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The Influence of Flight Height and Overlap
on UAV Imagery Over Featureless Surfaces
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Abstract— The improvement of Unmanned Aerial System (UAS) and
photogrammetric computer vision (CV) algorithms have presented an aerial
imaging technique for high accuracy and low-cost alternatives for mapping and
topographic applications. Structure from motion (SFM) is an automation
photogrammetric CV algorithm used for generating 3D colored point clouds and
3D models from overlapping images. One of the biggest problems preventing the
automation extraction and matching key points in the aligning aerial images is
the featureless surface of the covered area. This paper assessed the effect of flight
altitude and overlap ratio on 3D point clouds' geometric accuracy and models
produced by Unmanned Aerial Vehicle (UAV) images captured over non-
textured sandy areas. Four different flight altitudes (140 m, 160 m, 180 m, and
200m) related to spatial resolution (3.41, 3.9, 4.39, 4.68 cm/pix GSD), respectively
and three different overlap levels (60 %, 70 %, and 80 %) were assessed using
RGB images captured by UX5 UAV over a non-textured sandy area in Jahra,
Kuwait. The results showed that altitude increment might reduce flight time,
processing time, and cost with keeping the acceptable and suitable geometric
accuracy. The different UAV altitudes 140, 160, 180, and 200 m AGL gave
geometric accuracy 0.043, 0.049, 0.052, and 0.057 m for IG process and 0.036,
0.039, 0.048, and 0.053 m for DG process, respectively. The increasing of image
overlap ratio from 60 % to 80 % leads to an increase in photogrammetric point
clouds’ geometric accuracy from 0.685m to 0.049 m for 1G process. Generally,
favorable results are obtained for the four different altitudes and overlap ratios
of 80 % at least.

I. INTRODUCTION

NLIKE  conventional  topographic  survey
techniques and satellite imagery, images captured
by UAVs have advantages of low platform cost,
flexibility, rapid, high resolution, precise positioning, and no
need for permissions in most countries. Based on these

Received: (01 February, 2022) - Revised: (09 March, 2022) - Accepted:
(15 March, 2022)

*Corresponding author: Ahmed Elhadary, Assistant lecturer, Department
of Civil Engineering, Benha Faculty of Engineering, Benha University, Egypt
(e-mail: ahmed.elhadari@bhit.bu.edu.eg), (phone: 01097855964)

Mostafa Rabah, Professor of Surveying and Geodesy, Department of Civil
Engineering, Benha Faculty of Engineering, Benha University, Egypt (e-mail:
mrabah@bhit.bu.edu.eg).

(Ser. NO. BFEMU-2202-1225)

advantages, photogrammetry based on the UAV platform has
become a popular technique in mapping topographic
applications. Capturing imagery by a camera installed in UAV
has importance in cartographic (Crommelinck et al., 2017),
remote sensing (Aasen et al., 2018), agriculture (Borgogno
Mondino and Gajetti, 2017), environmental (Manfreda et al.,
2018), and metrology (Daakir et al., 2017) applications.
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Using UAVs as a photogrammetric platform have the ability
to overfly and capture wide accessible or inaccessible, or
dangerous areas within a short time with high resolution due to
the low altitude of flying. For the geomatics applications, a geo-
referencing of the captured images is required to determine the
points' 3D location in a certain reference system. There are two
methods of determining the exterior orientation (EO)
parameters for each image in aerial imaging. The first way is
integrating the measurements from the differential global
navigational satellite system (DGNSS) and the inertial
measurement system. This technique is called direct geo-
referencing (DG). The second way is the indirect geo-
referencing (IG), which uses the good distribution of GCPs
(Ground Control Points) to compute the EO parameters (Rabah,
etal., 2018).

In addition to the processing parameters, UAV
Photogrammetry output products' accuracy is affected by the
field configuration like flight height which determines the pixel
size of the images and defines the spatial quality, overlap, and
side lap and distribution of GCPs (Mesas-Carrascosa et. al.,
2016). There are some problems that affect the automatic
matching and the efficiency of image processing. One of the
biggest problems is the featureless surface, which prevents and
affects the SIFT process (Taha et al., 2022). To overcome this
problem, flight field configuration parameters must be taken
into consideration before flight data acquisition.

