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 

I. INTRODUCTION 

APITAL cost of any water distribution network 

(WDN) is the major investment part of most water 

supply systems [1]. Numerous research in the last 

four decades is interested in determining the 

optimal cost of the pipe networks under different constraint 

requirements, i.e. demands and minimum pressure heads at the 

nodes and limits of velocities within the pipes. In general, two 

approaches are used to find the optimal solution for any 

optimization problem: 1) the deterministic approach which 

requires evaluating of the objective function and their 

derivatives concerning the different decision variables [2], [3], 

and 2) the stochastic approach which requires the evaluation of 

only the objective function, and is more suitable in handling 

problems based on discrete decision variables [4]–[13]. 

Despite easiness and robustness of the stochastic 

algorithms, they need more computational effort with respect 

 
Received: (19 May, 2021) - Revised: (10 June, 2021) - Accepted: (16 

June, 2021) 

* Corresponding Author: Hossam A.A. Abdel-Gawad, Associate 

Professor, Irrigation & Hydraulics Engineering Department, Faculty of 
Engineering, Mansoura University, Egypt (Email: hossamaaa@mans.edu.eg; 

hossamgawad@yahoo.com) 

 

to the deterministic ones, i.e., a huge number of objective 

function evaluations, which is proportional exponentially with 

the number of the parameters that steer the stochastic 

algorithm to the optimal solution. Two types of parameters are 

generally found in nearly all metaheuristic optimization 

algorithms, the specific control algorithm dependent 

parameters and the common parameters. Values of the 

parameters that enhance the algorithm performance are 

problem dependent and must be readjusted, by a sensitivity 

analysis, for any changes in characteristics of the studied 

WDN, e.g. number of the decision variables, number of 

alternatives of every decision variable, nodes demands and 

pressure constraints, and any other necessary input data for 

analyzing the WDN [14]. 

Unfortunately, performance of nearly all the population 

algorithms are dependent on a pre-design number of control 

algorithm parameters (NCAP) [15], [16], e.g. five for Genetic 

Algorithm (GA), six for Shuffled Complex Evolution (SCE), 

five for Ant Colony Optimization (ACO), four for Simulated 

Annealing (SA), four for Cross Entropy (CE), four for 

Shuffled Frog Leaping Algorithm (SFLA), four for Particle 

Swarm Optimization (PSO), three for Scatter Search (SS), 

three for Harmony Search (HS), three for Soccer League 

Competitions (SLC), three for Improved Mine Blast Algorithm 

(IMBA), two for Differential Algorithm (DE), and two for 

Gravitational Search Algorithm (GSA). 
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 Abstract— For the first time, the recently proposed Jaya metaheuristic 

optimization algorithm (JA) is used for optimal design of water distribution 

networks (WDN’s). This algorithm has no control parameters, which 

eliminates the exhausting computational effort required to carry out the 

essential tune up step for these parameters. A new variant of the algorithm, 

named free sensitivity analysis Jaya algorithm (FSAJA), is suggested to be 

free from even the common metaheuristic algorithms parameters, i.e., 

population size, number of generations and penalty function. Six different 

variants of the proposed algorithm are investigated to settle the best one 

using a recently developed two performance criteria. Three famous 

benchmarks WDN’s and a national one, are solved to examine the 

algorithm. Comparing the performance of FSAJA, with JA and the various 

evolutionary algorithms available in the literature shows the promising 

effectiveness, efficiency, and robustness of the proposed algorithm. A new 

global minimum is achieved for the national WDN. 
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A minimum number of alternatives for any control 

parameter is two; consequently, the essential minimum effort 

to carry out any sensitivity analysis is at least 2
NCAP

 times the 

actual computational effort required for the optimization 

process itself. To the author’s knowledge, unfairly all the 

literature ignores the exhausted sensitivity computational 

effort required to tune up the control parameters, in comparing 

between performances of different algorithms. 

Mora-Melia et al. [17] studied the effect of almost all the 

control parameters for four optimization methods, i.e. GA, 

PSO, HS, and SFLA, which were applied on four benchmark 

pipe networks. Each network was solved 200 times for any 

combination of the control parameters, with at least 25,000 

runs for any pipe network handled by a specified algorithm. In 

their research, the ratio of the computational effort of the 

sensitivity analysis concerning the actual optimization effort is 

equal to or more than 124. Sensitivity analysis was carried to 

tune up three parameters of the SFLA, i.e. accelerator 

parameter, frog per submemeplex, and evolutionary steps, with 

225 different combinations [18]. 

To avoid the huge computational cost required for the 

sensitivity analysis of the existed metaheuristic optimization 

methods, the researchers give attention, in the last decade, for 

developing a free control parameter algorithm. But still a 

limited number of these algorithms are applied to optimal 

design of WDN’s as: 1) Self-Adaptive Differential Evolution 

Algorithm (SADE) [12], 2) Modified dither Differential 

Evolution algorithm (MdDE) [19], and 3) Fittest Individual 

Referenced Differential Evolution Algorithms (FDE) [20]. 

For the first time, the present work adopted a newly 

developed free control parameter evolutionary algorithm, 

named by Jaya algorithm (JA), to optimal design of WDN’s. 

JA is designed and presented for the first time by Rao in 

(2016) [21], [22], and is dependent only on the common 

population algorithm parameters, i.e.: 1) penalty function, 2) 

population number, and 3) number of generations. Rao [21] 

encouraged the researchers to improve JA to be a robust 

algorithm in different engineering disciplines. 

Several papers modified the Jaya algorithm to enhance its 

performance in handling different optimization problems. The 

algorithm is modified to solve multi-objective problems, (MO-

Jaya), and applied to three machine processes [23]. 

Modification for Jaya called self-adaptive multipopulation 

Jaya, (SAMP-Jaya), was suggested and applied to various 

Nomenclature 

ANLxNL a square matrix with NL rows 

AVE
k
 average candidates costs in generation k  

Cave average minimum costs in multiple runs 

CHWi Hazen-Williams coefficient of friction for pipe i 

Ci cost of pipe i per unit length 

Cmax maximum permissible cost of the network 

Cmin minimum cost from the best run 

Copt minimum cost ever reached in the literature 

Cstd standard deviation of minimum costs in 100 runs 

Di diameter of pipe i 

Dmax maximum available diameter 

Dmin minimum available diameter 
/

,

k

j iD  generated diameter 

,

k

j iD  diameter for decision variable i in candidate j at 

generation k 

,

k

Ave iD  average diameters for pipe i in generation k 

,

k

Best iD  diameter for pipe i at best candidate in generation k 

,

k

Worst iD  diameter for pipe i at worst candidate in generation k 

E probability of reaching Copt in one run 

f() objective function 

ff feasible objective function 

Fj
m
 residual pressure head for loop j at iteration m 

FNL vector for residual pressure head at different loops 

Hj pressure head at node j 

Hjmin minimum pressure head at node j 

Iff infeasible objective function 

Ki resistance coefficient for pipe i 

Li length of pipe i 

LPj number of pipes in loop j 

Mm maximum number of Newton-Raphson iteration 

n exponent of the discharge in the friction equation  

ND number of available commercial pipe diameters 

NJ number of nodes 

NL number of loops 

NP number of pipes 

NPOP number of candidates in a population 

Neval minimum number of objective function evaluations 

to the best cost 

NOFE number of total objective function evaluations in a 

run 

Nspace total alternative number of solutions 

Nsim number of multiple runs 

Nsuccess number of runs reached Copt 

Ntotal-opt actual number of objective function evaluations to 

catch optimal solution Copt 

P
k
 penalty at generation k 

q uniform random number between (0,1) 

Qi
m
 discharge in pipe i at iteration m 

r uniform random number between (0,1) 

signi sign for the flow direction in pipe i 

STD
k
 standard deviation of candidates costs in generation k 

v uniform random number between (0,1) 

 

Greek Symbols 

k
 dynamic penalty coefficient at generation k

Hj reduction of the pressure head at node j 

QNL vector of unknown loop’s corrections 

ave-alg average global algorithm performance 

ave-cost average effectiveness in multiple runs 

ave-eval average efficiency in multiple runs 

best-alg global algorithm performance for best run 

cost effectiveness in reaching Copt 

eval efficiency of the best run 

gen generation efficiency 

gen-success generation success efficiency 
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numbers of benchmark mathematical problems, [24]. SAMP-

Jaya results were found better than the corresponding results 

of the GA, PSO, and Cuckoo Search Algorithm (CSA). 

