
Mansoura Engineering Journal Mansoura Engineering Journal 

Volume 48 Issue 3 Article 4 

2023 

Microstrip Antenna Design Using CST Optimized By Neural Microstrip Antenna Design Using CST Optimized By Neural 

Network Algorithm Network Algorithm 

Hadeer. A Shoeab 
Electronics and Communications Engineering Department, Mansoura University, Mansoura, Egypt, 
hadeer2270@gmail.com 

Mohamed A.Mohamed 
Electronics and Communications Engineering Department, Mansoura University, Mansoura, Egypt 

Marzouk El Said A 
Electronics and Communications Engineering Department, Mansoura University, Mansoura, Egypt 

Ahmed. A. Kabeel 
Electronics and Communications Engineering Department, Higher institute of engineering and Technology 
in New Damietta, New Damietta, Egypt 

Follow this and additional works at: https://mej.researchcommons.org/home 

 Part of the Electromagnetics and Photonics Commons, and the Systems Engineering and 

Multidisciplinary Design Optimization Commons 

Recommended Citation Recommended Citation 
Shoeab, Hadeer. A; A.Mohamed, Mohamed; El Said A, Marzouk; and Kabeel, Ahmed. A. (2023) "Microstrip 
Antenna Design Using CST Optimized By Neural Network Algorithm," Mansoura Engineering Journal: Vol. 
48 : Iss. 3 , Article 4. 
Available at: https://doi.org/10.58491/2735-4202.3045 

This Original Study is brought to you for free and open access by Mansoura Engineering Journal. It has been 
accepted for inclusion in Mansoura Engineering Journal by an authorized editor of Mansoura Engineering Journal. 
For more information, please contact mej@mans.edu.eg. 

https://mej.researchcommons.org/home
https://mej.researchcommons.org/home/vol48
https://mej.researchcommons.org/home/vol48/iss3
https://mej.researchcommons.org/home/vol48/iss3/4
https://mej.researchcommons.org/home?utm_source=mej.researchcommons.org%2Fhome%2Fvol48%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/271?utm_source=mej.researchcommons.org%2Fhome%2Fvol48%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=mej.researchcommons.org%2Fhome%2Fvol48%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=mej.researchcommons.org%2Fhome%2Fvol48%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.58491/2735-4202.3045
mailto:mej@mans.edu.eg


ORIGINAL STUDY

Microstrip Antenna Design Using CST Optimized by
Neural Network Algorithm

Hadeer A. Shoeab a,*, Mohamed A. Mohamed a, El Said A. Marzouk a, Ahmed A. Kabeel b

a Electronics and Communications Engineering Department, Mansoura University, Mansoura, Egypt
b Electronics and Communications Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt

Abstract

In this paper, a general design procedure is suggested for the microstrip antennas using artificial neural networks and
this is demonstrated using the rectangular patch geometry. The model was analyzed for 1733 data sets of input output
parameters. 1300 samples for training and 433 samples for testing and 1500 epoch, learning rate from (0.003e0.005).
Python was used to create and implement the ANN algorithm model. The mean error in detection of resonance
frequencies (return loss peaks) was 0.144 GHz on train set, and 0.116 GHz on test set. The outputs of the radial basis
function are optimized by varying the number of neurons and hidden layers. The proposed method's results are
compared with the results of CST and found to be in good agreement.

Keywords: Artificial neural network, Computer simulation technology, Microstrip patch antenna, Radial basic function,
Return loss