The UAV altitude AGL (Above Ground Level) and ratio of
image overlap affect the accuracy and efficiency of aligning and
automatic matching step in the Scale-Invariant Feature
Transform (SIFT) process. The image overlap offers enough
corresponding points in sequence images to match and align
them. The overlap ratio should be enough, or the photos can't
be aligned. The effect of overlap is divided into two portions:
the forward and the side overlap. The number of photos per
second manages the forward overlap, and side overlap is
managed in the flight planning (Falkner and Morgan, 2002).

d *
Oforward = (1 - 7](0:;‘;?;/ f) * 100

dside * f

ST )*100

Osige = (1 -
Where:
O forwara: The forward overlap %, O sige: The side overlap %.
d forward: The distance between two sequences images centers
(m).
d sice: The distance between two successive flight lines (m).
f: The camera focal length (mm), W: The sensor width (mm).
H: The height of the camera above the ground (m).

The ground sampling distance (GSD) or spatial resolution is
calculated by: GSD = %H, Where p is the pixel size on the
sensor and GSD is the distance between two sequences pixels
centers measured on the ground.

Domingo et al. (2019) assessed the influence of image
resolution, camera type, and side overlap on models constructed
from UAV data. The results showed that the accuracy increased
when using finer image resolution and RGB camera. Seifert
(2019) studied the effects of drone flight parameters on image
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reconstruction and successful 3D point extraction. Low flight
altitudes yielded the highest reconstruction details and best
precisions. Celik et al. (2020) investigated the effect of flight
height on DSM and orthophoto. Compared to a flight height of
50 meters, a more detailed and high-resolution model was
created with 30 meters. As a result of this comparison, it was
determined that the flight height should be determined
according to the terrain structure, accuracy, precision, and time-
cost balance expected from the job. From previous researches,
although the featureless surface of the covered area surface is
one of the biggest problems and obstacles of image processing,
no articles discuss and study this parameter.

This paper aims to study the effect of flight altitude AGL
and image overlap ratio on point extraction, matching, image
reconstruction, and the geometric accuracy of 3D point clouds
and models generated by UAV images over featureless flat
areas. For understanding the influence of UAV variables on the
precision of reconstruction detail and image matching
parameters during IG and DG processing, this study explored
six different flights:

1) Four different flight height AGL (140m, 160 m, 180 m, and
200 m) with image spatial resolution (3.41, 3.9, 4.39, and
4.68 cm/pix GSD), respectively.

2) Three levels of the image forward and lateral overlap (60 %,
70 %, and 80 %) using 160 m flight altitude.

The other purpose is forming mathematical formulas to
predict the UAV point cloud's geometrical accuracy by
changing the GSD cm/pix and image overlap ratio.

Il. RESEARCH METHODOLOGY:

A. Area of Study:

The six different altitudes AGL and overlap ratio missions
were performed on the part of the desert located in Jahra,
Kuwait (centered at latitude = 290 13'4.54" N, longitude = 470
39'45.14" E), figure 1 shows the test area on Google maps.

Fig. 1: The test area on Google maps.

B. Photogrammetric Data Acquisition:

Fig. 2: The used UX5 UAV and SONY camera.
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The six Photogrammetric data acquisition has been
performed of a different four height AGL, and three different
overlap ratios with image format 6000 x 4000 pixels using 16
mm focal length SONY ILCE-5100 camera equipped a fixed-
wing UAV UX5 vehicle with 1 m Wing length. Figure 2 shows
the used UAV and camera, and Figure 3 shows a sample of the
acquired images. The ground points are needed for geo-
referencing the photogrammetric output products. 13 ground
targets were set up, consisting of black-white square plates
determined by static GNSS; figure 4 shows the identification of
the ground points. Five points used as Ground control points
(GCPs) were chosen in each corner and center, and the
remaining eight points were used as independent checkpoints
(ICPs); figure 5 shows the locations of the GCPS and ICPs.

Fig. 3: Sample of the acquired UAV images

Fig. 4: The Identification of GCPs in images.

Six flights were planned to test the influence of the altitude
AGL and image overlap ratio in the accuracy of processing
UAYV images covering featureless flat areas, as presented in
figure 6. The six data acquisition is processed by the two
techniques IG and DG by five GCPs determined by static GNSS
and EO parameter determined by RTK-GNSS and eight ICPs
used as checkpoints. All the flight missions were performed
under the same parameters and wind conditions; thus, the
accuracy of generated products is only dependent on flight
altitude or overlap ratio.
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Fig. 5: The locations of 5 GCPs (Green mark) and 8 ICPs (Red mark).