Elitism-based SAMP-Jaya algorithm is proposed for design of 

heat pipes [25]. The standard Jaya algorithm was applied for a 

water resources management problem to find optimal reservoir 

operation [26]. Jaya is improved to a new variant, (I-Jaya), by 

merging it with a clustering strategy, [27], to find optimal 

structural damage identification. Adaptive multiteam 

perturbation guiding Jaya, (AMTPG-Jaya), was suggested and 

applied on different benchmark problems [28], and found 

superior concerning the standard JA. 

In the course of executing the present work, new literature 

is published, the Lévy distribution is merged with the standard 

Jaya, (LJA), to supplement JA with a little opportunity of 

moving large steps to escape from the clustered exploration 

around a trapped local minimum to new region in the solution 

domain [29]. Both k-means clustering strategy and a new 

learning technique, based on best and medium candidates, are 

involved in Jaya to enhance its performance in handling 

parameter identification of aerofoil [30]. 

This research presents a modified variant of JA to solve the 

WDN’s optimization problems for the first time [31], and any 

similar problems that have positive discrete values for the 

decision variables. The proposed algorithm is designed to be 

free from the sensitivity analysis of common parameters, i.e. 

(FSAJA). 

The remaining paper consists of four sections. Section two 

is concerned with the adopted methodology for different steps 

of the work. It consists of: a) the most efficient mathematical 

statement for analyzing steady flow in the WDN, b) the 

optimization problem statement, c) standard JA, d) the 

proposed FSAJA, a simple hypothetical optimization example 

was suggested to clarify both of the two algorithm variants, 

i.e., JA and FSAJA, e) approaches used in handling the 

common parameters in FSAJA with an illustrative flowchart, 

and f) criteria used to preference between different possible 

variants of FSAJA. Description of the handled WDN’s is 

presented in section three. Section four is concerned with 

choosing the final form of the FSAJA and discussing its 

performance concerning performances of JA and other 

algorithms. Finally, conclusions, recommendations and 

suggested future works are presented in section five. 

 

II. METHODOLOGY 

A. Hydraulic Analysis 

Determination of the flow rates and the pressure head 

losses within any suggested pipe diameters of a pipe network 

is an inevitable step within the optimal design process. The 

output results are used to check both the velocity limits within 

the pipes and the minimum required pressure heads at different 

nodes of the network. Computational effort of the hydraulic 

analysis is proportional to number of equations/unknowns 

(NE) used to analyze the WDN. Various mathematical 

statements can be used to simulate steady flow in the network, 

and may be considered as one of the following systems [32]: 

1) both continuity equations of flow rates at different nodes 

and equations of head losses summation along different loops, 

2) both continuity equations of flow rates at the nodes and 

pressure head losses equations within the pipes, 3) pressure 

heads at the nodes which are usually used and adopted by the 

hydraulic solver EPANET2 [33], and 4) flowrates corrections 

around different network loops which generate the minimum 

number of equations, and require minimum computational 

effort which is proportional to NE
3
,
 
in case of solving the 

generated equations matrix with the Gauss elimination method
 

[34], but needs a prespecified initial balanced guess for the 

flow rates at different nodes of the network. The last 

mathematical statement, i.e., the most computational cost 

efficient, is implemented in the present work and can be 

represented by nonlinear equations. The linearized form of 

these equations can be solved iteratively using the Newton-

Raphson technique as, [35]: 

* 1,2,...,
m m m

NL NL NL NL m Mm  A Q Fx
  (1) 

where: 

 
1

1,2,...,
j

nLPm m

j i i ii
F sign K Q j NL


      (2) 

1 1

1
1, 2,...,

nim m m

j j k ji
Q Q Q i LP 


      (3) 

1.852 4.871

10.667
1,2,...,

i

i

i

HW i

L
K i NP

C D
    (4) 

1
1

, 1
1,2,...,

j
nLPm m

j j i ii
A n K Q j NL





       (5) 

1
1

, 1

jl
nnm m

j l i ii
A n K Q j l





           (6) 

where, 
x

m

NL NLA  is a square matrix at iteration m and its 

elements 
, 1

m m

j l NL j lA F Q
 

   , NL is number of loops in 

the network, m

NLQ  is the unknown vector for the flow rates 

corrections of the NL loops at iteration m and 
m

k
Q  is the flow 

rate correction for loop k, m

NLF  is a vector represents the 

summation of the pressure head losses around the network 

loops with elements m

NLQ , Mm is a prespecified maximum 

permissible number of iterations to resolve the linearized 

equations, signi is the sign of the flow direction in pipe i, i.e. 

positive for clockwise direction and negative for anticlockwise 

direction, Ki is the resistance coefficient of pipe i in S.I. units 

and depends on the utilized friction head loss equation (Hazen-

Williams equation is used in the present work), Qi is the flow 

in pipe i, n is a flow rate exponent and equal to 1.852, ni is the 

number of loops associated with pipe i, LPj and NP are the 

number of pipes in loop j and total number of pipes in the 

network, respectively, Li, Di, and CHWi are the length, diameter, 

and Hazen-Williams coefficient of friction for pipe i, 

respectively, and njl is the number of pipes associated with 

both i and l loops. The flow rate correction vector Q
m
 must 

be added to the initial discharge rates, Q
m
, in the pipes before 

processing to the next iteration m + 1. 
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B. The Optimization Statement 

Objective function for minimum capital cost of WDN can 

be represented as, [36]: 

 1 1 1
. ,..,

NP NJk

NP i i ji j
Min f D D L C P H

 
       (7) 

with constraints limits: 

min max 1,2,...,iD D D i NP         (8) 

min 1,2,...,j jH H j NJ        (9) 

where; 

 min
. ,0.0

j j j
H Max H H             (10) 

8
10

k
P                    (11) 

 

 

 
 

where, f( ) is the objective function of the problem, Di is 

diameter of pipe i, Dmin, Dmax are minimum and maximum 

discretized range for the available commercial diameters, 

respectively, NP is total number of pipes/decision variables of 

the network, Ci is cost per unit length of pipe i and is diameter 

dependent, P
k
 is a penalty constant (static penalty) at the 

generation number k, Hj, Hjmin are calculated pressure head and 

minimum permissible pressure head at node j, respectively, NJ 

is total number of nodes, and Hj is the violation in the 

pressure head constraint at node j. The first term on the right-

hand side of Eq. (7) represents the actual cost of the pipes, 

while the second term is a penalization function for the 

infeasible candidates, which violate the permissible pressure 

head constraint at any node of the network. 

 

C. Standard Jaya Algorithm 

The algorithm is initiated by generating a population that 

consists of a preselected number of candidates; each represents 

a vector of uniform random choices of the decision variables 

(discrete pipe diameters) within their permissible commercial 

range. Every decision variable in a candidate can be updated 

as: 

   /

, , , , , ,

k k k k k k k k

j i j i i Best i j i i Worst i j i
D D r D D q D D      

1,2,..., & 1,2,...,j NPOP i NP     (12) 

where, /

,

k

j iD  is the new suggested diameter at decision variable 

i in individual j within the generation k, 
,

k

j iD  is the present 

diameter, 
,

k

Best iD  and 
,

k

Worst iD  are diameters of pipe i at the 

fittest candidate and the worst one respectively, NPOP is 

population size that represents number of candidate solutions 

within the generation k, and ri
k
 and qi

k
 are two uniform random 

values between 0 and 1 for the decision variable i at any 

candidate solution, j = 1, 2,...,NPOP, in the generation k. For 

every old candidate in the population, a new one is generated 

and the fittest one survives to the next generation k+1. 

The JA is based on only one learning phase, which is 

moving toward the best individual and avoiding the worst one 

[21], [22]. Using random uniform numbers, for generating a 

new suggested decision variable, enhances the exploration of 

the solution domain. Also, considering the absolute value of 

the decision variable, if its acceptable range is extended in the 

negative values, improves the exploration process. On the 

other hand, utilizing the same two random numbers, for the 

same decision variable in all the candidates within the same 

generation fixes the scale of movements between different 

generated candidates and both best and worst candidates which 

limits to some extent the exploration efficiency. 

