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 

I.  INTRODUCTION 

HOTOACOUSTIC imaging (PAI), or optoacoustic 

imaging, is a biomedical hybrid imaging modality based 

on the use of laser-generated ultrasound due to the 

photoacoustic effect [1-2]. The photoacoustic effect as a physical 

phenomenon was reported in 1880 by A. G. Bell [3-6]. The 

reason is the energy exchange process which transforms the 

absorbed light energy into kinetic energy, which in role results in 

a temperature rise thus a pressure wave or sound [6]. Measuring 

the sound at different wavelengths produced the origin of the 

photoacoustic spectroscopy (PAS); also, called optoacoustic 
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spectroscopy (OAS). PAS can be applied to gases, liquids, and 

solids [6-8]. PAS directly measures the absorbed power of light, 

which in role serves as a highly sensitive technique with no 

scattering losses [9]. Photoacoustics’ uses have been emerged 

first in the field of gas spectroscopy and later in biomedical 

applications [10]. In the last two decades; PAI has rapidly gained 

wide popularity in more biomedical applications [1]. PAI 

technique can be roughly expressed as “light in and sound out”, 

merges high-contrast of optical imaging with high spatial 

resolution and penetration depth of ultrasonography [11-12]. An 

illustration of the basic principle of PAI is presented in Fig. 1. In 

PAI: tissue components having different absorption 

characteristics can be separated spectrally [13]. PAI is sensitive 
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 Abstract — This photoacoustic imaging (PAI) in medicine paper started with 

an introduction to PAI and the famous photoacoustic techniques including 

photoacoustic tomography (PAT), multispectral optoacoustic tomography 

(MSOT), photoacoustic microscopy (PAM), raster-scan optoacoustic mesoscopy 

(RSOM), and photoacoustic elastography (PAE). A modest review about non-

contact laser ultrasound (LUS), having the advantage of operator-independent 

image quality, has been also demonstrated. A concise review of most of PAI’s 

medical applications is demonstrated including cancer screening (for breast, 

thyroid, ovarian, prostate, lung, and skin), tissue oxygenation measurements, 

brain imaging, imaging-guided surgery (IGS), and the guidance of high intensity 

focused ultrasound (HIFU). Some safety considerations contributed with 

medical ultrasound and lasers have been then presented. In conclusion, more 

scientific and clinical development in the field of PAI is expected, and an increase 

in approved devices that utilize PAI's techniques in medical applications is also 

expected to serve wide sectors of medicine, whether diagnostic or therapeutic.  
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for chromophore mapping, whereas these chromophores can be 

moreover separated into two categories: the 1st like hemoglobin, 

melanin, and cytochromes, absorbs ultraviolet-visible light by 

electronic transitions, while the 2nd like lipids and water, absorbs 

light ranges from near-infrared to mid-infrared by vibrational 

transitions [14]. In contrast to conventional ultrasonography, PAI 

has the potential to produce speckle-free images [3]. Functional 

information can be provided also by PAI as blood flow, 

temperature, and oxygenation [2]. Recently, a photoacoustic 

(PA) topography through an ergodic relay (PATER) system, has 

been introduced to achieve a wide field of view (FOV), snapshot, 

and high frame rate in a low-cost system [15-17]. At very deep 

regions, where PAI cannot achieve adequate resolution, the PA 

probe should be positioned close to the area of interest by the aid 

of endoscopy [18]. PA endoscopy is aiming to outdo the 

resolution limitations of endoscopic ultrasound (EUS) which is a 

clinically available tomographic tool utilized for diagnosing 

more diseases [19]. From a market point of view, it is forecasted 

that the PAI market will increase in 2022 [20].  

In this review paper the utilized strategy for achieving it was 

performing a literature search through the Internet, selecting 189 

references to build our review, and contacting with two authors 

of two different references [71, 111] for giving us permission to 

process and publish their figures’ data. 
 

 

Fig. 1. Illustration of PAI’s basic principle. 
 

In the following section II: we will talk about the most famous 

PA techniques including A. PAT, A.1. MSOT, B. PAM, and C. 