1. Introduction

T he design of high performance Low profile
antennas may be necessary in applications for

high-performance satellites, aircraft, airships, mis-
siles, and spacecraft where size, weight, cost, perfor-
mance, ease of installation, and aerodynamic profiles
are limitations. Currently, microstrip antennas are
used in a variety of government and commercial
applications, including wireless, radio, and mobile
communications (Thakare and Singhal, 2010; Kush-
wah and Tomar, 2009; Krishnan et al., 2007; Güneş
et al., 2006; Srivastava et al., 2018) Different algorithms
and techniques play an important part in this quickly
growing and constantly changing period of science
and technology. Many research concentrate on the
development of wireless communication systems for
the wireless systems by the design of such systems.
The development of low-cost, high-bandwidth an-
tenna technologies recently has improved the overall
effectiveness and performance of the entire wireless

system. Antennas can be designed using a variety of
techniques to function at the desired resonant
frequency. To improve the electrical performance
parameters and the operation of antenna systems,
however, theoretical and experimental studies are
conducted. Researchers from several fields worked to
create various antenna models. Choosing the settings
for a specific resonance frequency for a given appli-
cation is a difficult task. The various mechanical
characteristics of the antenna system will depend
more heavily on the operating frequency or resonant
frequency. However, a scientific approach or an
algorithm must be used to carry out the substantial
analysis required for the computation of the
mechanical parameters that define the frequency of
operation (Kantipudi et al., 2021).

Several Machine Learning approaches have been
used to learn the mapping between mechanical
characteristics of antennas and their operation
frequency. This technique has significantly
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changed how simple it is to construct antennas
for different frequencies (Krishnan et al., 2007).
The types of ML used are listed below dependent
on the data provided for each problem that needs
to be taught in order to detect patterns and pre-
dict better outcomes. Different applications have
used these kinds of learning (Fig. 1) lists a limited
number of uses: (Chinnasamy, Devarajan).

(1) supervised learning
(2) Unsupervised learning
(3) Reinforcement learning

2. Antenna design analysis

2.1. Rectangular microstrip antennas

The rectangular microstrip antennas are made of a
rectangular patchwith dimensions (thewidth of patch
Wp &the length of patch Lp), the width of ground
&substrate Wg, the length of ground &substrate Lg
and the feeding point x&y which make matching of Z
impedance ¼ 50 ohm (Fig. 2).

2.2. Dataset description

The dataset consists of the response of 1733
antennas with different configurations of di-
mensions (Wp, Wg, Lp, Lg) and the position of
feeding point (x, y) (Table 1). For each configuration
of dimensions, antenna response represented by the
return loss S11 over the frequency range
[3e12 GHz] was obtained using CST. We define the
resonance frequency of each antenna as the
frequency with lowest return loss.
The ratio Lg/Wg varies between 0.4 and 11 for the

simulated antennas. As the figure shows, most of
represented points form lines perpendicular to the
axes, since they were set by fixing 5 antenna
parameters and changing the lasting parameter
gradually (Fig. 3).
As shown in (Fig. 4) resonance frequencies spread

over the range [3e12 GHz]. In addition, the return
loss at resonance frequency varies between �10 and
�70 dB. Some of points in the figure are arranged in
vertical lines, they reflect the fact that changing a
single antenna parameter may not affect its reso-
nance frequency but rather it changes the return loss.
Here are the full response of 4 special antennas in

the data set: the two antennas with highest and
lowest resonance frequencies, and the two with
largest and smallest return loss at the resonance
point (Fig. 5).

2.3. Data preprocessing e train/Val/test split

(1) The dataset consists of the return loss response
of 1733 different antennas, each one consists of
1001 samples of the operation frequency, and
then the whole data table has 1,734,733 entries.
These responses were divided into a training set

Fig. 1. Types of machine learning with examples.

Fig. 2. Microstrip patch antenna structure.
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of 1300 antenna responses and a testing set of
the remaining 433. This set was used to get
objective analysis of the final performance of the
model. When training neural network models, a
validation set was randomly select from the
training set at every training epoch with a ratio
of 10% of the set ¼ (130 response). This set was
used to provide a metric of the model ability
of generalization over unseen data during the
training process.

The choice of RBF because this model of optimi-
zation fits the output S11 with a sum of RBF func-
tions with trainable parameters. This idea was
inspired by observing the curves of multiple
antenna responses. They can be decomposed to a
sum of bell-shaped function with different centers,
widths, and amplitudes.