 

 

 

Fig. 1 Description of JA [NPOP = 11, rX = 0.81, qX = 0.023, rY = 0.273, qY = 0.528] 
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Illustrative Example 

To explain the process of the JA, a simple objective 

function is considered as: minimize Z = X
2
 + Y

2
, with two 

decision variables only, X and Y, and their corresponding 

ranges are the discrete integer numbers from 0 to 14, and from 

0 to 20, respectively, see Fig. 1. The logical minimum 

objective function value is zero at solution (X = 0, Y = 0) and 

the total number of the available solutions is 15 x 21. A 

population of 11 candidates is generated randomly within the 

permissible ranges for the two decision variables as shown in 

Fig. 1, at the positions of the square symbols. Then two 

uniform random numbers between 0 and 1 are generated for 

every decision variable as: rX = 0.81, qX = 0.023, rY = 0.273, qY 

= 0.528. The best candidate is the second one with (X = 5, Y = 

3) and ZBest = 34, while the fourth candidate is the worst one 

with (X = 20, Y = 12) with ZWorst = 544. For every candidate at 

the square symbols, a corresponding one is generated at the 

corresponding circle symbols, for example, in case of 

candidate 11 at (X = 19, Y = 7) and Z = 410: 
/

19 0.81*(5 19) 0.023*(20 19) 7.637 8X        , 

/
7 0.273*(3 7) 0.528*(12 7) 3.268 3Y        , 

With final objective function equal to 73 which is < 410, 

consequently, the generated solution (X = 8, Y =3) replaces the 

old one in the next generation. The corresponding generated 

candidate to the third one at (X = 12, Y = 4) and Z = 160, can 

be estimated as: 
/

12 0.81*(5 12) 0.023*(20 12) 6.146 6X        , 

/
4 0.273*(3 4) 0.528*(12 4) 0.497 0Y         , 

then /
0Y  , with final Z = 36 < 160, so the generated solution 

(X = 6, Y = 0) replaces the old one. The generated decision 

variable between two discrete alternatives is reassigned to the 

nearest discrete value and the violated /
Y  at –0.497 is 

reassigned at the nearest permissible limit of Y at 0. In one 

generation, the best solution is moved to the sixth candidate at 

(X = 4, Y = 3) with Z = 25, and the worst objective function 

enhanced to Z = 164 at (X = 8, Y = 10). 

It must be noticed that: 1) all the generated candidates at 

the circle symbols have better fitness than the corresponding 

ones in the old generation, 2) the solution domain is reduced 

from (X = 0 to 20, Y = 0 to 14) to (X = 0 to 8, Y = 0 to 11), and 

due to the learning philosophy of JA, the dispersion of the 

population is continually decreasing and moves away from the 

worst solution to the best one, and 3) the average of the new 

populations is moved in one generation process from (X = 

11.54, Y = 7.45) to (X = 6.18, Y = 4.64) with distance of 

movement equal to 6 in the direction of the optimal solution at 

(X = 0, Y = 0). Consequently, JA can be considered as a very 

efficient algorithm in case of solving relatively simple 

problems with limited number of local minimums and a 

generally concave surface for the solution domain. 

 

D. Free Sensitivity Analysis Jaya Algorithm (FSAJA) 

The soul of the proposed FSAJA is based on a recently 

new variant of the algorithm named by comprehensive 

learning JA (CLJAYA), [13]. Instead of using only one 

learning phase, Eq. (12), three learning phases are adopted as: 

   /

, , , , , , , ,

k k k k k k k k

j i j i j i Best i j i j i Worst i j i
D D r D D q D D      

              if  0 ≤ v ≤ 1/3  (13) 

   /

, , , , , , , ,

k k k k k k k k

j i j i j i Best i j i j i Ave i j i
D D r D D q D D      

,1

,

NPOP k

j ijk

Ave i

D
D

NPOP





       if  1/3 < v ≤ 2/3 (14) 

   /

, , , , , , , ,

k k k k k k k k

j i t i j i Best i j i j i s i t i
D D r D D q D D      

  
s t j             if  2/3 < v ≤ 1  (15) 

where, 
,

k

j ir  and 
,

k

j iq  are the two uniform random values 

between 0 and 1 for decision variable i at candidate j in 

generation k, s, t are two uniform integer random numbers 

between 1 and NPOP, 
,

k

Ave iD  is average diameters of the 

decision variable i for all the candidate solutions in the 

generation k, 
,

k

s iD  and 
,

k

t iD  are the decision variable i at the 

two randomly selected candidates s, t within the population, 

and v is a uniform random number which classifies the 

learning phase for a specified candidate j. 

CLJAYA uses the same previous three learning phases, but 

with the following differences: 1) the random numbers r, q in 

the three learning phases are candidate independent, and 2) r, q 

in Eqs. (13, 14) are normal standard random numbers. The 

above form of the learning process is adopted after a wide 

investigation for different possible algorithm variants within 

the literature. 

The first learning strategy of the FSAJA inherits the feature 

of JA, i.e., moving to best solution and away from the worst 

one. But if they reached best solution is a local minimum, the 

algorithm is trapped at that minimum. So, in case of handling 

complex solution domains with a huge number of the local 

minimum like the WDN problems, another helpful learning 

strategy must be added to JA to escape from the possibility of 

trapping at an immature local minimum. Therefore, the second 

and the third learning strategies, Eq. (14) and (15), are 

gathered with the standard learning strategy of JA, Eq. (13). 

The second strategy is based on guiding the movement of 

the selected candidate by both best candidate and average 

position of the population. The average position of the whole 

population is continuously moving depending on the clustered 

candidates around the trapped local minimum and some scatter 

candidates which are still away from that minimum. 

Consequently, using the information for average position of 

the population allows escaping from the trapped local 

minimum and exploring the solution domain more deeply, at 

the expense of the convergence speed and the corresponding 

excess in the computational effort to the final minimum. As 

the generations proceed, the percentage of the clustered 

candidates around the best solution increases which is 

weakened the effect of the average population information in 

giving a candidate big movement to move away from the best. 

The third learning strategy has an action similar to the 

mutation process in different metaheuristic algorithms. While 

the new suggested candidate is directed to the best solution its 
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movement is distorted with random information based on any 

two uniformly selected candidates from the population. This 

strategy gives the newly generated candidate a great chance to 

explore the solution domain and to move out of the last limits 

reached by the previous generation. However, with the 

continuity of the generation process most of the candidates are 

getting closer to the best reached minimum and that strategy 

loses its significance, as most of the candidates are nearly 

became have the same information. 

Decision variables, in nearly all the optimization problems, 

are constrained with upper and lower limits. Standard JA has 

reassigned the violated decision variable (which is generated 

out of its permissible range) to the closest limit. That clusters 

the decision variables at their limits, which weakened 

exploration of the solution domain. To avoid that 

disadvantage, a new scheme is suggested to restore the 

violated decision variable inside its range. The idea is 

representing the nearest limit with a mirror and replacing the 

violated decision variable with its image located in the 

permissible range as: 

, min , , min
2

k k k

j i j i j iD D D if D D         (16) 

, max , , max
2

k k k

j i j i j iD D D if D D        (17) 

 

 

 
 

 

For the previous illustrative example, the same generated 

11 candidates for the purpose of explanation JA as shown Fig. 

1 are reused to demonstrate the process of the FSAJA in Fig. 

2. In case of FSAJA, for every decision variable in any 

candidate, two uniform random numbers are generated 

between 0 and 1; consequently, for every candidate with 2 

decision variables, four uniform random numbers must be 

generated. For the sake of simplicity only, it is assumed in the 

present example that rX = qY and qX = rY; consequently, the 

initial candidates are supplemented with square brackets 

containing the candidate number followed by rX and qX, 

respectively. The average solution for all the candidates is 

found at (X = 11.54, Y = 7.45). For every candidate at a square 

symbol, a corresponding one is generated at a circle symbol 

which supplemented by a bracket containing the candidate 

number followed by the equation used in the generation 

process, and in case of using Eq. (15), the following two 

numbers represent the randomly selected candidates used, i.e., 

s and t, respectively. Every candidate has an equal chance to 

create a new one using any of the three Eqs. (13, 14, and 15). 