PAE. In section III, we talk about the recent development of non-

contact laser ultrasound (LUS) medical imaging. In section IV, a 

brief introduction to PAI’s applications in medicine mentioned in 

the following five sections (sections V, VI, VII, VIII, and IX) is 

presented. In the following section V, most of PAI’s applications 

in cancer screening are presented including A. breast, B. thyroid, 

C. ovarian, D. prostate, E. lung, and F. skin cancer. Sections VI, 

VII, VIII, and IX; present in some detail the applications of PAI 

into tissue oxygenation measurements, brain imaging, Imaging-

Guided Surgery (IGS), and PAI’s guidance of High Intensity 

Focused Ultrasound (HIFU), respectively. In section X we will 

talk about safety considerations for both laser and ultrasound. 

Finally, in section XI, we concluded that PAI is a promising 

biomedical imaging tool in more applications in medicine. 
 

II. MOST FAMOUS PHOTOACOUSTIC STRATEGIES 

PAI has more techniques to be implemented. Here, we 

divided PAI’s techniques into five main categories: PAT, PAM, 

PA endoscopy, PATER, and PAE. A concise chart for the PAI’s 

main techniques mentioned in this paper is illustrated in Fig. 2. 

Where; OD: optical detection, OR: optical resolution, AR: 

acoustic resolution, MS: multispectral, fcPAT: functional 

connectivity PAT, LD: light-emitting diode (LED). In the 

following sub-sections, we will talk in some detail about A. PAT, 

B. PAM, and C. PAE. PA endoscopy (the third main category) is 

a very prospective field in PAI, providing molecular contrast at 

large depths, allowing for simultaneous visualization of structural 

and functional information [21]. PA endoscopy presents the same 

strength in spatial resolution of routinely used clinical EUS, 

whereas introducing more functional information at 

physiological sites [22]. For more about PA endoscopy, we refer 

the reader to [18, 19, 21, 23-28]. PATER (the fourth main 

category) could be considered a combination of computed PAT 

theory and PAM, trying to achieve a wide-field image with only 

a single-element ultrasonic detector upon a single laser shot [15-

17]. For more about the PATER technique, we refer the reader to 

[15-17]. 
 

A. PAT  

PAT technique can be briefly described in four steps [29, 

30]:  

1. Illumination of the tissue by a pulsed broad laser beam. 

2. A small but rapid temperature rise will be generated. 

3. The emitted short-wavelength pulsed ultrasonic waves due 

to thermoelastic expansion will be then detected by 

unfocused ultrasonic transducers.  

4. Image reconstruction process produces tomographic 

images of optical contrast and high resolution. 
 

 

Fig. 2. A concise chart for the PAI’s main techniques mentioned  
in this review. 
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PAT can image nearly all molecules, fluorescent or not 

because it doesn’t rely on fluorescence emission [31, 32]. PAT 

is speckle-free unlike ultrasound imaging and optical coherence 

tomography (OCT) [33]. PAT has the potential to produce 

fluid‐dynamic, functional, molecular, and anatomical imaging, 

playing an efficient role in biomedical research [34]. PAT has 

introduced a super-depth combined with high-resolution optical 

imaging exceeding the optical transport mean free path which 

is the depth limitation of OCT, confocal microscopy, and two-

photon microscopy (~ 1 mm in the skin) [35]. Anatomical and 

vascular structures imaging can be provided by endogenous 

hemoglobin contrast. Molecular, functional, and reporter gene 

imaging can be provided by using exogenous optical contrast 

[29, 30, 36]. A contrast agent called black mesoporous silicon 

(BPSi), has been introduced, by Wujun Xu et al [37], for the 

light-emitting diode (LED) based three-dimensional (3D) PAT, 

resulting in strong contrast. A United States patent application 

by James B. Pitner et al [38], has been introduced for 

Hydroporphyrins as contrast agents for PAI. Another advance 

to PAT was published by M. Nasiriavanaki et al [39]: 

developing a functional connectivity photoacoustic 

tomography (fcPAT) system, allowing non-invasive imaging of 

the resting-state functional connectivity (RSFC) in a mouse 

brain, with a large FOV as well as high spatial resolution. RSFC 

was alerted in many brain disorders [39]. A different technique 

of PAT is the optical-detection photoacoustic tomography (OD-

PAT) in which optical approaches have been used to detect the 

photoacoustic signals instead of piezoelectric detection in 

classical ultrasound probes [22]. 
 

