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ORIGINAL STUDY

Probabilistic Assessment of Power Systems Resilience
Under Natural Disasters

Enas M. Hegazy, Abdelfattah A. Eladl*, Magdi M. El-Saadawi

Department of Electrical Engineering, Faculty of Engineering, Mansoura University, El-Mansoura, Egypt

Abstract

Extreme weather can have a substantial influence on a power system's operational resilience since they are high-
impact, low-probability (HILP) events. Therefore, power systems must be resilient to HILP incidents in addition to being
reliable against widely spread and credible threats. Despite the rarity of such events, the severity of their potential
impact necessitates the development of appropriate resilience assessment tools to capture their implications and enhance
the resilience of energy infrastructure systems. In this paper, a probabilistic strategy is proposed to assess and evaluate
the operational resilience of power distribution networks against the impacts of HILP events depending on value-at-risk
and conditionally value-at-risk quantitative risk-based assessments. With several scenarios built on sequentially Monte
Carlo simulations, the consequence of a windstorm on a distribution network can be assessed using a probability-based
resilience assessment methodology. The presented method is examined on an IEEE 37-bus system. Different case studies
based on detailed data are presented and analyzed to demonstrate the proposed method's usefulness.

Keywords: Conditional value at risk, Distribution system resilience high-impact, Low-probability events, Extreme

weather, Value at risk

1. Introduction

E xtreme weather events can cause major power
shortages or blackouts. Many power system
researches were developed to focus on high-impact,
low-probability (HILP) events like storms, severe
ice, and flooding. The ability of a power system to
reduce the risk of blackouts or extensive power
outages caused by HILP occurrences is referred to
as its resilience. Distribution networks are the parts
of the electrical power systems that are most
vulnerable to natural disasters. Distribution
networks account for around 90% of all hurricane-
related disruptions (Executive Office of the Presi-
dent of the United States, 2013). In a resilient power
system, the rate of unserved loads decreases as
HILP event intensity rises. According to the Elec-
tricity Generation Company of Malawi, Tropical
Storm Ana in Southern Malawi, produced cata-
strophic flooding in several districts of Malawi,

particularly in the Southern Region. That happen
owing to heavy rainfall and high winds on January
26, 2022 (Friederike et al.,, 2022). Damage to elec-
tricity transmission lines (132 kV and 66 kV), dis-
tribution infrastructure (poles, broken jumpers, and
conductors), and generating stations resulted in a
reduction in power generation. A 271 MW of gen-
eration capacity was lost from hydropower units at
Nkula, Tedzani, and Kapichira. Additionally, over
half of the country's entire capacity of 537 MW ac-
cording to the Electricity Generation Company of
Malawi was cut off.

Due to the obvious connection between power
system resilience and HILP occurrences, there are
many alternatives, imprecise, and confusing resil-
ience definitions in power system literature
(Arghandeh et al., 2016). There is not yet a globally
recognized definition, to the best of the authors’
information. The most often used definitions were
presented in (Arghandeh et al., 2016; Gholami et al.,
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2018; Stankovic, 2018; McGranaghan et al., 2013;
Khodaei, 2014; Parhizi et al., 2015). Although there is
no agreement in the literature on the resilience
components, there are three resilience components
described in (Obama, 2013; Fisher et al., 2010; Ji
et al., 2017): withstand, adaptation, and recovery.
Withstand means the ability to resist extreme
events. Adaptation is the ability to reduce the
impact during a disaster. The recovery is the capa-
bility to quickly restore system performance to the
predisaster state. To evaluate electricity outages
many researchers have modified current reliability
metrics, such as the system average interruption
duration index (SAIDI), the system average inter-
ruption frequency index (SAIFI), and the customer
average interruption duration index (CAIDI) (Brown
et al., 2012). Additionally, the expected energy not
supplied (EENS) is used to calculate the restoration
capability of a distribution system (Lopez et al.,
2016). However, these measures are created for
outages that fall under the N-1 or N-2 failure types
and do not include the significant failure brought on
by HILP occurrences (Liu, 2015). Furthermore,
extreme weather-related disruptions prioritize
serving vital loads (Coffey et al., 2015), so reliability
measurements cannot be applied to access resil-
ience. This is because the capacity for survival is
what separates resilience from reliability. The ca-
pacity for survival means the ability of a system to
continue providing services to consumers despite a
disruption (Coffey et al., 2015).