Consider the candidate number 1 with (X = 8, Y = 5) and Z = 

89, the four generated random numbers are rX = qY = 0.34, and 

qX = rY = 0.93, respectively, see Fig. 2. Then the corresponding 

generated candidate using Eq. (13) is: 
/

8 0.34*(5 8) 0.93*(20 8) 4.18 4.18 4X          , 

/
5 0.93*(3 5) 0.34*(12 5) 0.76 1Y        , 

with Z = 17, thus it replaces the old one. Consider the fifth 

candidate at (X = 5, Y = 10) with Z = 125, its corresponding 

generated one is produced from Eq. (14) which depends on the 

average positions of the whole candidates in the population (X 

= 11.54, Y = 7.45) as: 
/

5 0.32*(5 5) 0.02*(11.54 5) 4.87 5X        , 

/
10 0.02*(3 10) 0.32*(7.45 10) 10.68 11Y        , 

with Z = 146 which is bigger than 125; consequently, the old 

candidate survives to the next generation. Consider the sixth 

 
Fig. 2 Description of FSAJA [NPOP = 11] 

Candidates in generation k are represented by squares with their corresponding notations in square brackets, [j, r, q], which included the candidate 

number j, and the corresponding two uniform random numbers r, q used to generate the suggested new candidate, respectively. Suggested candidates 

are represented by circles and their notations in brackets, (j, Eq.), with number of the candidate, j, and the used equation to generate it, respectively. 
In case of adopting Eq. (15), the two subsequent numbers represent s and t, respectively. Ave means the average of the two decision variables for all 

the 11 candidates in generation k. 
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candidate at (X = 1, Y = 6) and Z = 37, Eq. (15) is used to 

generate its corresponding candidate with two uniformly 

selected random candidates (s = 3, t = 7), located at (X = 12, Y 

= 4) and (X = 19, Y = 2), respectively. The generated candidate 

is: 
/

1 0.77*(5 1) 0.39*(12 19) 6.81 7X        , 

/
6 0.39*(3 6) 0.77*(4 2) 3.29 3Y        , 

with Z = 58 > 37; consequently, the old candidate, at (X = 1, Y 

= 6), survives to the next generation. From Fig. 2, the 

following notes can be observed:  

The fifth (X = 5, Y = 11) and sixth (X = 1, Y = 6) candidates 

in the old generation at the squares were processed through the 

second and third learning strategy, respectively, which lead to 

two worse candidates, that means the surviving of these two 

old candidates to the next generation. The generated fifth 

candidate moves away from the direction that connects the 

best and the worst solutions, which gives the candidate the 

opportunity of exploring the new region around it more 

precisely. This behavior is preferable in case of handling a 

complex solution domain with a lot of dips. 

The average position of the new generation is (X = 6.45, Y 

= 5.63), considering the surviving candidates only, has a 

smaller movement from the average position in the previous 

generation (X = 11.54, Y = 7.45) in comparison with the 

corresponding movement in JA, see Fig. 1. 

The decrease in the dispersion of the candidates has a 

slower rate than the corresponding rate of the JA, which gives 

a bigger chance of exploring different local minimums within 

the solution domain. In addition, the third learning provides 

the candidates with random movement depend on two 

uniformly random selected candidates. 

 

E. Common Parameters 

Despite the great advantage of the free specific parameter 

JA, it still needs some preliminary computational effort to 

adjust its performance, against the remaining common 

parameters. The proposed FSAJA is designed, as described in 

the following paragraphs, to be free even from those common 

parameters, i.e., 1) population size, 2) number of generations, 

and 3) the form of the penalty function, which is used only in 

optimization problems that restrict their evaluation function 

response with some constraints to be acceptable. 

1) Population size: population may be varied from small 

size, with limited diversity within the solution domain and a 

consequent fast termination to a local minimum, to a large size 

with the much enhanced diversity and exploration for the 

solution domain but with slower movement to a more likely 

global minimum. Optimal population size is the one that has 

maximum likelihood to reach the best solution in minimum 

computational effort. 

In the present work, both static and dynamic population 

sizes are studied. Wide range for initial number of the 

candidate solutions is considered to explore the best one. In 

case of using static population size, the number of initial 

candidates remains constant for all the generations. On the 

other hand, in the dynamic approach, the population size is 

randomly changed between subsequent generations as [37]: 

 1 (1 )

3 0.1( )

k k k

k

NPOP round NPOP r

NP NPOP NP

 

  

x

    (18) 

where, NPOP
k
 is the population size at generation k with a 

lower limit equal to the biggest value for 0.1NP and 3, r
k
 is a 

uniform random number between –0.5 and 0.5, and round() 

means return the integer number. After every generation, the 

objective function’s values, Eq. (7), are ranked in ascending 

order, i.e., the best will be the first and the worst will move to 

the last. If NPOP
k
 < NPOP

k-1
, only the first best NPOP

k
 

candidates move to the next generation k. But if NPOP
k
 > 

NPOP
k-1

, the whole candidates in generation k–1 are survived 

and fittest (NPOP
k
 – NPOP

k-1
) candidates are duplicated to fill 

the extra size of generation k. 

2) Generations number: a suggested criterion is used to 

terminate the optimization process instead of using a constant 

prespecified number of generations. The criterion is based on 

diversification of the population, within the solution domain. 

As there is diversification of the different candidates, there is 

considerable opportunity of exploring the solution domain and 

avoiding local minima. As that diversification approaches 

zero, the population is clustered at local/global minima, and 

the process must be terminated. Any of the following two 

criteria are used to terminate the optimization process: 

0.0001 or . 30
k

k

STD
Iter

AVE
         (19) 

where, STD
k
, AVE

k
 are the standard deviation and average of 

the population objective functions, Eq. (7), in generation k, 

and Iter. is the number of generations processed with no 

improvement in the best feasible solution. Practically, the first 

criterion is almost controlling the termination process. 

3) Penalty function: the form of the penalty function is a 

common parameter that influences performance of any 

population algorithm. To eliminate the computational effort 

required to tune up that parameter, the self-adaptive penalty, 

Eq. (20), as suggested by Afshar and Mariño, [3], is used here: 

 

 

1

11 1 1

1

1

.

.

k

NPOPk k k k

k

NPOP

Min ff
P P P

Min Iff




  





 x x    (20) 

where, ff1NPOP are costs of feasible candidate solutions, when 

H1NJ = 0, Iff1NPOP are total penalized costs of infeasible 

candidate solutions in a generation, Min.(ff1NPOP)
k-1

, and 

Min.(Iff1NPOP)
k-1

 are minimum/best feasible and infeasible 

costs at generation number k–1, respectively, and  is a 

dynamic penalty coefficient. The coefficient of the penalty, , 

is adjusted after each generation to keep the search around the 

boundary of the feasible domain, by giving minor violations in 

the pressure head a relatively small penalization. This process 
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enables exploiting and surviving different information’s within 

the candidate solutions just outside the feasible solution 

domain. The initial penalty coefficient, P
0
, can be considered 

as very large or very small value and it is self-adjusted 

exponentially with the generation process to approach a stable 

value.  

An illustrative flowchart for different alternative forms of 

the proposed FSAJA is shown in Fig. 3. 

F. FSAJA Performance 

It is inevitable to have criteria to judge the performance of 

any algorithm and compare it with the various other ones. Any 

algorithm performance depends on the following points: 

1) Effectiveness: the proximity of the optimal solution to the 

global known solution, 2) Efficiency: the number of objective 

function evaluations necessary to reach the optimum solution 

and the total permissible objective function evaluations in any 

run, and 3) Reliability: the ratio of the number of runs reached 

the global solution to the total number of runs. Recently, 

Djebedjian et al. [16] suggested two criteria to investigate the 

performance of different metaheuristic algorithms in case of 

using one or multiple runs. Then, they apply their criteria to 

compare between different algorithms using all the available 

WDN’s literature data. These criteria are used here and can be 

represented as in Eqs. (21) and (25): 
 

 best-alg cost eval gen0.005 1 0.99               (21) 

where, 

opt max min

cost

min max opt

C C C

C C C



 


             (22) 

10 eval

eval

10 space

log
1

log

N

N
                 (23) 

10 OFE

gen space

10 space

log
1 ,

log

NPN
N ND

N
         (24) 

 ave-alg cost ave-cost ave-eval gen-success0.005 0.99           (25) 

where, 

opt max ave

ave-cost

ave max opt

C C C

C C C



 


            (26) 

10 ave-eval

ave-eval

10 space

log
1

log

N

N
               (27) 

 

 10 OFE sim success

gen-success

10 space

log
1

log

N N N

N


  
       (28) 

where, best-alg, ave-alg are the performance of the algorithm 

using the best run results and average of multiple runs results, 

respectively; cost is the effectiveness for the best run and 

equal to one if the final minimum cost, Cmin, reached is equal 

to the global optimum cost ever known, Copt; eval is efficiency 

of the best run; Neval is minimum number of function 

evaluations to reach, Cmin, in the best run;gen is efficiency 

which measured by the ratio of maximum/actual permissible 

objective function evaluations, NOFE, processed to terminate 

the run to the available total number of solutions, Nspace; ND is 

number of available commercial discrete pipe diameters; ave-

cost is average effectiveness for multiple runs; ave-eval is 

average efficiency of multiple runs; Cave is average final 

optimum costs in multiple runs; Nave-eval is average number of 

function evaluations to the first reach to the final optimum in 

multiple runs; and Nsim and Nsuccess are number of total runs and 

number of runs succeeded in reaching the global optimum, 

respectively. 

 

III. CASE STUDIES 

Three benchmarks WDN’s in addition to one national 

WDN are solved in the present work to investigate the 

performance of the proposed FSAJA. The three benchmark 

WDN’s, used by Djebedjian et al., [16], are adopted here for 

the sake of comparing the performance of FSAJA to 

performances of other algorithms presented in [16]. The 

studied WDN’s are: 1) the two-loop WDN, 2) the New York 

WDN, and 3) the Hanoi WDN. The fourth WDN is a national 

one named by El-Mostakbal city WDN. 

