heating. As can also be expected for linear heating, 

the difference between the wall temperature and the bulk 

temperature is increasing linearly. 

Two different inlet profiles are shown in Fig. 5, a flat 

(0 °C) and a non-flat profiles ( ch 22*1000*T *h (x, y)− °C) (dotted 

lines). They were applied for the same linearly increasing 

heating profile. In the same figure is shown the fully 

developed profile at the inlet (solid line) for reference. The 

 
Fig. 4. Twall-Tbulk for two different heating distributions, uniform and linearly 

heating. 
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Fig. 5. Temperature profiles at inlet. 
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Fig. 6. Temperature difference for two different inlet profiles with linear 

heating. 
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Fig. 7. Temperature profiles at different axial positions. 
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values of Twall−Tbulk corresponding to both inlet profiles are 

shown in Fig. 6. They are different only in the entrance region. 

The difference gradually vanishes as fluid progresses in the 

duct. This confirms what was stated early in [15] about 

entrance length. The inlet profile has an effect that appears for 

some distance from the inlet. Beyond that distance 

temperature profile is the same for a given heating profile. 

For flat inlet, there is almost no entrance length. This 

means flat inlet, in this case, is almost the fully developed 

profile at the inlet. This is confirmed by Fig. 5. 

As for non-flat inlet, the values of Twall−Tbulk first decrease 

then start increasing again. This is because heating near the 

inlet is minimal (almost vanishing), while radial conduction 

inside fluid layers dominates in this region. Identical results 

were obtained by Fluent solver. This plays a significant role in 

decreasing the difference between wall and bulk temperatures. 

As the fluid progresses, heating from walls increases and starts 

to affect the fluid temperature profile. 

Fig. 7 depicts temperature profiles across duct section at 

different sections along the duct, both in the entrance region 

(a) and the fully developed region (b), confirming what was 

stated above about the entrance length, regarding Fig. 6. 

The results were obtained for a relatively short duct             

( hL / D 30= ), the CPU time required for Ansys Fluent 

simulation is around six minutes to solve the whole problem 

(64 seconds for the thermal problem) while it is nearly two 

seconds for the proposed approach. Increasing the duct length 

will considerably increase the CPU time for any CFD 

simulator while it will remain the same for the proposed 

approach. 

Another important advantage of the proposed approach is 

that once the model is constructed; any other set of boundary 

conditions can be applied with much less time, as reported at 

the end of this section, compared to CFD simulator which will 

solve the equations for each time the boundary conditions 

change. 

The FP approach combines between the accurate results 

and the reasonable computing time required to get the 

solution. These advantages stem from the semi-analytical 

solution of the energy equation using the flexible profiles; the 

resulting equations (2D Poisson's equations for the fully 

developed field and an eigenvalue problem for the entrance 

field) are much simpler compared to the full 3D energy 

equation. So, this makes this approach very useful when 

dealing with large scale problems that require highly accurate 

results. 

FP CTM construction 

Using (27) and (35) the average wall temperature on the 

horizontal and the vertical walls can be obtained, based on 

which FP CTM is constructed. But before that the exponential 

function is approximated with a polynomial of the fourth order 

in z to able to add the two vectors of coefficients.  

1

HH HV H

2

VH VV V

3

A

A

A

 
        

= +        
         

wallH wallH

wallV wallV

T R R q E

T R R q E
 

where TwallH and TwallV are two vectors representing the 

coefficients of  0 1 2 3 4, , , ,z z z z z   . This means the average wall 

temperature on the horizontal and the vertical walls are two 

polynomials in axial position (z). The coefficients of each 

polynomial are presented in vector form (TwallH and TwallV). 

RHH, RHV, RVH, RVV are four matrices representing the 

fully developed field. RHH and RHV represent the coefficients 

of the horizontal wall temperature in case of imposing heat 

flux (all of its coefficients equal one) on the horizontal and 

vertical walls respectively while RVH and RVV represent the 

coefficients of the vertical wall temperature in case of 

imposing heat flux (all of its coefficients equal one) on the 

horizontal and vertical walls respectively: 

HH HV

2 2

0.047512 0.023756
0.178586 0.00191Pe 0.063226 0.00196Pe

Pe Pe
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qwallH and qwallV are two vectors representing the 

coefficients of the horizontal and vertical wall heat fluxes 

polynomials. 