2.4. Structures and analysis of the neural network
algorithm for microstrip patch antenna

In This section examines how dealing with high-
dimensional data makes it exponentially harder to
generalize to new cases and how typical machine
learning's techniques for generalization are unable

Table 1. The dimensions of antenna design.

Wg Wp x y Lg Lp

min 9 7 0 0 19.1 9
max 100 83 7 3.55 100 85

Fig. 4. The distribution of resonance frequencies of simulated antennas.

Fig. 3. Relationship between outer dimensions (Wg, Lg).
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to learn complex functions in high-dimensional
environments. These areas frequently have sub-
stantial computational expenses. Deep learning was
created to get around these problems as well as
others (courville ian goodfellow, 2016).
A neural network model for RMSA (rectangular

microstrip antenna) is used, and it uses the feed
forward standard back propagation algorithm. This
is a supervised neural network model for RMSA is

shown in Fig. 6 and dimension is shown in Table 1.
The supervised network model is trained using
input data and target (output) data. The weights of
the network are computed by training the network
using the back propagation algorithm.

2.5. First fitting approach (predicting fr): Fig. 7

(1) Several traditional ML methods were used to
learn the mapping between antenna mechanical
parameters and the resonance frequency. In the
following section, we present these models and
their performance:

2.5.1. Tested ML models other than neural networks

(1) K-Nearest Neighbors regressor: It can be noticed
that the best test accuracy was achieve when
K ¼ 2 with a mean square error of approximately
0.75 (Fig. 9)

(2) Linear Regression with generated polynomial
features: The figure shows that the best perfor-
mance was at a polynomial of degree 5 (Fig. 10)

(3) Random Forest Regressor: For a fixed number of
100 trees, The test mean squared error settles at
0.75 after a maximum depth of 12 (Fig. 11)

Fig. 5. Return loss for different samples.

Fig. 6. The analysis ANN model.
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(4) Linear Regression with L2 Regularization: The
figure demonstrates how a value of a ¼ 10�2

gives the best test error (Fig. 12)

2.6. Second fitting approach (predicting S11): Fig. 8

Since the approach based on fr prediction using
antenna parameters is too noisy and non-repre-
sentative, another approach was proposed. The new

model tries to predict the full frequency response of
each antenna. In other words, the regression model
estimates the value of return loss S11 at every
frequency based on physical parameters of the an-
tenna. This model fits the output S11 with a sum of
RBF functions with trainable parameters. This idea
was inspired by observing the curves of multiple
antenna responses. They can be decomposed to a
sum of bell-shaped function with different centers,
widths, and amplitudes.

(1) The first fitting approach as well, we trained a
multi-layer perceptron (MLP) to perform this
fitting. For this type of model, there are a
wide range of hyperparameters to tune. We
conducted a randomized search to determine
the best structure of MLP. This list summa-
rizes the parameters considered in the tuning
process.
(a) The number of hidden layers, which varies

between 1 and 12.
(b) The number of neurons in each hidden

layer, which varies between 5 and 85.
(c) The activation function of the hidden

layers. The tested functions were the
Rectified Linear Unit (ReLU) and the hy-
perbolic tangent.

(d) The learning rate, this hyperparameter
controls the speed of the learning process,

Fig. 7. Flow chart of building the first model (predict fr directly using
antenna parameters only).

Fig. 8. Flow chart of building the second model (predict full S11curve then extract peaks as resonance frequencies).
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the experimented values was exponentially
distributed (3e-4, 1e-3, 3e-3, and 1e-2).

This is a diagram of a model that has 3 hidden
layers with 40 neurons for each, and the activation
function is ReLU (Fig. 13).
RFB unit illustration (Fig. 14):

f ðxÞ¼Ae
�
�
x�C
D

�2

ð1Þ

2.6.1. RBF network
As mentioned before, the usage of RBFs was

motivated by the general shape of response curves.
The proposed model consists of 200 trainable RBF
units. The general formula of the approximation
function is (Fig. 15)

cS11

�
f
�¼ XN

i¼1

aie�ðdiðf�ciÞÞ2 þ b as shown in Fig: 15 ð2Þ

Where ci; di are coefficients that depends on antenna
parameters, they are computed by two separated
linear layers. The coefficients ai are the weight of the
output layer and b is the overall bias (learned by the
output layer).
The following diagram demonstrates the structure

of the proposed model.