For parsimony, only main data and some selected 

references include the full hydraulic data of the three 

benchmark WDN's are presented in Table (1) and Fig. 4. The 

full data for the El-Mostakbal WDN is presented for the sake 

of completeness. 

Figure 5 shows the layout of the El-Mostakbal WDN, and 

Tables (2)-(4) present the available commercial pipes, cost per 

unit meter in Egyptian pounds (LE), pipe lengths, node levels 

and different demands (Qout). The minimum required pressure 

head at different nodes of the El-Mostakbal WDN is 

considered equal to 22 m, and the hydraulic gradient level at 

the supplying tank is equal to 58.89 m. Each of the studied 

networks is supplied with one tank. 

 
TABLE (1) 

MAIN DATA OF THE STUDIED WDN’S 
 

WDN NP NJ NL ND CHW Ref. 

Two-Loop 8 7 2 14 130 [16], [38] 

New York 21 20 2 16 100 [16], [39] 

Hanoi 34 32 3 6 130 [16], [40], [41] 

El-Mostakbal 44 33 12 10 100 [42]–[44] 

 
 

TABLE (2) 
AVAILABLE DIAMETERS AND COST/M 

(EL-MOSTAKBAL WDN) 

 

Diameter 

(m) 

Cost 

(LE) 

Diameter 

(m) 

Cost 

(LE) 

Diameter 

(m) 

Cost 

(LE) 

0.15 188 0.40 570 0.8 1485 

0.20 255 0.50 735 1.0 2505 

0.25 333 0.60 1110 1.2 3220 

0.30 419 
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Fig. 3   Flowchart illustrates one run for different alternative forms of the proposed FSAJA. 

Input: 

k =1; Cmin = Cmax; 

Pk; NPOPk; Iter. = 0; 

Mff = MIff = 1030; 

NOFE = Neval = IS = 0 

- Generate initial population with NPOPk candidates, 

each {Dj
k , D1

k, D2
k, …, DNP

k} consist of NP 

uniformly random selected decision diameters; 

- Update Mff and MIff 

Hydraulic Analysis 

using Eqs. (1-6) + 

Eqs. (7, 10) for fj
/ and 

Pfj
/ 

Dj
k 

fj; Pfj 

- Find value of ffBest and its position IS 
- Mff  Min(ff1NPOP)k 

- MIff  Min(Iff1NPOP)k 

- IS is position of best feasible 

candidate in a generation. 

- ffBest is value of best feasible 

objective function in a 

generation. 

- Dj
k , Dj

k/ are the candidate j and 

the corresponding suggested 

children one at generation k, 

respectively. 

- fj , fj
/ are objective functions, 

Eq. (7), for candidates Dj
k, Dj

k/, 

respectively. 

- Pfj , Pfj
/ are penalty costs, last 

part of Eq. (7), for Dj
k, Dj

k/, 

respectively. 

- Dynamic population means 

variable number of candidates 

for subsequent generations, Eq. 

(18). 

- Dynamic penalty means self-

adjusted penalty, Eq. (20). 

- R. ffbest means retain the fittest 

feasible candidate between 

IS > 0 and ffBest < Cmin 
Cmin = ffBest; 

Neval = NOFE + IS; 

Iter. = 1 

 Iter. = Iter. + 1 

 

k > 1, and one stopping criteria 

in Eq. (19) is satisfied 

Output: 

Cmin; 

Neval; 

NOFE 

Stop 

k = k + 1 and Mff = MIff = 1030 

 

- Rank the candidates Dk
j=1, 2, …, NPOP

k; then Dk
Best = Dk

1 and Dk
Worst = Dk

NPOP
k; 

- Calculate Dk
Ave by Eq. (14); 

- Calculate STDk and AVEk; and set NOFE = NOFE + NPOPk 

 

Dynamic Population 
Update NPOPk by Eq. (18) and 

redistribute the new candidates 

Update Pk by Eq. (20) Dynamic Penalty 

- Create the children’s pool: for every candidate j 

generate uniform random number v  (0, 1), 

then estimate Dj
k/ with: 

Eqs. (13, 16, 17) for  0 ≤ v ≤ 1/3 or 

Eqs. (14, 16, 17) for  1/3 < v ≤ 2/3 or 

Eqs. (15, 16, 17) for  2/3 < v ≤ 1 

- Update Mff and MIff 

Dj
k/ 

fj
/; Pfj

/ 

R. ffbest is true and 

Pfj
/ = 0.0 j = IS fj

/ < fj 

Update the candidate 

Dj
k with the new 

suggested one Dj
k/ 

fj = fj
/; 

Pfj = Pfj
/; 

Dj
k+1 = Dj

k/ 

 Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

j=1 

j = j + 1 
j > NPOPk 

 

No 
No No 

Yes Yes Yes 
No 

Keep the original candidate in generation k+1 

Dj
k+1 = Dj

k 
 

Hydraulic Analysis 

using Eqs. (1-6) + Eqs. 

(7, 10) for fj
/ and Pfj

/ 

 

 
 

IV. RESULTS AND DISCUSSION 
 

A. Selection for Best Performed FSAJA Variant 

This work is intended to design a completely free 

sensitivity analysis variant of JA. Thus, some alternatives 

within the algorithm process must be discovered to find the 

best recommended one. These alternatives are: 1) the 

population size is constant or dynamic Eq. (18), 2) the penalty 

function is constant with a very big value, Eq. (11), or self-

adjusted dynamic penalty during the generation process, Eq. 

(20), 3) the fittest feasible solution can be replaced with a 

fittest infeasible solution or not (i.e., lose the fittest feasible 

solution or retain the fittest feasible solution), and 4) the initial 

population size. To investigate the effect of these variants, six 

alternative algorithm variants are adopted to select the best 

one. 

For every combination of the alternatives, the constructed 

algorithm variant is processed for a group of 100 runs (always 
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with an initial seed number equal to the run number). Each 

group is reprocessed with 13 different population sizes to 

cover a wide range as (1, 2, 3, 4, 5, 10, 15, 20, 25, 40, 50, 75, 

100) * NP. Results for every group of 100 runs are analyzed to 

determine: 1) the best ever optimum cost reached within all the 

runs and the number of its recurrence within the 100 runs, 2) 

the average and standard deviation for total executed number 

of function evaluations and minimum costs reached for the 

100 runs, and 3) the average number of function evaluations, 

to the first reach to the minimum cost in any run, Cave. 

The optimum cost and diameters of the three benchmark 

WDN’s are early settled and known in advance from the 

literature. These optimum costs are 419,000, 3, 8637,600, and 

6,081,087 monetary units for the two-loop, New York, and 

Hanoi WDN’s, respectively. 

On the other hand, the optimum cost for the El-Mostakbal 

WDN is still under investigation and its magnitude is 

improving with the recently published researches, [43], [44]. 

Despite all suggested variants of FSAJA reach several better 

minima than the last recently achieved in the literature, the 

solution process of FSAJA is usually terminated at local 

minimum, see local minimum 1 in Tables (3) and (4) in 

columns 5 and 6, respectively. Only a few runs reach to a 

better minimum, i.e., local minimum 2 and global minimum as 

presented in Tables (3) and (4), columns 6-7 and 7-8, 

respectively. Relative discrepancies in the cost between local 

minimum 1, and the global minimum is less than 0.05%. 

Therefore, the FSAJA run is assumed successful if it reaches 

the local minimum 1 or any better minimum (i.e., local 

minimum 2 or the global minimum). 

Figures 6 and 7 show the calculated best and average 

global performances, respectively, for the six selected 

algorithm variants shown in the graph’s legends. Any data 

point in Fig. 7 represents the average global performance of 

100 runs for a specified variant of FSAJA at certain initial 

population size, while it represents only the best global 

performance (for the best run) in Fig. 6. The best run is the one 

that reached the minimum cost, within all the 100 runs, using 

minimum number of function evaluations, in case of its 

recurrence. 

From Fig. 6, it can be observed that the best global 

performance is generally decreasing with increasing the 

population size, with better performances when using a 

dynamic population size. Despite some literature, [10], used 

one run to compare between performances of different 

algorithms, it seems to be unfair for the following points: 1) 

due to ignoring the computational effort executed for the other 

worst performed different runs to reach this best run from the 

comparison process, and 2) any algorithm can reach the global 

minimum more likely as the population size increases, which 

increases the algorithm reliability, this behavior cannot be 

measured using the best run results only. 

All the data points in Fig. 7 that represented the two-loop 

WDN and the New York WDN, reached the global minimum 

cost of at least one run or more. 