Multiple approaches have been suggested in
related literature to calculate the power system's
resiliency and robustness. In (Wang and Wanyg,
2015), a method for minimizing operational costs
while maximizing profits was presented. The out-
puts of distributed generators (DGs) were controlled
using a rolling-horizon optimization method. That is
based on forecasts during the fault clearance period.
But, in that study, the fault locations were pre-
determined and easy load pickup was presumed, so
HILP event effects were not properly modelled.
However, the work in (Khodaei, 2014) aimed to
minimize the microgrid (MG) load curtailment by
effectively scheduling available resources when the
main grid supply was disrupted for an extended
period. The transition of MG from normal to islan-
ded functioning was not modeled and fault occur-
rence and repair time was just assumed. So, the
paper does not precisely reflect the probabilistic
character of HILP occurrences.

Furthermore, the restoration approach in (Chen
et al., 2018) depended on a set of control operations
that integrated switches, DGs, and switchable loads.
That is for creating numerous isolated MGs in the

event of major network disruptions. Again, in that
paper, climatic occurrences were not modelled,
although the preexistent faults caused by weather
events were considered. The study in (Lei et al,
2018) utilized mobile generators as DGs for resilient
load restoration through MG formation. Although a
model with two stages was employed it could
preposition mobile generators in the best possible
locations and allocate them in real-time. However,
the road network damage was not taken into
consideration and the uncertainty of storm occur-
rences and their fluctuating conditions were
ignored. In (Lin and Bie, 2018), the hardening
strategy for a distribution system under malicious
attacks was determined using a tri-level defender-
attacker-defender (DAD) model. The system de-
fender made decisions on hardening on the initial
level. The attacker located the attack scenario that
might cause the most damage on the second level.
On the third level, the system operator imple-
mented resilient operational measures, using DG
islanding formation and topology reconfiguration.
However, that research took into account weighted
load shedding, algorithm processing took a long
time. Moreover, preexisting defects induced by
weather occurrences were assumed and weather
events themselves were not modelled.

To overcome the drawbacks of the aforemen-
tioned methods, this research introduces probabi-
listic measure indexes to estimate the electrical
power distribution networks' operational resilience
for HILP events. Using two risk-based metrics,
value-at-risk (VaRa) and conditional-value-at-risk
(CVaRa). They assess the resilience of the distribu-
tion network by determining the maximum loss of
energy and the conditional expectation of a loss of
energy, respectively. The presented metrics will give
a preview of the effects that a future HILP incident
might have. These metrics study the influence of an
occurrence on the delivery and operation of the
electricity system (in terms of MWh not served).
And they can evaluate the system's anticipated
performance during a severe event. They can also
calculate the impact on long-term assets. Conse-
quently, this method considers a resilience-
enhancing measure as it estimates the impact of
robust strategy on distribution system resilience.

The major contributions of this paper are as
follows:

(1) A fragility model of the distribution system in-
frastructures (lines, towers, and transformers) is
constructed to examine the influence of severe
weather conditions on the resilience of the dis-
tribution network and assess resistance to
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extreme windstorms. The effects of storms or
any other heavy calamities on electric networks
are estimated using component-level fragility
curves.

(2) The Monte-Carlo simulation is used to generate
damage scenarios and develop system-level
impact and calculate the load loss (MW) in each
weather event.

(3) Two risk-based indicators VaRa and CVaRe,
determine both the maximum loss of energy and
the conditional expectation of experiencing a
system loss (in MWh). These indicators evaluate
the anticipated decrease caused by the events
with the biggest impact. Specifically, the events
occur above a specified risk threshold, a.

(4) The impacts of robust techniques on improving
the resilience of the electrical distribution system
are computed and described, in order to reduce
the probable loss and improve the system's
resilience.

(5) The most important contribution of this paper is
to propose a novel method that can help plan-
ners to predict and appropriate system infra-
structure upgrades to reduce the impact of an
impending extreme occurrence on the system's
important loads.

The rest of this paper is organized as follows.
Section 2 discusses the definitions of the proposed
resilience metrics, explains system performance loss
and probabilistic events, and presents resilience
metrics based on risk. Section 3 presents the
component-level effect model, and analyzes fragility
modeling and resilience evaluation of the main
distribution components. In Section 4, the system-
level impact model is derived, the resilience curve
and system performance are represented visually,
and the impacts of the hardening planning model
and system performance losses are discussed. Sec-
tion 5 proposed a detailed simulation framework for
quantifying resilience. Section 6 presents and ana-
lyzes the results of applying the proposed method
on the IEEE 37-bus test system to clarify the idea of
resilience assessment. Finally, section 7 concludes
the whole paper.

2. Problem formulation

To assess the effects of HILP events on distribu-
tion system performance and to estimate the risks
posed by such occurrences on system resilience, a
framework based on Monte Carlo simulation
studies is provided. By simulating varying degrees
of damage to distribution networks and the effects
of hardening procedures, resilience is measured

based on the proposed metrics. This section begins
with defining the proposed resilience metrics. The
system performance loss under probabilistic event
is modeled and finally, the resilience metrics based
on risk are derived.