A.1. MSOT  

MSOT, a Multispectral PAT (MS-PAT) technique, has been 

able to introduce a generation of biomedical imaging. A 

particular advantage of MSOT is its ability to scale with 

different tissue sizes [40]. MSOT has been succeeded to 

visualize fluorochromes in tissues that are not visible with 

conventional single wavelengths’ PAI [41]. A fast acquisition 

MSOT whole-body scanner has been introduced by Rui Ma et 

al to visualize small animals’ molecular markers with multi-

wavelength illumination [42]. Razansky et al [43], have 

introduced their protocol of volumetric real-time MSOT of 

biomarkers; assuring MSOT’s ability in visualizing tissue 

biomarkers and optical contrast with speed and resolution 

representative of ultrasound. A fast MSOT platform for 

dynamic imaging of pharmacokinetics and bio-distribution in 

multiple organs has been demonstrated by Adrian Taruttis et al 

[44]; introducing fast and high-resolution in vivo imaging’s 

capabilities. Semi-quantitative MSOT for volumetric 

Pharmacokinetic (PK) imaging of gastric emptying had been 

demonstrated by S. Morscher et al; using MSOT in monitoring 

gastrointestinal motility in mice given indocyanine green (ICG) 

by oral gavage aiming fate of ICG be monitored in the 

gastrointestinal tract [45]. Not only ICG, but MSOT also 

visualize a range of exogenous contrast agents e.g., methylene 

blue (MB) [46]. The performance of an MSOT system equipped 

with 2D vs. 3D handheld probes has been demonstrated by 

Neuschmelting et al [47], for potential clinical translation. First 

in vivo clinical use of MSOT non-invasively has been 

introduced by S. Y. Chuah et al [48], for Structural and 

functional 3D mapping of skin tumors, confirming the benefit 

of that imaging method for surgical intervention guidance. Over 

the last few years, MSOT has succeeded in more than one 

application in medicine such as imaging of breast cancer [49], 

particle size-dependent intratumoral distribution of polymeric 

micelles [50], thyroid disorders [51], drug-induced liver injury 

(DILI) [52], neural dynamics and organization of the intact 

mouse brain [53], and orally-administered particles within the 

gastrointestinal tract of murine models [54]. MSOT has the 

potential to achieve real-time tracking in vivo of magnetic 

nanoparticles quantitatively [55]. A co-registration of MSOT 

and magnetic resonance imaging (MRI) data from murine 

tumor models, has been introduced by M. Gehrung et al [56], 

assuring feasibility of hardware and software-based registration 

framework for MRI and MSOT images. 
 

B. PAM 

PAM technique can be briefly described as focusing a 

pulsed laser beam into the tissue, ultrasonic waves will be then 

generated, and finally, a focused ultrasonic transducer will 

detect the generated waves to form a depth-resolved one-

dimension (1D) image [29, 30]. Also, three-dimension (3D) 

high-resolution tomographic images can be generated by raster 

scanning [29, 30]. L. V. Wang has illustrated in [57] that: PAM 

can image up to 3 mm into scattering tissue with 15 

micrometers axial resolution while working at 50 MHz 

ultrasonic detection frequency. Whereas working at 5 MHz, 

PAM can image ~10 times as deep but with ~10 times axial 

resolution [57].   

PAM has the potential to image the microvascular network 

in the skin, which is invaluable in dermatology and related 

cancer research [58]. Weak acoustic scattering in tissue is an 

advantage of PAM, unlike pure optical microscopic techniques 

[59]. PAM breaks through the optical propagation limit (∼1 

mm in soft tissue); providing images with high-resolution at 

imaging depths up to a few millimeters, with excellent 

scalability [59]. 

There are two different techniques of PAM: Optical-

resolution photoacoustic microscopy (OR-PAM) and Acoustic-

resolution photoacoustic microscopy (AR-PAM).  

OR-PAM: this technique uses focused light to spatially 

limit the stimulation, producing an optical diffraction-limited 

resolution in the lateral direction.  

AR-PAM: in this technique a relatively large area is 

illuminated, rather than focus light to an optically diffraction-

confined spot, so more laser energy is allowed in AR-PAM than 

in OR-PAM, increasing the chance of photons to reach a much 

greater depth [22].  

In AR-PAM, the illumination can be either dark-field or 

bright: The dark-field approach has the advantage to reduce 

surface interference to deeper PA signals, whereas the bright-

field method can carry higher fluence to a targeted volume [22].  