However, some data points that represented the initial 

population size (1, 2, 3) *NP for Hanoi and El-Mostakbal 

WDN's fail to reach the global minimum cost for the whole 

100 runs. In general, the average global performance of the 

studied six variants decreases as the population size increases; 

consequently, the best performed range of the population size 

can be considered the smallest size that ensures reaching the 

global cost, i.e., 4*NP. Irregular responses for the six 

algorithm variants are noticed for the four WDN’s; with often 

better performance in case of using the algorithm variant that 

is based on: 1) constant population size, 2) dynamic self-

adjusted penalty, and 3) retaining the fittest feasible candidate 

between generations. Thus, that variant is recommended to be 

the final form for the FSAJA. 

The global reached cost of the El-Mostakbal WDN, see 

Tables (3) and (4), has a lower relative percentage than the 

lowest one presented in the literature, [44], by 0.12% with 

magnitude equal to 4,926,560.7 monetary units. 

 

B. Comparison between FSAJA and Other Algorithms for the 

Three Benchmark WDN’s 

Table (5) shows a comparison between the performances 

of JA and FSAJA with 100 runs for the three benchmark 

WDN's. The performance of JA is weakened rapidly as Nspace 

increases. For all the comparison points, seen in columns of 

Table (5), the performance of the FSAJA is always superior 

concerning the corresponding one of JA. In the case of the 

Hanoi WDN, JA cannot reach global cost even after 4*10
7
 

objective function evaluations. 

Performance of the FSAJA is compared to performances of 

different metaheuristic algorithms previously applied to the 

three benchmark WDN’s as shown in Tables (6)-(8). 
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TABLE (3) 

PIPE LENGTHS AND OPTIMAL DIAMETERS FOR DIFFERENT RESEARCH (EL-MOSTAKBAL WDN) 

 

Pipe 

no. 

Pipe 

length 
(m) 

Optimal Diameters Pipe 

no. 

Pipe 

length 
(m) 

Optimal Diameters 

[43] 
* 

[44] 
** 

FSAJA [43] 
* 

[44] 
** 

FSAJA 

Local 
Min. 1 

Local 
Min. 2 

Global 
Min. 

Local 
Min. 1 

Local 
Min. 2 

Global 
Min. 

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7) 

1 2463 0.60 0.60 0.60 0.60 0.60 24 134.2 0.20 0.15 0.15 0.15 0.15 

2 100 0.50 0.50 0.50 0.50 0.50 25 163.4 0.20 0.15 0.15 0.15 0.15 

3 328 0.15 0.50 0.50 0.50 0.50 26 309.15 0.15 0.40 0.40 0.40 0.40 

4 80 0.15 0.50 0.50 0.50 0.50 27 92.7 0.20 0.40 0.40 0.40 0.40 

5 149.3 0.15 0.15 0.15 0.15 0.15 28 84.9 0.15 0.20 0.15 0.20 0.20 

6 67 0.15 0.15 0.15 0.15 0.15 29 226.3 0.15 0.15 0.15 0.15 0.15 

7 184.3 0.15 0.15 0.15 0.15 0.15 30 100 0.40 0.15 0.15 0.15 0.15 

8 288 0.50 0.15 0.15 0.15 0.15 31 217 0.30 0.15 0.15 0.15 0.15 

9 100 0.50 0.15 0.15 0.15 0.15 32 101 0.15 0.15 0.15 0.15 0.15 

10 341.65 0.15 0.15 0.15 0.15 0.15 33 156.5 0.15 0.15 0.15 0.15 0.20 

11 152.5 0.15 0.50 0.50 0.50 0.50 34 185 0.15 0.15 0.15 0.15 0.15 

12 70.7 0.15 0.50 0.50 0.50 0.50 35 145.8 0.15 0.25 0.30 0.30 0.25 

13 172 0.15 0.15 0.15 0.15 0.15 36 230.5 0.20 0.40 0.40 0.30 0.30 

14 109 0.15 0.15 0.15 0.15 0.15 37 262.6 0.30 0.15 0.15 0.15 0.15 

15 104.7 0.15 0.15 0.15 0.15 0.15 38 109.9 0.15 0.25 0.30 0.30 0.30 

16 155 0.50 0.15 0.15 0.15 0.15 39 114.9 0.15 0.20 0.20 0.25 0.25 

17 123.5 0.50 0.15 0.15 0.15 0.15 40 181.9 0.25 0.20 0.15 0.20 0.20 

18 98.4 0.15 0.15 0.15 0.15 0.15 41 120 0.15 0.15 0.15 0.15 0.15 

19 164.6 0.15 0.15 0.15 0.15 0.15 42 257.4 0.15 0.15 0.20 0.15 0.15 

20 127.6 0.15 0.50 0.50 0.50 0.50 43 184 0.15 0.15 0.15 0.15 0.15 

21 225.5 0.50 0.15 0.15 0.15 0.15 44 370.6 0.15 0.20 0.15 0.20 0.20 

22 198 0.40 0.15 0.15 0.15 0.15 
Optimal Cost 

4,968,
881.5 

4,932,
467.1 

4,928,
997.3 

4,928,
614.0 

4,926,56

0.7 23 357.9 0.15 0.15 0.15 0.15 0.15 

 

* Particle Swarm Optimization results presented by El-Ghandour and Elbeltagi [43] (personal communication) 

** Whale Optimization Algorithm results presented by Ezzeldin and Djebedjian [44] (revised results - personal communication) 

 
TABLE (4) 

NODE LEVELS AND EXCESS PRESSURE HEADS AT OPTIMAL SOLUTIONS (EL-MOSTAKBAL WDN) 
 

Node 

no. 

Level 

(m) 

Qout 

(L/s) 

Excess pressure head at different nodes (m) Node 

no. 

Level 

(m) 

Qout 

(L/s) 

Excess pressure head at different nodes (m) 

[43] 
* 

[44] 
** 

FSAJA [43] 
* 

[44] 
** 

FSAJA 

Local 

Min. 1 

Local 

Min. 2 

Global 

Min. 

Local 

Min. 1 

Local 

Min. 2 

Global 

Min. 

(1) (2) (3) (4) (5) (6) (7) (8) (1) (2) (3) (4) (5) (6) (7) (8) 

1 15 -352.49 21.89 21.89 21.89 21.89 21.89 18 15 24 2.77 4.94 4.95 4.94 4.94 

2 15 0 12.83 12.83 12.83 12.83 12.83 19 15 19.2 4.08 1.89 1.79 1.83 1.82 

3 14 24 12.93 12.93 12.93 12.93 12.93 20 15 34.09 5.82 0.70 0.52 0.59 0.56 

4 14 0 9.01 10.66 10.66 10.66 10.66 21 15 0 7.46 1.99 1.87 1.91 1.90 

5 14 19.2 8.06 10.11 10.11 10.11 10.11 22 15.5 20.8 4.99 0.41 0.19 0.26 0.24 

6 14 0 9.11 9.26 9.25 9.25 9.25 23 15.5 0 2.90 3.31 2.44 3.18 2.85 

7 14 0 9.59 8.87 8.87 8.87 8.87 24 15 16 2.53 4.50 4.52 4.51 4.52 

8 14 17.6 10.89 7.82 7.81 7.81 7.81 25 15.5 16 1.42 3.50 3.44 2.11 2.37 

9 14 20.8 10.30 6.85 6.83 6.83 6.83 26 15.5 0 1.91 2.49 2.68 1.69 1.62 

10 14 19.2 7.24 9.24 9.24 9.24 9.24 27 15.5 0 2.91 2.34 2.15 1.73 2.09 

11 14 0 7.09 8.92 8.92 8.92 8.92 28 15.5 0 3.53 1.27 1.30 1.02 1.15 

12 14 0 8.21 7.81 7.79 7.80 7.80 29 15.5 24 2.24 0.72 1.15 0.80 0.79 

13 14 0 8.92 7.10 7.08 7.09 7.09 30 15.5 0 1.87 1.85 2.22 1.35 1.30 

14 14 0 9.60 6.43 6.40 6.41 6.40 31 15.5 19.2 0.51 0.31 0.37 0.02 0.06 

15 14 19.2 9.09 4.46 4.40 4.42 4.41 32 15.5 19.2 1.60 0.25 0.08 0.04 0.07 

16 14 0 6.72 5.00 4.95 4.97 4.96 33 15.5 16 0.11 1.15 0.34 0.36 0.50 

17 14 24 5.22 8.40 8.40 8.40 8.40 Optimal Cost 
4,968,

881.5 

4,932,

467.1 

4,928,

997.3 

4,928,

614.0 

4,926,

560.7 
 

* Particle Swarm Optimization results presented by El-Ghandour and Elbeltagi [43] (personal communication) 

** Whale Optimization Algorithm results presented by Ezzeldin and Djebedjian [44] (revised results - personal communication) 
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Fig. 6 Best Global FSAJA performance vs. the ratio of population number to NP 
[L. ffBest = FSAJA can lose fittest feasible solution between generations, R. ffBest = FSAJA retain the fittest feasible solution] 

 

 

 
 

 
 

  
 

Fig. 7 Average Global FSAJA performance vs. the ratio of population number to NP 

[L. ffBest = FSAJA can lose fittest feasible solution between generations, R. ffBest = FSAJA retain the fittest feasible solution] 
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 The algorithm’s abbreviations are explained after their 

first appearance at the foot of any table. Two criteria are used 

in the comparison, i.e.: 1) total executed number of objective 

function evaluations to reach a global minimum (Ntotal-

opt = NOFE * Nsim/Nsuccess) which represents both the actual 

efficiency (computational effort) and reliability/robustness of 

any algorithm, and 2) Inverse of the probability of reaching the 

global minimum in one run E [45], i.e., (1/E = Nave-

eval * Nsim/Nsuccess) which represents both of the algorithm 

reliability and convergence rate to the optimum. 