2.7. Training process

(1) The learning rate, which is a hyperparameter
that control learning speed, was set to 3� 10�3 at
the beginning of training. This value was set
after some experiments on different hyper-
parameters values and that value achieve the
better performance. The process of training
consist of 1500 epochs. At each epoch, the data

Fig. 9. K-Nearest Neighbors regressor.

Fig. 10. Linear Regression with generated polynomial.
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was feed to the model batch by batch. The size of
each batch is 1001 entries, the same as the size of
one antenna response. However, evaluation loss
reached a steady value after approximately 800
epochs, so training can be terminated at an
earlier point. This practice achieved better
convergence, one possible explanation for this is
that the model tries to optimize its weights for a
specific antenna at each step, not for a group of
different antennas. However this practice in-
crease the training time, because it make com-
putations more sequential than parallel. Another
technique applied during training is the learning
rate decay. It is a function that is called at the
end of every epoch to reduce the learning rate
exponentially, so that after 1500 epochs it will be
divided by 50. This technique helps to reduce
oscillations loss function when the model get
close to the optimal state of coefficients. Cross-

Fig. 11. Random forest regressor.

Fig. 12. Linear regression with L2 regularization.

Fig. 13. The structure of the trained ANN.
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Fig. 14. Parameter of f(x) as A, C&D.

Fig. 15. The structure of the proposed model.

Fig. 16. History of train loss and validation loss in every epoch.
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validation was applied during training by
choosing 10% of the data randomly, then
excluding that portion from fitting process, and
at the end of the epoch, the loss is computed for
the excluded entries.

It is noticeable that the model reached a steady
state after approximately 800 epochs (Fig. 16).

3. Results

Visual assessment shows good fitting perfor-
mance of the proposed model for both training and
testing instances.

3.1. Samples of training set

Figs. 17 and 18 refer to samples of the train data
set, and Figs. 19 and 20 refer to the test data set.

3.2. Samples of testing set

To evaluate the model performance, multiple
metrics were proposed and discussed, depending
on the practical target of the regression process.
For example.

(1) The error of S11 estimation (Table 2)
(2) The error in peak frequency positions

Fig. 17. Train sample No. 347.
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(3) The hit ratio of the top-k resonance frequency.

The error of S11 estimation:
Although the absolute error is relatively small, the

relative error tends to be large because there are a
lot of small values that effect on the sensitivity of the
fraction.

RE¼jy� byj
jyj ð3Þ

The hit ratio of the top-k resonance frequency.

(1) One possible evaluation metric of the proposed
model is to measure its accuracy in detection of
resonance frequencies of some antenna.

(2) A specific procedure was implemented for this
mission which consists of several steps:
(a) Define resonance frequencyas thepeakvalue

in the S11 curve for the antenna. As there are a
lot of such peaks, the top k ¼ 5 peaks were
selected (the peaks with largest S11 values).

(b) Compute the frequencies of the top k peaks
for both of the curves: the actual curve and
the predicted curve.

Fig. 18. Train sample No. 851.
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(c) Create a distance matrix between the actual
and predicted frequencies.