2.1. Definitions of proposed resilience metrics

The metrics value-at-risk (VaR) and conditional
value-at-risk (CVaR) have been extensively used in
risk-averse financial planning to manage the im-
pacts of low-probability high-risk financial in-
vestments. Similar factors come into play when
controlling the effects of HILP occurrences, making
these metrics useful for quantifying both possible
harms and potential benefits of alternative planning
efforts. The suggested resilience indicators were
inspired by the literature on risk management that
deals with measuring the risks associated with a
specific economic investment. In light of this, risk-
based resilience indicators are used to quantify how
resilient the power distribution networks are toward
the effects of extreme occurrences. The stated
method determines the effects of an incident on the
operation of the power system (in terms of MWh not
served). It demonstrates the probable effects of
forthcoming HILP events and assesses the system's
predicted performance during a severe occurrence
like a storm. In this context, the two measures VaRa
and CVaRa are frequently employed in the litera-
ture of risk management to assess the effects of the
events with low probability that may result in
extremely high system losses. A well-liked approach
for controlling risk is CVaR, which was first devel-
oped by Rockafellar and Uryasev (2000). Conditional
value at risk is derived from the value at risk for a
portfolio or investment.

The VaR cutoff point is the starting point for
calculating CVaR, which is calculated by averaging
the weighted ‘extreme’ losses that lie in the tail of
the distribution of potential returns. When opti-
mizing a portfolio, CVaR is utilized to manage risk
effectively. Utilizing CVaR as opposed to VaR alone
typically results in a more conservative approach to
risk exposure. Both metrics are best suited to
quantify operational resilience since they precisely
quantify the high losses resulting from low-proba-
bility situations (Bardou et al., 2009). The maximum
probable loss is measured by VaRa. And the esti-
mated shortfall caused by the highest impact events
that occur beyond a specified risk threshold o is
measured by CVaRa as shown in Fig. 1.

In the following subsections, some concepts that
are employed to evaluate the suggested resilience
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Fig. 1. VaRa and CVaRa for a probabilistic storm event assessment.

indicators for distribution systems subjected to
HILP occurrences will be established. The loss in
system performance induced by probabilistic inter-
ruption events is used to characterize system resil-
ience. To compute this, it is necessary to derive a
model of the event's impact on the performance loss
function of the system as well as the event proba-
bilistic model.

2.2. System loss and probabilistic event

An event is made up of two components; its chance
of happening, P(i), and its intensity, which is a
random variable, (i). The probability density function
(PDF) of wind speed inside a specific area is shown in
Fig. 2. The figure illustrates the characteristics of a
storm event for three different places (normal, high,
and extreme) wind profiles. In the figure, the x-axis
represents the severity of the event (wind speed), and
the y-axis represents the probability of the event. The
probability that distribution system components
(towers, lines, and transformers) may fail is influ-
enced by the event's severity, this ultimately affects
how well the system's performance loss. Modeling
the effects of a particular natural calamity event on
the performance of the distribution network is
frequently done using a system performance curve,
also referred to as a resilience curve (Panteli et al.,
2017a).

When a random event (i) has an influence on a
system, the performance loss, U(i), is represented as
a nonlinear function of the loss of load L(i). And the
total time takes to restore the system to its previous
level of performance, t (i), as specified in (1)
(MacKenzie and Zobel, 2016):

U(i) =f(L(i) #(7)) (1)

Normally, U(i) is determined by calculating the
area under the system performance curve, when
affected by a random event. It is noted that proactive
planning strategies such as distribution line hard-
ening can improve the system performance loss
(MacKenzie and Zobel, 2016). These impacts are
captured by accurately simulating the system per-
formance curve as described later.

2.3. Resilience metrics based on risk

Initially the performance loss function of the sys-
tem, U(i), is determined by randomizing the
selected events from the P(i), and PDF. The
measured loss, U(i), and the likelihood of observing
such loss, P(i), are combined to produce the PDF for
U(i) as explained in Fig. 1. When a random event, i,
has an impact on the system loss, U(i), the proba-
bility that it would not surpass a certain threshold ¢
is given by (2):

V(o= / P(i) d(i) @)
U(i)<s

where, ¢ (g) gives the cumulative distribution
function for network losses caused by a storm event
(i) with the probability P(i). The value at risk, VaRa,
in the range of (0, 1) for a particular probability level
o is given by (3).

VaRa=min{s eR : y(¢) > a} (3)

The CVaRa metric is the estimated system loss
(MWh) resulting from the top (1 — «)% of greatest
impact events. Equation (4) can be used to compute
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Fig. 2. Probabilistic component-level fragility curve.

the CVaRa metric which will be used to assess the
system's resilience. That is by estimating the per-
formance loss brought on by those HILP situations
with a high probability (i.e., the ending of the PDF
for U(i) given in Fig. 1) (Vugrin et al., 2017).