Table (6) shows the different results for the two-loop 

WDN. Total and expected minimum numbers of objective 

function evaluations for FSAJA to reach the global cost are 

equal to 7,979 and 4,402, respectively. With exception of four 

algorithms (i.e., FDE with NOFE = 1000, 5000; PSO; and PSO-

DE), the FSAJA is equivalent or performs better than the other 

algorithms. All the presented algorithms in the table need an 

exhausted sensitivity computational effort, for their control 

parameters, except the FDE. 

Table (7) presents the compared results for the New York 

WDN. FSAJA actual and expected minimum numbers of 

objective function evaluations to reach the global cost are 

equal to 46,145 and 33,249, respectively. The FDE with NOFE 

= 1000, 5000, 10,000 performed better than FSAJA; also both 

ACO and BLD-DE prove a better performance. The remaining 

algorithms have a worst or equivalent performance as FSAJA. 

Hanoi WDN needs high number of objective function 

evaluations than the previous two WDN’s to reach a global 

cost, this is due to its feasible domain that includes large 

number of the local minimum [45]. Consequently, that WDN 

can be considered as more complex than the previous two 

WDN’s. From thirty-three comparisons between different 

algorithms and FSAJA, see Table (8), only 13 ones have better 

performances concerning FSAJA, the remaining have 

equivalent or worst behaviors. 

For the three benchmarks of the WDN’s, the best 

performed is the FDE algorithm which is a free control 

parameter. However, that algorithm is based on adjusted 

common parameters when handled the three benchmarks 

WDN’s, e.g., NPOP is considered equal to 100 and an 

adjusted form for the penalty function is used, which depends 

on the summation of shortage in the pressure heads at the 

nodes multiplied by Cmax/(0.1*Hmin). Considering the required 

computational effort for adjusting different control parameters 

for the remaining algorithms, the FSAJA may be superior to 

the whole algorithms. Future papers are encouraged to focus 

on presenting the actual total objective function evaluations 

used to tune up both control and common parameters of any 

algorithm in the research data to ensure a fair comparison 

between different algorithms. 

 
TABLE (6) 

COMPARISON BETWEEN DIFFERENT ALGORITHMS AND FSAJA 

(TWO-LOOP WDN) 
 

Algorithm Ntotal-opt 1/E Algorithm Ntotal-opt 1/E 

ACO [43] 178,571 >18,929 GA1 [46] 500,000 56,250 

B-GA [47] 66,667 -- GA2 [46] 666,667 110,000 

DE [48] 25,000 11,875 GA3 [46] 2,000,000 415,000 

DE [49] 25,000 14,968 GENOME [50] 300,000 -- 

DE [46] 40,000 13,500 GHEST [51] 83,333 12,083 

EGA1 [46] 181,818 22,273 MA [52] 15,960 14,111 

EGA2 [46] 400,000 65,000 MA [43] 62,500 > 35,631 

EGA3 [46] 1,000,000 600,000 PSHS [53] 38,462 1,792 

FDE1 [20] 2,222 1,333 PSO [9] 7,650 5,138 

FDE2 [20] 5,814 1,298 PSO [43] 10,417 > 6,875 

FDE3 [20] 11,364 1,477 PSO-DE [54] 7,000 3,080 

FDE4 [20] 101,010 4,214 SFLA [43] 63,636 > 31,459 

GA [49] 333,333 191,300 SLC [55] 12,500 5,128 

GA [43] 500,000 >151,500 SS [11] 11,490 3,215 

JA 62,500 47,325 FSAJA 7,979 4,402 

 

- Bold values represent better results than that obtained by FSAJA 

- ACO = Ant Colony Optimization; B-GA = Bounded Genetic Algorithm; DE 
= Differential Evolution; EGA1 = elitist GA with truncation; EGA2 = elitist 

GA with tournament; EGA3 = elitist GA with roulette-wheel method of 

selection; FDE = Fittest individual referenced Differential Evolution; FDE1 
= FDE with NOFE equal to 1000; FDE2 = FDE with NOFE equal to 5000; 

FDE3 = FDE with NOFE equal to 10,000; FDE4 = FDE with NOFE equal to 

100,000; GA = Genetic Algorithm; GA1 = GA with truncation; GA2 = GA 
with tournament; GA3 = GA with roulette-wheel; GENOME = Genetic 

Algorithm Pipe Network Optimization Model; GHEST = Genetic Heritage 

Evolution by Stochastic Transmission; MA = Memetic Algorithm; PSHS = 
Combined Particle-Swarm Harmony Search; PSO = Particle Swarm 

Optimization; PSO-DE = Combined Particle Swarm Optimization and 

Differential Evolution; SFLA = Shuffled Frog Leaping Algorithm; SS = 
Scatter Search; and SLC = Soccer League Competition. 

 

 

 

 

TABLE (5)  

COMPARISON BETWEEN PERFORMANCES OF JA AND FSAJA FOR THE THREE BENCHMARK WDN’S 

 

WDN Algorithm Cmin NPOP Ave NOFE Nsuccess/Nsim Neval Nave-eval Cave/Copt Cstd/Copt 

Two-Loop  JA 419,000 50 2,500 4% 1932 1894 1.07 0.128 

FSAJA 419,000 4*8 2,514 27% 578 1188 1.02 0.029 

New York JA 38,637,600 300 120,000 1% 47,604 38,319 1.19 0.117 

FSAJA 38,637,600 4*21 9,229 20% 4,505 6,650 1.03 0.036 

Hanoi JA 6,257,115 400 400,000 0% 283,201 135,384 1.30 1.534 

FSAJA 6,081,087 4*34 28,646 18% 20,343 24,457 1.04 0.032 
 

Ave NOFE is the average number of the total objective function evaluations within the 100 runs. 

Cstd is the standard deviation of minimum reached costs in 100 runs. 
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TABLE (7) 

COMPARISON BETWEEN DIFFERENT ALGORITHMS AND FSAJA 

(NEW YORK WDN) 

 

Algorithm Ntotal-opt 1/E Algorithm Ntotal-opt 1/E 

ACO [43] 937,500 >349,688 GA [43] 375,000 >288,375 

ACO
1
 [56] 33,333 24,083 GA1 [36] 66,667 28,100 

ACO
2
 [56] 33,333 26,950 GA2 [36] 57,143 19,171 

BLP-DE [57] 7,500 3,486 GA [58] 789,889 -- 

CGA [59] 400,000 88,648 GAmod [58] 555,556 -- 

cGA [60] 18,007 -- GHEST [61] 50,000 7,795 

dDE [59] 215,054 14,209 HD-DDS [62] 58,140 53,488 

DE [58] 136,426 -- MA [43] 50,000 >144,940 

DE [48] 14,144 7,771 MMAS [8] 83,333 51,185 

DE [49] 50,505 18,456 NLP-DE1 [63] 20,202 8,361 

DE [58] 555,556 -- NLP-DE2 [63] 20,202 10,738 

DE1 [64] 348,837 47,356 PSO [58] 2,145,923 -- 

DE2 [64] 2,500,000 31,050 PSO [58] 300,300 -- 

DE3 [64] 535,714 43,682 PSO [43] 357,143 >21,786 

DE4 [64] 348,837 51,340 PSO variant [62] 266,667 -- 

DE5 [64] 312,500 192,673 SADE [12] 10,029 7,172 

FDE1 [20] 2,128 1,004 SDE [59] 206,186 13,253 

FDE2 [20] 5,952 1,731 SFLA [43] 857,143 >56,879 

FDE3 [20] 11,236 1,893 SFLA [65] -- 8,872 

FDE4 [20] 100,000 4,193 SGA [59] 444,444 121,753 

GA [58] 214,133 -- SLC1 [55] 125,000 9,776 

GA [66] 220,264 108,921 SLC2 [55] 100,000 15,764 

GA [49] 156,250 42,100 SS [11] 92,985 88,589 

JA 12*106 3,831,800 FSAJA 46,145 33,249 

 

- Bold values represent better results than that obtained by FSAJA. 