C. Photogrammetric Data Processing:

After the photogrammetric missions are performed, the
obtained UAV images are processed through Agisoft
Metashape professional 1.6.0 software. The processing
provides 3D colored point clouds, and 3D photogrammetric
models of the study area. The process is performed in two main
steps. Firstly, aligning and matching the images. Secondly, geo-
referencing the images, as shown in figure 7, (Agisoft, 2019).

-
Q UAV heights .
<
B 120, 140, 160, and 180 UAY reight
g m AGL
: i
\ 4
g8 80 % forward and 60 %, 70 %, and
g side Overlap 80 %
-g,_ _______ A__—_ —____________A ______
2
eg IG DG IG DG
T 2
2
&

Fig. 6: Scheme of UAV field configuration and processing.
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Fig. 7: Flowchart of field data collection and image processing stages.

I11. RESULTS AND DISCUSSIONS

Six different missions, four different altitude AGL, and
three different images overlap ratios as shown in figure 6, were
tested and analyzed to show the effect of field configuration on
the spatial accuracy of the generated point clouds by UAV
featureless images. 13 ground points were measured by static
GNSS, and RTK-GNSS determined the linear EO parameters
for each image. For IG, five ground points were distributed
regularly overall area used as GCPs and the remaining eight
points used as ICPs to check the generated photogrammetric
point clouds' geometric accuracy. For DG, the known linear EO
parameters are used for geo-referencing without needing GCPs,
and the same eight ICPs are used. Figure 5 shows the GCPs and
ICPs locations. For checking geometric accuracy, Root Mean
Square Error (RMSE) is determined for ICPs as a difference
between the static GNSS and UAYV data, (FGDC, 1998).

RMSEy = ’Z(XGNSSn_XUAV)Z

RMSEy = Y(YgNss—Yuav)?

!

RMSEyy = J RMSEy? + RMSEy?

RMSE, = ’Z(ZGNSSH_ZUAV)Z

RMSEyyz = \/RMSEXZ + RMSEy? + RMSE,*

A. The Effect of UAV Altitude AGL on UAV Featureless
Images Processing:

To assess the influence of UAV flight configuration over a
featureless surface for topographic applications. The impact of
the UAV flight altitude AGL on both IG and DG processing
was presented by studying four different heights (140, 160, 180,
and 200 m) with a spatial resolution (3.41, 3.9, 4.39, and 4.68
cm/pix GSD) with 80 % for both forward and lateral overlap.
Figure 8 shows the scheme of UAV flight heights and
processing. The flight plan consisted of strips working east-
west, and the flight planning parameters of the four different
altitudes AGL are shown in table 1.

TABLE 1

THE FLIGHT PLANNING PARAMETERS OF THE FOUR
DIFFERENT ALTITUDES AGL.

atiace | Mont | proeper | o | Flancome
AGL (m) lines line photos

140 49 34 1666 345

160 43 30 1290 27

180 38 27 1026 215

200 35 25 875 18.5
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Fig. 8: Scheme of UAV flight heights and processing.

1. The influence of flight altitude on IG processing of
featureless UAV images:

The four different altitude missions have been processed by
IG processing using five GCPs and eight ICPs, as shown in
figure 5. The geometric accuracy of easting, northing, and
elevation is determined by calculating the RMSE of the eight
ICPs from the selected flying height, shown in table 2 and
figure 9.

TABLE 2
THE RMSE OF THE FOUR DIFFERENT ALTITUDE AGL
OF IG PROCESS.

Flight GSD Easting | Northing | Elevation | Total
height (cm/pix) RMSE RMSE RMSE RMSE
(m) (m) (m) (m) (m)
140 3.41 0.023 0.015 0.033 0.043
160 3.9 0.012 0.028 0.038 0.049
180 4.39 0.017 0.03 0.039 0.052
200 4.68 0.022 0.032 0.042 0.057
0.06
0.05
€ 0.04
w 0.03
E 0.02
0.01
0
Easting RMSE  Northing Elevation  Total RMSE
(m) RMSE (m) RMSE (m) (m)
Flight heights (m) O== |40 @= |60

Fig. 9: The correlation between the attitude AGL and RMSE of the IG process.