A most famous technique that belongs to the AR-PAM 

family is the RSOM (raster-scan optoacoustic mesoscopy). 
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Optoacoustic mesoscopy is, optoacoustic (or photoacoustic) 

imaging having acoustic resolution and wide-bandwidth 

ultrasound detection. RSOM’s placement is like a bridge in-

between optoacoustic microscopy and optoacoustic 

macroscopy [60]. Optoacoustic mesoscopy or macroscopy 

qualifies deeper imaging than optical or optoacoustic 

microscopy methods which use focused light [46]. A 

classification of microscopy, mesoscopy, and macroscopy 

concerning their penetration depth, had been stated by V. 

Ntziachristos in [61], as: (< 1 mm), (0.5 mm to 10 mm), and (> 

1 cm); respectively. Another penetration-based classification 

had been stated by A. Taruttis, G. M. van Dam, and V. 

Ntziachristos in [46], as: (< 1 mm), (1–5mm), and (beyond 5 

mm); respectively. Over the last decade, more papers have been 

published concerning optoacoustic mesoscopy [62-69].  

In recent years, several applications in medicine have been 

reported using advanced PAM imaging systems (Such as Laser 

Diode (LD) based PAM systems) towards a low-cost and 

aiming for a portable PAM system for point-of-care and 

wearable applications [70, 71]. LD-based PAM imaging has 

been investigated to reduce the size of bulky lasers usually used 

in PAM and also for economic issues [71]. A sample image 

generated from an original 4060 by 2700 pixels data (taken with 

permission from [71]) for in vivo LD-based PAM 

microvasculature imaging of an 8.12 mm by 5.4 mm area from 

a mouse ear is illustrated in Fig. 3.   

 

 

Fig. 3. A sample image produced with permission from [71], illustrating an 

in vivo LD-based PAM imaging of a mouse ear. Where the numerical values 

on each X-axis and Y-axis are referring to the pixels’ coordinates in the 
image (where each pixel has a size of 2 µm by 2 µm). 

 

C. PAE 

Elastography imaging can be described as art to measure 

and posterior graphical representation of the spatial allocation 

of tissue’s stiffness [72]. The elasticity distribution in biological 

tissue can be noninvasively mapped by Elastography to reveal 

disease conditions [73]. Published studies on PAE imaging 

(PAEI) are so limited [72]. The start was in 2011, when G. Gao 

et al, had published their development of a system of PA 

viscoelasticity imaging, obtaining a high contrast image, 

reflecting information of the tissue viscoelasticity with the PA 

phase projection [74]. In the same year 2011; K. J. Parker et al, 

have stated their 20 years’ perspective on Imaging the elastic 

properties of tissue [75]. In 2015; Pengfei Hai et al, have 

proposed Vascular elastic photoacoustic tomography (VE-

PAT) to measure blood vessel compliance in humans [76]. A 

PAT imaging system called quantitative photoacoustic 

elastography (QPAE) imaging system helping in tissue elastic 

properties’ recovery nondestructively and noninvasively, has 

been developed by Pengfei et al [72, 77, 78]. Till now, PAE is 

in the upbringing stage of its development [72].  
 

III. LUS MEDICAL IMAGING  

The non-contact laser ultrasound (N-CLUS) medical 

imaging technique is based on the concept of optical detection 

of ultrasound (OD-US) [79, 80]. OD-US can play an important 

role in PAI for biomedical study and clinical diagnosis [80]. In 

full N-CLUS technique; PA sources are employed on the skin 

surface, in combination with laser interferometric detection 

instead of piezoelectric ultrasound detectors used in most PA 

systems [81]. The main difference between PAI and N-LUS is 

the detection mechanism (piezoelectric or optical), we can 

name the technique of N_LUS by optical detection PAI (OD-

PAI). Historically, ultrasound generation with lasers nearly 

goes back to the first laser invention (the ruby laser) [82], which 

was used for generating ultrasound or shock waves in materials 

[83]. Recently, more studies have been emerged clarifying the 

medical applicability of N-CLUS's concept [81-90]. 
 

IV. PAI’S APPLICATIONS IN MEDICINE 

PAI has a wide variety of applications in more branches in 

biomedicine [184-189]. In the following sections V, VI, VII, 

VIII, and IX, a concise review is presented for most PAI’s 

applications in cancer screening, tissue oxygenation 

measurements, brain imaging, guiding surgeries, and HIFU’s 

guidance, respectively.    
 