CVaRa=(1—a)"

U(i)>VaRa

U(i) P(i) d(i) (4)

It is important to note that, the whole set of
events with probabilities (a) and (1 —«) respectively,
includes events with losses greater than the stated
threshold and others with losses that fall short of the
target level.

3. Component-level effect model

High winds have the potential to shatter power
lines, transformer damage, and break towers,
resulting in widespread power outages. When a
weather event influences a system, resilience met-
rics are proposed before requesting the PDF for loss
in system performance [U(i). The PDF for the pro-
vided weather event for a specific region is used to
calculate the probability of a weather event, P(i). For
this, it is initially necessary to estimate the proba-
bilistic influence of a storm event (wind speed) on
distribution network components. Three steps can
be used to model the storm effect on the distribution
system components: determining the most impor-
tant components of the system, modeling their
fragility, and computing the probability of their
failure.

3.1. Fragility modeling and resilience evaluation of
distribution components

A system model is constructed to examine the
influence of severe weather conditions on the
resilience of the distribution network. This involves
fragility modeling of the distribution system in-
frastructures as well as assessing resistance to
extreme windstorms. The most important compo-
nents include individual towers, lines, and trans-
formers. Component-level fragility curves are used
to estimate the effects of storms or any other heavy
calamities on electric networks (Panteli et al., 2017b).
A fragility function maps the probability of distri-
bution system component failure regardless of the
wind speed (w) of the storm.

3.2. Tower fragility models

A tower fragility indicator predicts the probability
of structural component default based on applied
stress that reflects the probable severity of a disaster
(Kirsty and Bell, 2014; Dunn et al, 2015). The
Applied Technology Council's (ATC 58) principles,
which were created for the Federal Emergency
Management Agency to enhance the structural
performance of buildings to seismic hazards, have
been redistributed into the methodology. This
method is used here to determine the probability
that power system towers may fail as a function of
wind loading. In order to accurately measure towers'
failure probabilities as a function of wind loading, a
lognormal distribution is used to describe many



6 E.M. Hegazy et al. / Mansoura Engineering Journal 48 (2023) 1-16

structural engineering processes, like strength
properties in lab experiments. The lognormal
concept determines the probability of being in or
surpassing, a damaged state (ds) over a certain level
of risk as in (5) (Applied Technology Council, 2018).

ool ()

where S;4 represents the median value of the en-
gineering demand parameter (e.g., displacement or
stress) at which the asset reaches the failure state ds.
B4 means the standard deviation of the natural log
of the engineering demand parameter during which
the asset stretches the damage state ds, and @ is the
normal cumulative distribution function. The
fragility curve can be changed depending on the
event measurement settings (Panteli and Mancar-
ella, 2017), and the level of incident severity (Nazemi
et al., 2020). As an illustration, the failure probability
of towers can be represented as a function of wind
speed (fragility function) as in (6).

0 w<wyr

PT(w) = PT,hw (ZU) Werr <W <Weo,T (6)

1 w>w,r

where Pr(w) denotes tower failure probability as a
function of wind speed (w), hw identifies high
winds, w,, 1 represents the wind speed at which the
tower's failure probability increases. The w,,r de-
fines the wind speed at which the tower has a
negligible chance of survival (assumed to be 45 m/s
and 150 m/s, respectively) (Panteli et al., 2017b).
Fig. 3 shows the failure probability of towers with
wind speed.

3.3. Modeling line fragility

Topical weather conditions also have an impact on
distribution line resilience, which can lead to line
failure for a variety of causes, such as shackle
breakage. Because line failure is regarded as inde-
pendent of tower failure, a distinct climate fragility
curve is required. Component-level fragility curves
were utilized in related research to predict the
consequences of hurricanes or other high wind oc-
currences on electric system components (Lin and
Bie, 2018).

The Weibull distribution is usually assumed to
describe the fragility curves of overhead power lines
(Fang et al., 2019). After that, the line failure prob-
ability which reflects the risk of occurrence of

distributing network elements depending on the
size of the disaster (e.g., a wind speed) can be esti-
mated. The curve seen in Fig. 4, mathematically
demonstrates the correlation between the proba-
bility of failure of distributing system lines and wind
speed as given in (7) (Panteli et al., 2017b):

PLn W <Wer L

PL (w) = PL (w) Wer L <w< Weo,L (7)

1 w>wer

For which Pr(w) indicates the line failure
probability as a wind speed function, P;" is the point
of the rate of failure in good climate circumstances,
which is assumed to be 1 x 1072 (Panteli and
Mancarella, 2017) in this case. Meanwhile w,, 1, is the
wind speed where the line's probability of failure
increases, and w1 is the wind speed at which the
line has very little chance of surviving. The values of
we 1 and we, are considered equal to 25 and 60 m/s,
respectively (Panteli et al., 2017b).