Table 1 summarizes the results of the geometric accuracy
related to flight heights where 1G process was used. It is clear
from figure 9 that the spatial accuracy is increased in northing
and elevation directions whenever flying altitude is decreased.
The highest geometric accuracy is obtained by the lowest flight
altitude of 140 m AGL. Increasing the flight height leads to a
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decrease in the achieved geometric accuracy. The highest
easting accuracy was gained by 160 m height, and both northing
and elevation highest geometric accuracy were produced at 140
m flight height AGL. The four different altitudes gave a close
total spatial accuracy within 0.043 to 0.057 m.

Table 3 shows the common matching parameters for the four
different altitudes: spare point density, correct & wrong
matching point, average tie point multiplicity, and matching
time.

TABLE 3

THE MATCHING PARAMETERS OF THE FOUR DIFFERENT
ALTITUDE AGL OF IG PROCESS.

Flight height (m) 140 m 160 m 180 m 200 m
Total points 227562 141767 127254 115342
Correct matching 146453 | 87896 78357 62435
points
%Correct matching | ¢ 3645 | 62 05 6157% | 54.13%
points
Wrong matching
points 81109 53871 48897 52907
Wrong matching | a5 6105 | 3805 3843% | 45.87%
points
Average tie point | ¢ ) 3.079 2.77 2.25
multiplicity ) ) ) '

L ldayand | 1dayand | 1dayand | 20 hoursand
Matching time 22 hours 14 hours 3 hours 35 minutes

Table 3 shows that the 140 m flight height AGL gave the
highest-level spare point density, correct matching points,
average tie point multiplicity, matching time, and lowest wrong
matching points. Increasing the flight altitude leads to reduced
spare point density, correct matching points, matching time, and
average tie point multiplicity. At the altitude of 140 m, the
largest images number (1666) at a ground sampling distance
(resolution) of 3.41 cm/pixel were acquired. The generated
point cloud with approximately 227562 3D points was
extracted following the 1G method. Generally, the increment of
flight height can reduce flight and processing times and cost
while keeping the acceptable geometric accuracy of the
generated point clouds.

2. The effect of flight altitude on DG processing of featureless
UAV images:

The four different altitudes AGL missions were processed
by DG using the known linear EO parameters determined by
RTK-GNSS without needing any GCPs. The eight ICPs were
used for assessing the geometric accuracy of the generated point
cloud. The RMSE of the eight ICPs was calculated for the three
directions shown in table 4 and figure 10.

TABLE 4
THE RMSE OF THE FOUR DIFFERENT ALTITUDE
AGL OF DG PROCESS.

Flight GSD Easting | Northing | Elevation | Total
heighq[ m) | (cmipix) RMSE RMSE RMSE RMSE
(m) (m) (m) (m)
140 341 0.012 0.018 0.029 0.036
160 3.9 0.018 0.013 0.032 0.039
180 4.39 0.016 0.015 0.043 0.048
200 4.68 0.015 0.020 0.047 0.053
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Fig. 10: The correlation between the attitude AGL and RMSE
of DG process.

Based on table 4 and figure 10, As flight height AGL is
increased, RMSE of the point cloud is increased. From 140 m
AGL, flight gives a geometric accuracy of 0.036 m. from 160
m AGL, the RMSE was 0.039 m. from 180 m AGL, the RMSE
was 0.048 m. RMSE was 0.053 m at altitude of 200 m AGL.
This result shows that when the altitude AGL increases, image
GSD also increases, affecting incrementing the RMSE.

Table 5 shows the correlation between the flight height
AGL and the matching parameters represented in the point
density, correct & wrong matching points, average tie point
multiplicity, and matching time.

TABLE 5
THE MATCHING PARAMETERS OF THE FOUR DIFFERENT
ALTITUDE AGL OF DG PROCESS

Flight height (m) [ 140 m 160 m 180 m 200 m
Total points 220122 111314 97453 78623
Correctmatching | 194609 | 96776 84519 61325
points
0,
%Correct 88.42% | 86.94% | 86.73% | 78%
matching points
Wrong matching | o593 | 14538 12934 17298
points
%Wrong o o 0 o
matching points 11.58 % 13.06 % 13.27 % 22 %
Average tie
point multiplicity 6.385 3.297 2.94 2.63
9 hours