V. PAI’S APPLICATIONS IN CANCER SCREENING   

In 2020, more than 1.8 million new cancer cases and more 

than 0.6 million cancer deaths were expected to occur only in 

the United States [91]. Screening can detect some cancers early 

when treatment is more often successful [92]. Important 

elements in cancer control are cancer detection in its early 

stages and supplying immediate appropriate treatment [93]. 

PAI can play a role in cancer diagnosis and therapy guidance 

[94, 95].  
 

A. Breast cancer    

A group of diseases in which cells in breast tissue change 

and divide uncontrolled, typically resulting in a lump or mass, 

is called breast cancer [96]. Breast cancer is the second common 

cancer worldwide after lung cancer, the fifth common cause of 

cancer death [97, 98].  
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X-ray-based Mammography [97], Breast ultrasound (BUS) 

imaging [99-101], and Magnetic resonance imaging (MRI) 

[102, 103], are the three most famous imaging techniques 

utilized for breast cancer screening. X-ray-based screening 

mammography, beginning in the 1980s, helps in the early 

detection of breast cancer [97]. But it uses ionizing radiation, 

painful breast compression, and has poor performance in radio-

dense breasts. BUS imaging can be utilized as mammography’s 

adjunct [100, 101]. However, X-ray and BUS imaging are both 

suffer from having non-optimal sensitivity and specificity 

[104]. MRI could be used for breast imaging in cases of 

uncertain findings in X-ray and BUS imaging [104]. However, 

MRI suffers from limited specificity, requires contrast agents, 

excludes more patients for instance who have pacemakers, or 

claustrophobia, moreover it is a little obstructed in pre-

menopausal women by the requirement to time imaging during 

certain phases of the menstruation cycle [104]. PAI, a 

nonionizing modality, has the potential to achieve higher 

specificity in the diagnosis of malignant and benign breast 

masses, helping to reduce the number of false-positive scans 

and unnecessary biopsies of benign [104]. Over the last few 

years, there were various breast’ PAI systems have been 

proposed [105-110]. Recently, Li Lin et al [111], have 

introduced a high-speed 3D Photoacoustic computed 

tomography (PACT) system for both preclinical and clinical 

applications, achieving an in vivo imaging depth of 4 cm in the 

human breast within a single breath-hold (SBH) of 10 s. Figure 

4 is illustrating a sample image of a healthy human subject’s 

right and left breasts in vivo taken by the 3D-PACT system 

introduced in [111]. 
 

B. Thyroid cancer    

In 2020, the expected number of new cases of thyroid cancer 

diagnosed only in the United States (US) is estimated at 52,890. 

The incidence rate is about 3 times higher in women than in 

men [92]. Thyroid cancer was the most rapidly increasing 

cancer in the US till now [92]. In 2012, there were an estimated 

40,000 deaths globally due to thyroid cancer [93]. The thyroid 

gland, normally located in the lower front of the neck, is a 

butterfly-shaped endocrine gland [112]. Ultrasound combined 

with fine-needle aspiration cytology (FNAC) is the primary 

diagnostic tool for thyroid cancer, followed by histology [10]. 

PAI can augment, FNAC combined ultrasound, for molecular 

imaging of thyroid nodules. It is because the thyroid gland is 

superficial (2–3 cm deep) allowing sufficient penetration of 

light [10]. Recently, more researches have been introduced 

discussing PAI’s utilization in thyroid cancer diagnosis [113-

115].  
 

C. Ovarian cancer    

In 2020, an expected 21,750 new cases of ovarian cancer 

will be diagnosed only in the United States and about 13,940 

women are expected to die from the disease [92]. Globally, 

ovarian cancer is the eighth most frequent cause of cancer death 

among women with 152,000 deaths, as stated by the 2014’s 

world cancer report [93]. Ovarian cancer is rarely detected at an 

early stage because of its low spread in the general population 

[116], Bin Rao et al, have investigated the feasibility of “optical 

biopsy”, using high OR-PAM to quantify the microvasculature 

of ovarian and fallopian tube tissue [116]. Through the last 

decade, there was more than one prototype PAI-based system 

studying the ability of PAI to enhance ovarian cancer diagnosis 

[116-119].  
 

 

Fig. 4. 3D-PACT of a healthy human subject’s breast in vivo (Taken and 

Processed with permission from [111]). A is a processed perspective 
angiogram of the Right breast. B is the Left breast image of the same 

human subject. 
 