3.4. Modeling transformer fragility

When it comes to attacks or natural disasters, the
transformers are essential components. The results
are alarming; 70% of large transformers and trans-
mission cables in the network are older than 25
years (Friedman et al., 2012). They are extremely
expensive and labor-intensive to replace, with an
anticipated lifespan of 40 years. Age increases the
probability of failure during regular operations and
can increase weather-related outages. For example,
Hurricane Ida, in 2021, destroyed over 5900 trans-
formers in the USA (Kasakove, 2021). As a result, the
transformer life data will be modelled using the 2-
parameter Weibull distribution in this study. The 2-
parameter Weibull distribution is the most often
used statistical model for lifecycle data analysis of
high-voltage power equipment (Melchor-Hernan-
dez et al, 2015). Furthermore, a two-parameter
Weibull is chosen for its flexibility. This is related to
the form parameter of the 2-parameter Weibull
resembling the characteristics of other distributions
such as the exponential and normal distributions. It
is also adaptable in terms of displaying the link
between failure rate and failure type. The PDF of the
2-parameter Weibull distribution is given in (8)
(Corporation, 2015; Ridwan et al., 2014).

E(t) =§ (%) = (4) (8)
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Fig. 3. Tower failure probability.

where B is the shape parameter, and n is the scale
parameter. According to actual wind speed data
gathered from the northern portion of China (China
meteorological data system, 2020), the scale
parameter and the shape parameter values are
taken as 14 and 2, respectively. The probability
density function in life data analysis depicts the
failure distribution or frequency of failure as in (9).
Fig. 5 displays the relationship between wind speed
and the probability that the distribution system
transformer may malfunction.

0 w<wuy

Ptr(w) =4 Py (w) Wertr <W <Weo tr (9)

1 w> Wep

For which P,(w) indicates the probability of
transformer failure as a function of wind speed. The
We iy 1S the wind speed where the transformer's
probability of failing increases while we,y is the
wind speed at which the line has very little chance
of surviving. The wey and we are considered
equal to 50 and 150 m/s, respectively.

3.5. Damage scenarios for components

The occurrence probability of failure of distribu-
tion infrastructures (towers, lines, and trans-
formers), Piyy(w), is wused to describe the
operational states of specific distribution network
components. Each component, ¢, is assigned and
uniformly distributed random number, 1, ~ U (0,1)
(Harrison, 2010), these random numbers have been

contrasted with the event-dependent failure proba-
bility Piy(w) over the given wind speed, w.
Consequently, FL°(w) determine the component's
operational status as in (10).

0 Piotar(w) <7

10
1 Ptotal(w) > Ty ( )

FL (w) = {
where FL¢(w) is the ¢ component failure function,
and FL°(w) = 0 indicates no failure and vice-versa.
All components of the distribution networks are
collected in their wind-affected operational states.
System-level effects and, subsequently, the system
loss function, as described in the next section, are
determined using the component-level damage.

4. System-level impact model

This section describes the methodology used to
simulate how a weather condition may affect the
distribution network. Creating a system resilience
curve, measuring system performance losses, and
modeling proactive planning's effects such as
hardening will be discussed.

4.1. Resilience curve and system performance

A basic resilience curve illustrating the many
stages in which the power distribution network
stays following a catastrophic occurrence is shown
in Fig. 6 (Dunn et al., 2015). Events in progress, post-
event degraded states, restorative states, and re-
covery are the phases of that curve and can be
defined as follows.
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Fig. 4. Line failure probability for a severe event.

(1) Phase I (Event progress): This phase represents
the duration of the event (storm), i.e., tE [t,, t,].

(2) Phase II (Post-event degraded state): This phase
starts after the event has concluded and ends
before any restoration action is done. It involves
damage assessment during a period t € [t,,t].

(3) Phase III (Restoring stage): It represents the
restoration automation period and ends before
any infrastructure recovery i.e., tE[t,, ;).

(4) Phase IV (Infrastructure recovery stage): In this
Infrastructure recovery stage, the system tries to
go back to its pre-disaster status and t € [t;; — t,].

The simulation methodology for metric calcula-
tion is concentrated on the operational resilience
metric that is defined by the system performance

thought ¢, — ;, as depicted in Phases I-II and IIL
While the infrastructure restoration (phase IV) will
not be included in this framework.