- ACO1 = ACO with internal self-adaptive penalty method; ACO2 = ACO 
with external self-adaptive penalty method; BLP-DE = Combined Binary 

Linear Programming and Differential Evolution; CGA = convergent Genetic 

Algorithm; cGA = Creeping mutation Genetic Algorithm; dDE = Dither 
Differential Evolution; DE1 = DE random mutation; DE2 = DE best 

mutation 1; DE3 = DE best mutation 2; DE4 = DE CurrentToBest2; DE5 = 

DE rand2; GA1 = GA with internal self-adaptive penalty method; GA2 = GA 

with external self-adaptive penalty method; HD-DDS = Hybrid Discrete 

Dynamically Dimensioned Search; MMAS = Max-Min Ant System; NLP-

DE1 = DE seeded with two tailored pipe diameters; NLP-DE2 = DE seeded 
with four tailored pipe diameters; SADE = Self-Adaptive Differential 

Evolution; SDE = Standard Differential Evolution; SGA = Standard Genetic 

Algorithm; SLC1 = SLC without relegation and promotion; and SLC2 = 
SLC with relegation and promotion. 

 

It is worth mentioning that the considered population size 

with 4*NP candidates is not the optimal one for all the studied 

four distribution networks, but it is a compromise size that 

gives good results for different WDN problems under different 

levels of complexity. Optimal population size for both the two-

loop and the New York WDN’s is 2*NP, with (Ntotal-opt, 1/E) 

equal to (2,878; 4,798) and (23,004; 32,220), respectively. 

While the optimal population size for the Hanoi WDN is 3*NP 

with Ntotal-opt and 1/E equal to 124,044 and 144,942, 

respectively. The most complicated problem is El-Mostakbal 

WDN with optimal population size 4*NP and with Ntotal-opt and 

1/E equal to 494,288, and 602,413, respectively. 
 

TABLE (8) 

COMPARISON BETWEEN DIFFERENT ALGORITHMS AND FSAJA 

(HANOI WDN) 

 

Algorithm Ntotal-opt 1/E Algorithm Ntotal-opt 1/E 

BLP-DE [57] 40,816 33,824 GAtrad [58] 15,151,515 -- 

DE [58] 517,063 -- GHEST [51] 125,000 91,838 

DE [67] 163,043 72,283 GSA [15] 9,375 8,635 

DE [49] 102,041 32,263 HD-DDS [62] 1,250,000 1,250,000 

DEa [68] 48,309 30,164 HS [69] 4,166,667 -- 

DEb [68] 121,951 59,420 ISEDPSO [70] 401,929 18,864 

DE1 [64] 348,837 86,726 NLP-DE1d [63] 82,474 35,679 

DE2 [64] 7,500,000 166,500 NLP-DE2e [63] 81,633 43,655 

DE3 [64] 357,143 233,181 PEDPSO [70] 277,778 26,000 

DE4 [64] 357,143 225,514 PSHS [53] 4,166,667 -- 

dDE [59] 625,000 79,625 PSO [58] 5,000,000 -- 

FDE1 [20] 1,587 838 SADE [12] 89,138 72,062 

FDE2 [20] 5,556 913 SDE [59] 543,478 83,935 

FDE3 [20] 10,526 1,206 SLC1 [55] 125,000 36,385 

FDE4 [20] 103,093 2,129 SLC2 [55] 100,000 71,789 

GAmod [58] 7,462,687 -- SS [11] 94,438 67,420 

JA >4*107 
-- FSAJA 159,143 135,871 

 

- Bold values for only better results than that obtained by FSAJA. 
- DEa = Population size equal to 20; DEb = Population size equal to 100; GSA 

= Gravitational Search Algorithm; HS = Harmony Search; ISEDPSO = 

Improved Sequential combination of PSO and Estimation of Distribution 
Algorithm (EDA); PEDPSO = Parallel hybridization of PSO and Estimation 

of Distribution Algorithm (EDA). 
 

V. CONCLUSIONS AND RECOMMENDATIONS 

A novel variant of the Jaya algorithm, FSAJA, is proposed 

to be completely independent of any control algorithm or 

common parameter. The algorithm consists of the following 

structure: 1) three learning phases, Eqs. (13)-(15), with 

equivalent probability of considering any of them to any 

candidate, the corresponding generated candidate using any 

selected learning phase replaces the original candidate only if 

it has a fittest objective function, Eq. (7); 2) the image strategy 

is adopted to replace the generated violated decision variable 

with an interior one within its permissible limits, Eqs. (16) or 

(17); 3) population size is fixed and equal to four times 

number of the decision variables; 4) the penalty is assumed 

initially very big value and it is self-adjusted with the 

generation process, Eq. (20), to a lower magnitude that gives 

infeasible candidates around the solution domain, the 

opportunity of sharing their information’s in the next 

generations; 5) fittest feasible candidate in a generation cannot 

be replaced, with a generated more fittest infeasible one, and  

6) satisfying any of the following two stopping criteria to 

terminate the run: a) if the ratio between the standard deviation 

of candidates objective functions and their average, goes to be 

less than 0.0001 at any generation, or b) the processed number 

of generations without improvement in the fittest candidate is 

more than 30, Eq. (19). 

Using three benchmarks of WDN’s, the FSAJA 

performance is found to be superior concerning the standard 

JA. Also, the comparison between FSAJA and different 

evolutionary algorithms, published in the literature, proves that 
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FSAJA has an equivalent or better performance for most of the 

comparisons. If the computational efforts executed to tune up 

the different control parameters of the compared algorithms 

are considered, FSAJA may prove more superior performance. 

The FDE algorithm still has the precedence performance with 

respect to all evolutionary algorithms. 

El-Mostakbal WDN is presented here in full detail; it has a 

complex solution domain with great difficulty in reaching its 

global minimum. However, FSAJA reaches several local 

minima’s lower than the recently reported in the literature with 

a new global cost equal to 4,926,560.7 Egyptian pounds. But 

most of the best runs in the different groups that consist of 100 

runs are terminated at a higher local minimum with a cost 

equal to 4,928,997.3 Egyptian pounds which is still superior to 

any minimum reached in the literature. El-Mostakbal WDN is 

a challenging one and it is recommended to be used for 

investigating the effectiveness of different algorithms. 

A more research effort is required to investigate a 

relationship between the pipe network characteristics and 

optimal population size. 
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Title Arabic: 

 خىاسصيٍت جاٌا انًعذنت نهخصًٍى الأيثم نشبكت حىصٌع انًٍاه
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Abstract Arabic: 

انًقخشحت يؤخشًا ين أجم  (JA)لأول يشة، ٌخى اسخخذاو خىاسصيٍت جاٌا 

لا ححخىي هزه انخىاسصيٍت عهى يخغٍشاث  .انخصًٍى الأيثم نشبكاث حىصٌع انًٍاه

نًسخنفز وانًطهىب نخنفٍز خطىة انضبظ ححكى، يًا ٌهغً انجهذ انحسابً ا

الأساسٍت نهزه انًخغٍشاث. حى اقخشاح شكم جذٌذ نهخىاسصيٍت، وسًٍج بخىاسصيٍت 

ورنك انشكم لا ٌحخاج حخى يعاٌشة  (FSAJA)جاٌا انخانٍت ين ححهٍم انحساسٍت 

انًخغٍشاث انشائعت انًخعاسف عهى وجىدها بٍن طشق انخحسٍن انًخخهفت. حى 

م يخخهفت نهخىاسصيٍت انًقخشحت نخحذٌذ أفضهها. ثى حى اخخباس فحص سخت بذائ

بالإضافت نشبكت  انبذٌم الأفضم بحم ثلاثت يشاكم قٍاسٍت نشبكاث حىصٌع انًٍاه

يع كم ين  FSAJAكم ين انخىاسصيٍت انًقخشحت  وطنٍت. حظهش يقاسنت أداء

فً  وانخىاسصيٍاث انخحسٍنٍت انًخخهفت انًخىفشة JAانخىاسصيٍت الأصهٍت 

 .الأبحاد، انفعانٍت انىاعذة وانكفاءة وانًخانت نهخىاسصيٍت انًقخشحت
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