D. Prostate cancer    

Globally, prostate cancer (PCa) is the second most common 

cancer in men worldwide [76]. In 2020, the expected new cases 

of prostate cancer are estimated at 191,930 only in the United 

States, and 33,330 men are expected to die from the disease 

[92]. To visualize prostatic anatomy and guide needle biopsy, 

transrectal ultrasound (TRUS) has been routinely used since the 

1980s [120]. A trial in validating if ex‑vivo multispectral PAI 

can characterize malignant prostate tissue, benign prostatic 

hyperplasia (BPH), and normal human prostate tissue, has been 

proposed by Dogra et al [121], concluding that multispectral 

PAI had the potential to differentiate between malignant 

prostate, BPH and normal prostate tissue. B. L. Bungart et al 

[122], have published their success in providing prostate biopsy 

targets by 1064 nm PAT and ultrasonography texture-based 

feature analysis. Through the last few years, more researches 

have been emerged concerning enhancing PAI’s applications 

on the prostate [120-125]. 
 

E. Lung cancer    

Lung cancer is the most frequent cancer worldwide; it is the 

most common cancer in men and the third in women [93]. As 

estimated in 2012: there were more than 1.8 million new cases 

and almost 1.6 million deaths [93]. Only in the United States: 

the expected new cases of lung cancer in 2020 were estimated 

at 228,820, whereas the expected mortality from the disease 

was estimated at 135,720 [92]. Early detection could be a reason 

for decreasing mortality from lung cancer because most 

diagnoses occur in a late stage of cancer with a low survival rate 

[126]. PAI has been studied to help in lung cancer diagnosis 
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through more than one study during the last decade assuring its 

promising role in lung cancer diagnosis [126-129]. 
 

F. Skin cancer    

In recent years, skin cancer cases number has risen globally 

[1]. Melanoma, Basal cell carcinoma, and squamous cell 

carcinoma; are the three main types of skin cancer, in which the 

last two types are called non-melanoma skin cancers (NMSCs) 

and are seldom life-threatening, whereas the first type: 

melanoma skin cancers are rare but aggressive and start in 

pigmented lesions like a mole or birthmark [1]. Nearby lymph 

nodes are the first site of metastasis where melanoma can spread 

throughout the body [1]. For precise melanoma prognosis, 

ascertaining, staging, and planning treatment; the pathological 

status of the sentinel lymph node is significant [130]. Initial 

results using PAT by Jose et al [130], suggested that PA could 

develop into an intraoperative imaging method for detecting 

melanoma metastases in sentinel lymph nodes. Recently, more 

researches have been emerged discussing PAI’s utilization in 

skin cancer imaging [131-135].  

 

VI. PAI IN TISSUE OXYGENATION MEASUREMENTS 

Oxygen was named by Joseph Priestley and Antoine 

Lavoisier who had isolated it. Carl Scheele had discovered 

oxygen in the late eighteenth century. Living cells obtain 

oxygen through air inhaled into the respiratory system from 

where it is absorbed into the bloodstream. In red blood cells 

(RBCs), oxygen is bound to hemoglobin. In some tissues such 

as muscle, oxygen is also stored bound to myoglobin [136]. 

William G. K., Peter J. R., and Gregg L. S. have been awarded 

the 2016 Albert L. basic medical research award for the 

discovery and clarification of pathways by which humans and 

other multicellular organisms sense and respond to changes in 

oxygen availability [137]. The Nobel prize for Physiology or 

Medicine for 2019 had been given to the same three men for 

discoveries on the mechanisms by which animals cells respond 

to changes in oxygen levels [136]. To facilitate blood 

oxygenation, a specialized oxygen-binding molecule 

(hemoglobin) is needed since oxygen does not dissolve readily 

in the plasma because plasma is 93% water [138]. Tissue 

oxygenation can be imaged by PA based on the oxygen-

dependent light absorption characteristics of hemoglobin [139]. 

Molar extinction coefficient (cm-1/M) spectra curves for HBO2 

and HB are shown in Fig. 5. Where: M is referring to the molar 

concentration in moles/liter. Where HbO2 (red): refers to 

Oxygenated Hemoglobin, and HB (blue): refers to 

Deoxygenated Hemoglobin. 