4.2. System performance losses

The not served energy (MWh) in the aftermath of
a storm was measured as system performance loss,
U(i). This is a multi-dimensional concept requiring
power losses L(i) along with a transitioning number
of hours t(i) required to restore the system to a
respectable level. As a result, the system's response
during Phases I to III of the resilience curve has a
significant impact on operational resilience. The first
effect is dependent on the characteristics of the ca-
tastrophe. Whenever the network is damaged, for

Transformer Fragility Curve
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o
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Fig. 5. Transformer failure probability.
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Fig. 6. A basic resilience curve for an incident.

example, by an earthquake its resilience plummets
drastically where the duration of the incident (t €[t,,
tpe]). A wind-related disaster, on the other hand,
may take much time to damage the system since it
travels widely. In the event progress state, service to
consumers is paused, and the loss function grows. If
the location and timing of a major catastrophe could
be correctly predicted, preventive measures can be
done before the event to lower L(i). Additionally,
reduced system performance loss and/or the slope
of degradation resilience can be achieved with
enhanced redundancy (as Phase I of Fig. 6).

Let P be a system's unavailability (failure proba-
bility) of all system infrastructures and FL°(w) be a
zero-one indication factor of component status. The
chance of component c participating in an unsafe
operation is stated as follows in (11) for each dam-
age state (i) (Porter et al., 2007).

P:% ﬁ;nf(w) (11)

At which N represents the total of system states
tests are performed, then we can calculate the ex-
pected load loss, L(i) due to extreme events using
(12). The distribution system simulator (OpenDSS)
is used to obtain the initial load loss (LLps,) of the
distribution system.

L(i) = P*LLptiar (12)

The area under the resilience curve from ¢, to
ti, when affected by an event i, provides the system
performance loss, U(i) as shown in Fig. 6. The sys-
tem performance loss for the base scenario without

any hardening actions would be calculated using
(13).

ubusE(i) :% [(ti - tpe) + (tir - tE)] Lb (13)

The Robust scenario's loss of system perfor-
mance with hardening lines would be calculated
using (14).

U opust (1) :% [(tir - tpe) + (tir - te)] L, (14)

where L, is the average load loss in the base case in
(kW), and L, is the average load loss in the robust
case in (kW). The fundamental goal of the hard-
ening solutions is to increase infrastructure resil-
ience, which lowers the initial system loss as the
storm begins and develops.

4.3. Impacts of hardening planning model

The distribution system resilience can be
improved by implementing several precautionary
planning strategies. From a practical perspective, a
decision-maker can increase network resilience by
inserting resources to reduce average impact L(i)
and shorten the time needed for damage evaluation
(tr — tp). Additionally, using enhanced recovery
strategies to reduce the effects during the restorative
state (t,—t,). One of the best ways to safeguard the
system from powerful windstorms is to harden the
distribution lines, despite the cost. The fundamental
goal of the hardening approaches is to increase
infrastructure resilience, which lowers L(i), the
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initial system loss, as the incident starts and pro-
gresses. Many approaches are used to make the
network more robust like (i) using underground
lines, (ii) elevating substations, relocating compo-
nents to areas with lower flooding risks, (iii)
strengthening the components’ toughness, and (iv)
utilizing redundant transmission tracks and rerout-
ing it to the locations with the lowest vulnerability
(Dalton and Mote, 2013; Networks Association, 2011;
Overbye et al., 2007; Johnston, 2012).

These hardening actions will affect the distribu-
tion system components’ fragility curve. Compo-
nents are made more resistant to the extreme wind
profile by lowering the wind-induced damage
probability. With this strengthening planning strat-
egy, as seen by the blue curve in Fig. 6, the loss will
be decreased, and L, becomes L, as the state of the
event progresses. This robust planning model will
be in the pre-event phase, and it is considered a

long-term enhancement plan.

N=1000, ~U (0, 1)

Weather data, Distribution system model,

Gener ate fragility curve for each
distribution infrastructures

v

Pr(w), P(W), and P(W)

Obtain component failure probability

5. A detailed simulation framework for
quantifying resilience

The purpose of this paper is to assess a distribu-
tion system's resilience to the future, which is
exceedingly unusual extreme occurrences. In this
section, the authors go into different perspectives
about the methodology for calculating the resilience
metric by assessing the impact on the probabilistic
system. The methodology produces the resilience
metrics (VaRa and CVaRe) based on inputs of
meteorological data and a thorough system model.
Moreover, the system loss function is produced in
the suggested method using the component-level
fragility curves. The probabilistic effects of a climate
event on the power network are assessed using a
simulation of the Monte Carlo method, which is
frequently used in large-scale network reliability
calculations (Li and Billinton, 2013; Liang and Goel,
1997). This is done because the severity of the

Calculate

FL (W), System unavailability, as in (5),(6),
and the expected load loss L(i) as in (7).

If enough
trails

Step 2: Monte-carlo
simulation

Step 3: Probabilistic

loss

Fig. 7. A flowchart for computing resilience metrics.
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weather and how it affects equipment are not
deterministic. The Monte Carlo simulations, despite
being difficult to solve, are beneficial for the study
and design of complex systems, as shown in related
important research in this field (Kaygusuz et al,
2014; Paul and Padhy, 2019).