L 7 hoursand || 6 hoursand | 5hoursand

Matching time ar;:]iiuteil 36 minutes | 32 minutes | 55 minutes

As it is illustrated in table 5, 140 m altitude AGL gives the
best matching parameters except matching time. The spare
point cloud, correct matching point, and average tie point
multiplicity are decreased by increasing altitude AGL. The
highest spare point was 220122 points at 140 m with the highest
correct matching points 194629 points are reduced to 78623
spare points with 61325 correct matching points at 200 m
altitude AGL as the lowest density. Average tie point
multiplicity reduced from 6.385 at 140 m AGL as the highest
value to 2.63 at 200 m AGL as the lowest value. And the
matching time was reduced from 9 hours and 11 minutes at 140
m AGL to 5 hours and 55 minutes at 200 m AGL.
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B. The Effect of Overlap Ratio on UAV Images Over Non-
Textured Surface:

For assessing the influence of the forward and lateral
overlap ratio on processing and generating point clouds of UAV
imagery over a featureless surface, three different levels of
overlap ratios (60%, 70%, and 80%) flights are processed by
the two IG and DG techniques at the same altitude 160 m AGL.
The scheme of flights is shown in figure 11. The flight plan
consisted of strips working east-west, and the flight planning
parameters of the three different overlap ratios are shown in
table 6.

UAV height
160 m

Altitude
AGL

Geo-
referencing
type

Fig. 11: Scheme of UAV overlap missions and processing.

TABLE 6
THE FLIGHT PLANNING PARAMETERS OF THE FOUR
DIFFERENT OVERLAP RATIOS.

Overlap No. of No. of photos | No. of total Flight time
ratio % | flightlines per line photos (minutes)

80 43 30 1290 27

70 29 22 638 14

60 22 17 374 8.5

1. Study the effect of overlap ratio on IG processing of
featureless UAV images:

The three different overlap ratio flights have been processed
by 1G using five GCPs and the remaining eight ground points
used as ICPs. Figure 5 shows the locations of the GCPs and
ICPs. The spatial accuracy assessment is determined by
calculating the RMSE of the eight ICPs for easting, northing,
and elevation, and the results are shown in table 7 and figure
12.

TABLE 7
THE RMSE OF THE THREE DIFFERENT OVERLAP RATIO OF IG
PROCESS.
forward Flight GSD Easting | Northing | Elevation Total
and side height (cm/pix) RMSE RMSE RMSE RMSE
overlap (m) P (m) (m) (m) (m)
60% 160 39 0.11 0.225 0.638 0.685
70% 160 39 0.02 0.063 0.105 0.124
80% 160 39 0.012 0.028 0.038 0.049
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Fig. 12: The correlation between the overlap ratio and RMSE
of 1G process.

As shown in table 7 and figure 12, the highest overlap ratio
recorded the highest spatial accuracy. Decreasing the overlap
ratio leads to a decrease in the spatial accuracy of the generated
point clouds. 60% overlap recorded 0.685 m spatial accuracy.
70 % overlap gave 0.124 m spatial accuracy. The spatial
accuracy of 0.049 m was at 80% overlap.

Besides the spatial accuracy, the matching parameters for
the different overlap ratio flights are calculated by the I1G
process. Table 8 shows the matching parameters for the three
missions.

TABLE 8
THE MATCHING PARAMETERS OF THE THREE DIFFERENT
OVERLAP RATIOS OF IG PROCESS.

MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 47, ISSUE 2, APRIL 2022

three different overlap ratios flights (60%, 70%, and 80%) were
processed using the known linear EO parameters determined by
RTK-GNSS. The eight ICPs were used for assessing the
geometric accuracy of the generated point cloud. The RMSE of
the eight ICPs were calculated for easting, northing, elevation,
and total, shown in table 9 and figure 13.

TABLE 9
THE RMSE OF THE THREE DIFFERENT OVERLAP RATIOS
OF DG PROCESS.

fo?\?vtar} d Flight || GSD || Easting Northing Elevation Total
! height | (cm/ | RMSE RMSE RMSE RMSE
andside | iy | pix | (m) (m) (m) (m)
overlap p
60% 160 3.9 0.208 0.159 0.348 0.435
70% 160 3.9 0.032 0.026 0.09 0.099
80% 160 3.9 0.018 0.013 0.032 0.039
0.5
0.4
2 03
&
S 0.2
o
0.1 ’—A/.——‘
0
Easting RMSE  Northing Elevation Total RMSE
(m) RMSE (m) RMSE (m) (m)
over lap degrees = /000 == Y070