Oxygen saturation (sO2) can be described by equation (1) 

taken from [138]; Where THb: refers to Total Hemoglobin 

Concentration. 

 

𝑠𝑂2 =   𝐻𝑏𝑂2/𝑇𝐻𝑏         ;  𝑇𝐻𝑏 = 𝐻𝑏𝑂2 + 𝐻𝑏           (1)   

Blood oxygenation measurements by PAT are an important 

application been widely carried out in PA studies of tumor 

hypoxia, brain functions, cancer therapy, and wound healing 

[140]. PAM has been able to image sO2 in the microvasculature 

of biological tissues [141]. PAI can deduce the spatial 

allocation of sO2 in blood, and be co-registered with 

ultrasonography images of the surrounding anatomy [142]. sO2 

can be expected from the partial pressure of blood’s oxygen 

(pO2) based on a standard dissociation curve shown in [142]. 

Real-time assessment of tissue hypoxia in vivo can be achieved 

by combining PA and high-frequency ultrasound [143]. In 

blood flow measurements, PAI has an efficient role [144-146]. 

 

VII. PAI IN BRAIN IMAGING  

The absorption spectra of deoxyhemoglobin (Hb) and 

oxyhemoglobin (HbO2) enabled PAT to provide label-free 

functional brain images of oxygen saturation (sO2) and total 

hemoglobin concentration (THb) [13]. For improving the 

visibility of the neurovascular structures, optical contrast 

agents, like nanoparticles and organic dyes can be used [13]. 

Different PAI brain imaging techniques have emerged through 

the last few years [13, 147]. Visualizing Alzheimer’s disease of 

a mouse’s brain has been reported by Park SJ et al [148], 

applying the MSOT technique utilizing an optical imaging 

probe (CDnir7: Compound of Designation near-infrared 7). 

Recently, more researches have been emerged discussing 

different types of PAI schemes, techniques, and applications in 

brain imaging [148, 149-162]. 

 

VIII. PAI IN IMAGING-GUIDED SURGERY (IGS)  

Imaging-guided surgery (IGS) is a branch of the concept of 

Image-guided therapy (IGT) which includes any intervention or 

surgery that utilizes improved imaging for monitoring, 

localizing, controlling, and targeting procedures [163]. Due to 

PAI’s ability in noninvasive diagnosis of various types of 

tissues including bone: PAI could be applied in IGS providing 

real-time visualization and analysis abilities during more than 

one type of surgery, for instance: cancer surgery and spinal 

surgery, helping surgeons in avoiding pedicle breaches by 

choosing an adequate starting point before drilling or pedicle 

probe insertion [164]. An intraoperative breast cancer screening 

by PA has been demonstrated by Ivan K. et al [165], producing 

a new perspective for malignant cancer visualization moreover 

surgical guidance. In 2020, a United States patent by M. Bell et 

al has been dated for a system and method of transcranial PAI 

to guide skull base surgeries [166]. For more about PA-guided 

surgery, we refer the reader to [167]. 

 

IX. PAI’S GUIDANCE OF HIFU 

Providing non-invasive heating and ablation for a wide 

range of applications, HIFU was rapidly obtaining clinical 

approval with only a single session required usually for 
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treatment (day case procedure) [168]. An integrated HIFU drive 

system on a chip has been introduced by Omid F. et al [169], 

proposing the feasibility of their system of HIFU based 

integrated catheter ablation that containing a drive signal 

generator integrated circuit (IC), and a capacitive 

micromachined ultrasound transducer (CMUT) ring array. 

Since, Tumors in organs partially becloud by the rib cage are a 

challenge for HIFU therapy because of HIFU’s beams 

distortion reducing the focusing gain at the target, Mohamed A. 

and Emad E. have introduced a new method of refocusing that 

can steer power towards the target, whereas limiting the 

deposition of power on the ribs using the semidefinite 

relaxation (SDR) technique in approximating the original (non-

convex) optimization problem [170]. Through the last few 

years, more researches have emerged concerning the 

applications of combining PAI and HIFU [171-174].  

 

 

 
Fig. 5. Molar extinction coefficient (cm-1/M) spectra curves for HBO2 (red) and HB (blue) through different wavelengths (nm). Where: M is referring to 

the molar concentration in moles/liter (The raw data for these two curves have been taken from: https://omlc.org/spectra/hemoglobin/summary.html).   
 