The Monte Carlo method makes it possible to
simulate such uncommon occurrences while taking
into account the lower chance of doing that.
Therefore, it results in a realistic assessment of the
hazards related to such HILP events. The proced-
ures for computing resilience metrics have three
main steps: fragility modelling, Monte-Carlo simu-
lation, and probabilistic loss as defined in a flow-
chart in Fig. 7. Also Fig. 8 illustrates the procedure
for both base and robust scenarios. The climatic data
and a thorough system model are taken as inputs
and provide resilience measurements (VaRoa and
CVaR a).

6. Component fragility modelling

For a certain weather occurrence, the fragility
curve is constructed for each distribution compo-
nent (towers, lines, and transformers), and the PDF
of the specified region is taken as explained in Fig. 2
(for the case of wind-related events). After that, the
failure probability of each component as seen in
Figs. 3—5 and the total failure probabilities of all
distribution system infrastructures are obtained. In
the case of a hardening scenario by strengthening
the distribution overhead lines, the fragility curve
will be moved towards the right, helping to make
the components more robust to stronger climate
events (as clarified in Fig. 8). As a result, the failure
probability of the related component is altered
when hardening is possible.

6.1. Monte-Carlo simulation

For a specific wind speed, damage scenarios are
created using Monte Carlo simulations using the
component-level failure probability of all distribu-
tion network infrastructures, P, (w). Additionally,
the operational condition of the specific component,
FL¢(w), is obtained at each trial. Similar steps are
taken to determine the operating states of each
damage scenario for a certain trial of Monte Carlo.
The system loss function is then obtained using the
expected load loss L(i). Utilizing the distribution
system simulator (OpenDSS) software, the initial
load loss(LLyyi,;) is obtained. For different wind
speeds, the process is repeated. OpenDSS can
analyze a complex electric power distribution
network with new load models like electric vehicles,

photovoltaic generation, rechargeable battery stor-
age systems, DG resources, and so on.

6.2. Expected loss

Once enough Monte Carlo simulations have been
run and for each wind speed sample, the average
performance loss expressed in MWh is determined.
Then the PDF for loss function is generated as given
in Fig. 1 at the finish of the Monte Carlo calculations
for all selected wind speeds of the major storm. By
mapping the average loss onto the PDF for the
particular climate event, a probabilistic representa-
tion of the system performance loss brought on by
that event is created (wind speed).

Utilizing (3) and (4), the PDF indicating the
probabilistic loss function, U(i), is utilized to calcu-
late the VaRa and CVaRa metrics, which can pre-
cisely describe and quantify the consequences of
HILP occurrences. For a particular level of confi-
dence o, the maximum loss in resilience anticipated
over a certain period is calculated by VaRo. Mean-
while, CvaRa estimates the contingent anticipation
of seeing a system loss (in MWh) as a result of
(1 —a )% of greatest impact failures.

7. Assessments and results

7.1. IEEE 37-bus test system

In this part, an IEEE-37 test system, shown in
Fig. 9, is used to demonstrate the suggested frame-
work. This is a three-phase, unbalanced medium
voltage network (4:8 kV) with one main transformer.
In this study, Monte Carlo simulations are run on
MATLAB R2016a using a PC with Intel(R) Core
(TM) i7-8550U CPU@1.80 GHz, 1992 Mhz, 4 Core(s),
and 8 Logical Processor(s) RAM.

7.2. Assumptions and environment configuration

This section will describe the simulation processes
in detail. For simulation purposes, the following
assumptions are considered:

(1) It is expected that no restoration/recovery is
undertaken throughout the progression of the
event (t, to t.) and that all components are
working before the event.

(2) In the basic scenario, assume a
geographical area with uniform weather.

(3) To illustrate preventive disruption-management
methods for resilient networks, a random se-
lection of 15 overhead lines to harden in the test
system (red lines in Fig. 9).

limited
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(4) Itis important to keep in mind that the time period
of Phase I is identified and presumed to be 2 h in
this study. For all simulations, a risk threshold
of = 0.95 is chosen (Bardou et al., 2009).

First, a sample of wind speed with the PDF for the
regional profile (as shown in Fig. 2) is assumed and
then the failure probability for the power system
infrastructures (towers, lines, and transformers) is
computed. The number of trials required for the
convergence of the network loss function for a
certain damage situation is calculated using a
number of Monte Carlo calculations. For the
sampled wind speed, about 1000 trials are sufficient
to achieve convergence in both cases. Each trial's
loss function is determined by analyzing the resil-
ience curve's phases. Finally, the 1000 Monte Carlo
runs' resulting loss functions are then averaged. By
choosing multiple wind speeds from the PDF, the
procedure is repeated for the given profile of wind
speed. This aids in modeling the system's reaction to
various weather occurrence severity (extreme, high,
and normal).