Both forward and o 0 o

side overlap 60% 70% 80%

Total points 57312 78140 141767

Correct matching | »g,3 42516 87896

points

%Correct matching 51.32 % 54.41 % 62 %

points ' '

Wrong matching

points 27899 35624 53871

%Wrong matching 0 0 0

points 48.68 % 45.59 % 38 %

Average tie point

multiplicity 2.03 2.19 3.079

Matchina time 12 hours and 18 hours and 1 day and 14
9 43 minutes 28 minutes hours

From table 8, one can find that 80 % overlap recorded the
best matching parameters except matching time. The highest
spare point was 141,767 points at 80 % overlap with the highest
correct matching points 87,896 points which are reduced to
57312 spare points with 29413 correct matching points at 60 %
as the lowest density. Average tie point multiplicity reduced
from 3.079 at 80 % overlap as the highest value to 2.03 at 60 %
as the lowest value. And the matching time was reduced from 1
day and 14 hours at 80 % overlap to 2 hours and 43 minutes at
60 % overlap.

2. The effect of overlap ratio on DG processing of UAV
images over the featureless surface:

For assessing the effect of overlap ratios on the DG process
and the spatial accuracy of photogrammetric point clouds, the

Fig. 13: the correlation between the overlap ratio and RMSE
of DG process.

Table 9 and figure 13 show that 80% overlap gave the
highest accuracy for the easting, northing, and elevation. From
80% overlap, the mission gave a spatial accuracy of 0.039 m.
from 70% overlap, flight gave a geometric accuracy of 0.099
m. the geometric accuracy was 0.435 m with 60% overlap.
Reduction overlaps to 70% might be given a suitable spatial
accuracy under 0.1 m. reduction the overlap under 70% gave an
inappropriate geometric accuracy in topographic applications.
The correlation between the overlap ratio and the matching
parameters: the spare point density, correct & wrong matching
points, average tie point multiplicity, and matching time was
calculated and shown in table 10.

TABLE 10
THE MATCHING PARAMETERS OF THE THREE DIFFERENT
OVERLAP RATIOS OF DG PROCESS.

Both forward and side 60% 70% 80%
overlap
Total points 46752 69015 111314
Correct matching points 35877 56220 96776
%Correct matching points 76.74 % 81.46 % 86.94 %
Wrong matching points 10875 12795 14538
%Wrong matching points 23.26 % 18.54 % 13.06 %
Average tie point 238 279 3.097
multiplicity ' ' '
Matching time 2hourand | 3hoursand | 7 hoursand
9 42 minutes 53 minutes 36 minutes




AHMED ELHADARY, MOSTAFA RABAH, ESSAM GHANIM, RASHA MOHIE AND AHMED TAHA

From table 10, the 80% overlap gave the highest spare point
density, highest correct matching points, highest average tie
point multiplicity, high matching time, and lowest wrong
matching points. At the overlap of 80 %, the largest images
number (1290) at a ground sampling distance (resolution) of 3.9
cm/pixel were acquired. The generated point cloud with
approximately 111314 3D points was extracted following the
DG method.

Generally, the increased image overlap ratio leads to an
increase in photogrammetric point clouds' geometric accuracy
and matching parameters. The favorable results are obtained for
overlap ratios at least 70 % or above in the DG process.

IV. CONCLUSION

This article presented a practical study to use UAV images
over featureless surface for topographic mapping. The paper
investigates the influence of different flight heights and levels
of overlap ratio on the geometric accuracy of the generated
topographic mapping products. The results show that the
different UAV altitudes 140, 160, 180, and 200 m AGL gave
geometric accuracy 0.043, 0.049, 0.052, and 0.057 m for IG
process and 0.036, 0.039, 0.048, and 0.053 m for DG process,
respectively. The higher ratio of overlap and low flight height
recorded the highest spare point clouds, correct matching
points, average tie point multiplicity, matching time, and lowest
wrong matching point for matching parameters.

Generally, low flight height (140 m) gave high precision
with 0.036 m RMSE and the highest reconstruction. The
altitude increment might reduce flight time, processing time,
and cost while keeping the acceptable geometric accuracy. The
increasing of image overlap ratio from 60 % to 80 % leads to
an increase in photogrammetric point clouds' geometric
accuracy from 0.685m to 0.049 m for IG process. The favorable
results are obtained for the four different altitudes and overlap
ratios at least 80 % or above.
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