 

X. SAFETY CONSIDERATIONS  

In most traditional ultrasound imaging the ultrasound prob 

does a dual job: transmitting and receiving ultrasound in both 

directions as shown in Fig. 6 – A, so more studies concerning 

ultrasound safety have been emerging concerning this topic, 

however, diagnostic ultrasound has been widely accepted with 

an impressive safety record since the 1950s [175-176]. For 

more about the factors contributing to this record, ultrasound 

thermal and non-thermal or mechanical (cavitation) induced 

bio-effects, ultrasound safety considerations, and exposure 

practice and levels; we refer the reader to [176 – 181].   

In PAI: the existence of ultrasound is just the output from 

the biological tissue due to the PA effect and the ultrasound 

probe is just utilized for receiving the induced ultrasound waves 

as illustrated in Fig. 6 -B, so the ultrasound safety consideration 

illustrated is not applicable here in PAI’s. Instead, Laser safety  

 

 
 

is so important in PAI. In PAI the used laser type, class, and  

exposure limit must be included in the safe range standards of 

the laser. laser’s safety standards for use vary in their scope and 

design, for more about international standards for using laser, 

American National Standards Institute (ANSI) standards for 

using laser, laser safety exposure limits, and laser hazard 

classification classes we refer the reader to [182]. Wherever it 

is located, a laser is as safe or as hazardous as the user; hence, 

well and safely a clinical practice operates can be defined by 

the user’s knowledge and skill [183]. 
 

XI. SUMMARY AND CONCLUSION 

Photoacoustic Imaging (PAI) has wide applications in 

medicine. There are more techniques of PAI including; PAT, 

https://omlc.org/spectra/hemoglobin/summary.html
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MSOT, fcPAT, OD-PAT, OR-PAM, AR-PAM, RSOM, PA 

endoscopy, PATER, and PAE. In the last two decades: the 

medical applications of photoacoustics have been widely 

spread. In cancer diagnosis; PAI has a big role, for instance in 

cancers detection of breast, thyroid, prostate, and skin. 

Visualizing Alzheimer’s disease could be possible by PAI’s 

Brain imaging. PAI could help in a real-time assessment of 

tissue hypoxia. PAI’s guidance plays a strong role in more 

applications of IGS and HIFU. Our conclusion is the 

expectation of more future applications of PAI in medicine. 

Moreover, OD-PAI or N-CLUS, LED-based PAI, PATER, and 

PA endoscopy systems can generate promising techniques 

opening the door for more researches in this field. 
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 مراجعة –التصوير الصوتي الضوئي في الطب 

 

 

Arabic Abstract:  

( في الطب بمقدمة PAIبدأت هذه الورقة البحثية الخاصة بالتصوير الصوتي الضوئي )

للتصوير الصوتي الضوئي والتقنيات الصوتية الضوئية الشهيرة بما في ذلك التصوير 

الصوتي الضوئي متعدد الأطياف ( ، والتصوير المقطعي PATالمقطعي الصوتي الضوئي )

(MSOT( والفحص المجهري الصوتي الضوئي ، )PAM والتنظير النقطي الصوتي ، )

(. تم أيضًا عرض PAE( ، و تصوير المرونة الصوتي الضوئي )RSOMالضوئي )

( ، والتي تتمتع LUSمراجعة متواضعة حول الموجات فوق الصوتية بالليزر بدون تلامس )

رة المستقلة عن المشغل.كما يتم عرض مراجعة موجزة لمعظم التطبيقات بميزة جودة الصو

الطبية للتصوير الصوتي الضوئي  بما في ذلك فحص السرطان )للثدي والغدة الدرقية 

والمبيض والبروستاتا والرئة والجلد( ، وقياسات أكسجة الأنسجة ، وتصوير الدماغ ، 

الموجات فوق الصوتية المركزة ( ، وتوجيه IGSوالجراحة الموجهة بالتصوير )

(HIFU بعد ذلك تم تقديم بعض اعتبارات السلامة المتعلقة باستخدام الموجات فوق .)

الصوتية الطبية والليزر. و في الختام ، من المتوقع المزيد من التطوير العلمي والسريري 

ستخدم تقنيات ، ومن المتوقع أيضًا أن تخدم زيادة الأجهزة المعتمدة التي ت PAIفي مجال 

PAI .في التطبيقات الطبية قطاعات واسعة من الطب ، سواء كانت تشخيصية أو علاجية 
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