Base network
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Fig. 12. Wind speed of 30 m/s resilience indicator for base and robust
cases.

7.3. Assessing the effects of wind speed on
operational resilience

Fig. 10 depicts wind fragility curves for trans-
mission lines (base and robust case studies). The
convergence of 1000 Monte Carlo simulations for a
variety of circumstances in the IEEE 37-bus are seen
in Fig. 11 for two separate phases (base and robust)
under extreme wind scenarios for different sce-
narios. The failure probability of distribution lines
during the event of high-speed wind is decreased by
reinforcing a few distribution lines, which lowers
the load loss (kW) in Phase I. The system load loss
(MW) for the basic and robust network is explored
and depicted in Fig. 12 for the IEEE 37-bus test case.

7.4. Risk-based resilience metric calculation

As explained before, VaRa indicates the largest
probable loss, whereas CVaRa measures the pro-
jected deficit owing to the most influence occur-
rences that exceed a particular level of risk. These
measures are acceptable options for assessing
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Fig. 11. Monte Carlo simulations convergence for several situations in IEEE 37-bus after 1000 attempts.
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Table 1. VaRa and CVaRa for various wind scenarios for IEEE 37-bus
with o = 95%.

Weather scenario VaRa (MWh) CVaRa. (MWh)
Normal 3.025 3.658

High 14.359 19.537
Extreme 69.159 100.68

Table 2. VaRa and CVaRa for different cases with « = 95%.

robust cases. These results prove that VaRa and
CVaRa values for the robust case are lower than
for the base case. There is an improvement of
68.412% in VaRa and 99.83% in CVaRa. Note
that, the authors only considered the extreme
wind profile when assessing the resilience
values for the test cases.

The performance loss function (MWh) of the
system for the base and robust networks for the

Network VaRa (MWh CVaRa (MWh .
( ) ( ) IEEE 37-bus test system under the severe wind
Base network 69.159 100.68 profile is shown in Fig. 13. From these results it can
Robust network 51.616 85.966
see how well the suggested method can measure the
Expected loss
0.2
|—*- Loss function (MWE)
=
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Fig. 13. The PDF of expected loss for the test case under the severe wind profile for the base and robust networks.

operational resilience since they precisely estimate
severe losses due to low-frequency events. Two case
studies will be considered:

(1) Base case: This scenario assumes a base case
system without any reinforced lines or sophisti-
cated restoration techniques. The VaRa and
CVaRa for each of the three wind profiles
(Extreme, high, and normal) are listed in Table 1.
The results prove that an extreme wind profile
results in a larger predicted resilience loss
(MWh) than a normal wind profile. It is
100.68 MWh compared with 3.658 MWh for both
the extreme and normal weather scenarios,
respectively as measured by CVaRa.

(2) Robust case: In this case, 15 distribution lines are
randomly chosen and hardened for the studied
IEEE 37-bus test system. The values for VaRa
and CVaRa are shown in Table 2 for base and

resilience to weather events for

geographic locations.

particular

8. Conclusion

This paper introduced a probabilistic method to
measure the resilience of a distribution power sys-
tem exposed to HILP events. The study was based
on two measures indicators, VaRa which measures
maximum probable loss, and CVaRa which evalu-
ates the anticipated decrease caused by the events
with the biggest impact that occur above a specified
risk threshold, «. The effects of HILP events on
distribution network performance were evaluated.
Similarly, the dangers these occurrences represent
to the system's resilience were quantified, using a
framework based on the Monte Carlo simulation
method. In which the Monte Carlo simulation is
used to generate damage scenarios, develop system-
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level impact, and calculate the load loss for each
weather event. The effects of storms or any other
heavy calamities on electric networks are estimated
using component-level fragility curves.

The paper properly reflected and discussed a
method for computing the outcomes of robust
techniques for enhancing the resilience of electrical
distribution systems. Thereby it decreases the
probable loss and increases the system resilience.
According to the study results, the robust case's
VaRa and CVaRa values are lower than those of the
basic case. VaRa and CVaRa both show improve-
ments of 68.412% and 99.83%, respectively. The
proposed method can help planners to predict and
appropriate system infrastructure upgrades that can
reduce the impact of a forthcoming extraordinary
circumstance on the system's important loads.

Future work may also cover the following topics:
(i) assessing the time for the system to repair, (ii)
investigating the impact of using load-shedding
programs, (iii) enhancing Grid Resilience with In-
tegrated Storage from Electric Vehicles for critical
load restoration, and (iv) optimal planning of resil-
ience strategies under a limited investment budget.
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