(d) Two frequencies are considered a ‘hit’ if the
difference between them is less than some
tolerance tol ¼ 0:2GHz

For values k ¼ 5; tol ¼ 0:2 the average hit ratio
over the training set was 3.62 out of 5 peaks, and on
testing set was 3.45 out of 5.
The error in peak frequency positions:
The mean error of the detected peaks was

0.144 GHz on train set, and 0.116 GHz on test set.
Table 3 contains a comparison of this work with

related literary works. This comparison demonstrates
that the suggested antenna has number of inputs,

number of outputs, no of samples, activation function,
noofhidden layers andneurons, noof epoch, learning
rate and error.
One sample option is to train an ML model that

learns resonant frequency directly for a given geo-
metric structure (Kushwah and Tomar, 2009; Kant-
ipudi et al., 2021; Singh, 2015) However, most of these
models generate fine predictions in a limited region
of the space of physical dimensions of the antenna.
In this work, we propose a customized artificial

neural network (ANN) model that approximate the
full frequency response (S11 loss) as a function of
frequency given the mechanical characteristic of the
antenna at various forms of rectangular patch
antenna (Fig. 2).

Fig. 19. Test sample No. 3.
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Fig. 20. Test sample No. 16.

Table 2. The error of S11 estimation.

Metric train test

Relative error RE 11.2% 11.9%
Mean Absolute Error (MAE) 0.99 dB 1.02 dB
Root Mean Squared Error (RMSE) 1.86 dB 1.91 dB
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3.3. Conclusion

This work proposes a novel design of a microstrip
patch antenna based on a neural network algorithm.
We build, train, and evaluate our model using a
dataset consists of the return loss response of 1733
different antennas, collected through simulation
(CST). Most traditional machine learning models
failed to achieve good performance for our task, and
standard MLP networks do not fit as well. We pro-
posed a custom model for this task. The overall ar-
chitecture of the model is a sum of trainable Radial
Based Functions RBFs. The mean error in detection
of resonance frequencies (return loss peaks) was
0.144 GHz on train set, and 0.116 GHz on test set.
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صلخملا

تايئاوهللماعميمصتءارجإحارتقامت،ثحبلااذهىف microstrip كلذحيضوتمتدقو،ةيعانطصلااةيبصعلاتاكبشلامادختساب
بيردتللةنيع1300.جارخلإاولاخدلإاتاملعمنمتانايبةعومجم1733ـلجذومنلاليلحتمت.ليطتسملاحيحصتلاةسدنهمادختساب

مادختسامت.)0.005ىلإ0.003(نمملعتلدعمبرصع1500ورابتخلالةنيع433و Python ةيمزراوخجذومنذيفنتوءاشنلإ
ANN. 0.116و،بيردتلاةعومجميفزترهاجيج)هدوعلاةراسخهورذ(أطخلاطسوتمفاشتكاىف0.144أطخلاطسوتمناك

تاقبطلاوةيبصعلاايلاخلاددعرييغتقيرطنعيعاعشلاساسلأاةفيظوتاجرخمنيسحتمتي.رابتخلااةعومجميفزترهاجيج
جئاتنعمةحرتقملاةقيرطلاجئاتنةنراقمتمت.ةيفخملا CST ادًيجةقفاوتماهنأتدجوو .

Table 3. A comparison of the suggested structure and related literary works.

References Number of inputs
(parameters)

output Number of
samples

Activation
function

Number of hidden
layers &neurons

Number
of epoch

Learning
rate

Error

Kantipudi
et al. (2021)

5 inputs WL xr
(xx&xy) h

fr 90 samples 45 for
training 45 for testing

MLP RBF 2 hidden layer
(10&5 neurons)

450 0.1 0.01 training

Kushwah and
Tomar (2009)

2 inputs If W, L fr fr W, L 60 samples 45 for
training 15 for testing

MLP RBF 2 hidden layer
(10&5 neurons)

100 0.1 0.01 training

Singh (2015) 4 inputs W, L xr, h fr 320 samples 160 for
training 160 for testing

RBF 1 hidden layer
(20 neurons)

160 0.4 3.49886e-14
training

This work 7 inputs Wg,
Wp Lg, Lp x, y, fr

s11 1733 samples 1300 for
training 433 for testing

Linear RBF 3 hidden layer
(200&200&1)

1500 0:003
To 0.005

0.114 GHZ
training0.116
GHZ testing
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