0H 0V

1V1H

q q
;

qq

   
= =   

  
wallH wallH

q q  

EH and EV are two matrices representing the entrance field: 

2 2 2
H

3 3 3

4 4 4

1.4164e-09 -0.0004526 -0.0015552

-7.1665e-09 0.004736 0.01705

Pe Pe Pe

1.5519e-08 -0.016744 -0.061385

;Pe Pe Pe

-1.6142e-08 0.02393 0.088718

Pe Pe Pe

6.522e-09 -0.011905 -0.044467

Pe Pe Pe
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 
 
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 
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 
 
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E 2 2 2
V

3 3 3

4 4 4
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 
 
 
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 
 

E  

The constructed FP CTM can deal with different 

combinations of uniform and linear heating as well as different 

inlet profiles. With just a fraction of second (0.01 second) any 

case can be obtained, unlike the commercial CFD software 

which need to solve the problem from beginning at each time 

the inlet or the wall conditions change. 

 
Fig. 8. The average wall temperature on the horizontal walls. 
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CTM is tested using the following conditions: 

q0H, q1H, q0V, q1V values are 2, 0, 0, 2 respectively; the inlet 

profile is flat (0 °C). 

Fig. 8 compares the average temperature for the horizontal 

walls obtained from the constructed model with that obtained 

from Ansys Fluent. The maximum absolute error is 1.2 °C for 

a temperature range between inlet and outlet of about 200 °C. 

This error results from approximating the exponential function 

to polynomial one and also truncating the entrance series 

solution after three terms due to the fast decay of the 

exponential function. 

VII. CONCLUSION 

The previously proposed approach, i.e. Flexible Profile 

Compact Thermal Model (FP-CTM) has been extended to deal 

with forced convection in rectangular ducts. It has maintained 

the main advantages which are: 

- The ability to deal with any arbitrary wall boundary 

conditions (non-uniform wall heat flux or non-uniform 

wall temperature). 

- The ability to deal with any inlet temperature profile, 

not necessarily flat inlet. 

- The ability to obtain detailed temperature distribution 

inside the duct with any precision required. 

- A very high computational efficiency since a very 

small error compared to standard Finite Volume code 

for a computational time that is significantly less. 

These advantages stem from the analytical pretreatment of 

the energy equation in its 3D form, resulting in a quite simple 

2D problem to be solved numerically to obtain the temperature 

field everywhere in the whole domain. Results were cast in the 

form of a matrix that can be reused for any other set of 

boundary conditions to predict the temperature field using a 

negligible CPU time. 

NOMENCLATURE 

Latin symbols 

A  Dimensional cross-section area of 

the duct 

m2 

 A Dimensionless cross-section area of 

the duct 

- 

 Ai Expansion coefficient of Eq. (28) - 
 a Dimensionless rectangle width - 

 b Dimensionless rectangle depth - 

 Ci Additive constant, see Eq. (25) - 
 cf Heat capacity J/kg.K 

 Dh Hydraulic diameter m 

 F Friction coefficient - 

( )ig x,y  Particular solution of Eq. (20) - 

 hi Expansion function of Eq. (28) - 

 k Thermal conductivity W/m.K 
 L Duct length - 

 M Number of terms of Eq. (35) - 
 N Number of terms of Eq. (18) - 

P  Pressure Pa 

 Pe Peclet number - 

 Po Poiseuille number - 

 q Wall heat flux W/m2 
 R Thermal resistance matrix - 

 Re Reynolds number - 

T  Dimensional temperature °C 

 T Dimensionless temperature - 
 U Average velocity m/s 
w  Dimensional axial velocity m/s 

 w Dimensionless axial velocity - 

x ,  y   Dimensional coordinates in the 
cross-section plane of the duct 

m 

 x, y Dimensionless coordinates in the 

cross-section plane of the duct  

- 

 Z, z  Dimensional axial coordinate m 

 z Dimensionless axial coordinate - 

Greek symbols 

α Thermal diffusivity 

 Eigenvalue 

µ Dynamic viscosity 

ρ Fluid density 

Subscripts 

ch Characteristic 

EN Entrance 

f fluid 
FD Fully Developed 

H Horizontal 

in Inlet 
V Vertical 

w wall 

Abbreviations 

BC Boundary Condition 
CFD Computational Fluid Dynamics 

CTM Compact Thermal Model 

FP Flexible Profile 
HTC Heat Transfer Coefficient 

2D Two-dimensional 

3D Three-dimensional 
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