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CASE STUDY

Swarm Intelligence for Solving Some Nonlinear
Differential Equations*

Ahmed Elzaghal a, Mohammed M. Elgamal a, Ahmed H. Eltanboly a,b,*

a Department of Mathematics and Engineering Physics, Faculty of Engineering, Mansoura University, Egypt
b Department of Mathematics, Faculty of Basic Science, Galala University, New Galala City, Egypt

Abstract

The Euler method is a well-known numerical technique that is employed for solving initial value problems of or-
dinary differential equations (DE's). The solution obtained through Euler's method is subject to significant inaccuracies,
which tend to propagate with each successive iteration. The Particle Swarm Optimization (PSO) algorithm is a highly
effective method for finding optimal solutions to both linear and nonlinear optimization problems. In this particular
investigation, the PSO technique was utilized to solve initial value problems associated with ordinary DE's. The Euler
method, on the other hand, employs equidistant grid points to approximate solutions, which can result in significant
errors and a substantial deviation from the actual solution. The PSO algorithm is a reliable approach for achieving
optimal solutions to linear and nonlinear optimization problems, including initial value problems associated with or-
dinary differential equations. In contrast, the Euler method uses evenly spaced grid points to estimate solutions, which
can lead to significant inaccuracies and deviation from the true solution. To address this issue, a new approach was
developed using PSO to determine non-uniform grid points that minimize the approximation errors. Increasing the
number of non-uniform grid points enhances accuracy and reduces errors. Numerical calculations were performed to
compare this approach with traditional Euler formulae, demonstrating its superiority in overcoming existing limitations
and delivering numerous benefits.

Keywords: Differential equations (DE), Initial value problems, Swarm optimization (SO)

1. Introduction

I t is always a major topic to suggest different
approaches for the process of obtaining numer-

ical solutions to the problems concerning the initial
and boundary values. This is due to the intricate
nature of differential equations (DE's) that arise in
science and engineering. Various techniques
(Huang and Li, 2010; Kamali et al., 2015; Li et al.,
2017; Wu and Xiu, 2019; Yuttanan and Razzaghi,
2019) can be employed to tackle nonlinear differ-
ential equations; with one of such technique is being
the transformation of these equations into linear

ordinary differential equations. Another approach
involves directly discretizing the differential equa-
tions. Several well-known methods, including finite
difference and finite element techniques, have been
introduced for addressing this issue (Yuttanan and
Razzaghi, 2019; Zienkiewicz and Taylor, 2000;
Schober et al., 2019; Edalat, Farjudian, Mohamma-
dian, Pattinson). The two similar methods use the
same technique that meshes the domain of the
function. Then, by using a feasible approach, the
calculation of the approximate solutions at the
nodes of the mesh can be accomplished (Cullen and
Clarke, 2019; Yang et al., 2019). In this study, we deal
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with an initial value problem of the first order or-
dinary differential equation, which is represented as
follows:8><
>:

duðxÞ
dx

¼ f ðx;uÞ;x� x0

uðx0Þ ¼ u0

ð1Þ

where, u0 is constant, f ðx; uÞ is given and uðxÞ is to be
solved.
The most popular and simple method to solve this

problem is the Euler formula (Kress, 1998) that has
at series nodes ðx0 < x1 < x2 <… < xk <…Þ that can
represented in the following form:

ukþ1¼ukþðxkþ1�xkÞ*f ðxk;ukÞ;k¼0;1;2; ð2Þ

where the term uk indicates the approximate solution
at node xk that uk is uðxkÞ. In Euler method the nodes
are always selected to be equidistant according to the
formula xk ¼ x0 þ kh (h is the size step).
It should be mentioned that the Euler method was

developed and widely used. One of the disadvan-
tages of that method and its approximate solution is
the difference between approximate and actual so-
lution greatly increase with the increase in iteration
number k, unless the step size is so small (Kress,
1998; Wen, 2019; Sark and Newton, 2008).
Moreover, in engineering and science problems

and in many practical situations, many optimization
problems have been created (Sark and Newton,
2008). To find the optimal solution, a lot of methods
have been developed such as conjugate direction
methods, gradient methods, Newton's method and
others (Sark and Newton, 2008; Chong and Zak,
2013). Latterly another methods attracted great
attention that called the heuristic approximation
methods, such as particle swarm optimization (PSO)
which we deal with in this research study (Chong
and Zak, 2013; Kennedy and Eberhart, 1995).
PSO algorithm is very effective in solving a lot of

nonlinear optimization problems, PSO can be used
to solve many engineering problems. The purpose
of the present study is to apply the PSO algorithm to
find approximate solutions and compare it with the
actual ones (Jordehi, 2014; Lin et al., 2019; Zhang and
Hui, 2016, 2017). In normal methods it's found that
the different distribution of nodes x0; x1; x2;…::; xk
leads to different values of ukþ1.The purpose of PSO
algorithm is to find the optimal distribution of nodes
x0; x1; x2;…::; xk to get the most accurate approxi-
mate value of ukþ1 (Kennedy and Eberhart, 1995). To
achieve that and get the optimal distribution of
nodes, an optimization problem must be created
according to the least error estimate. By applying

PSO, the optimization problem can be solved and
the optimal distribution of nodes can be obtained,
which is used to determine the most accurate
approximate solutions. Numerical results are car-
ried out to show and compare the approximate so-
lutions of PSO with the actual solutions to show the
efficiency of PSO (Jordehi, 2014; Lin et al., 2019;
Zhang and Hui, 2016; Kennedy et al., 2001). The
paper is organized as follows: Section 2 is dedicated
to provide a brief review of the PSO algorithm. In
section 3, an optimization problem is being con-
structed; then handled by two methods that use
differential and integration techniques. Section 4,
shows the numerical results that are obtained by
solving the optimization problem based on the PSO
algorithm. A comparing with the actual solution has
been also conducted.

2. Brief review on particle swarm optimization
(PSO)

Throughout the ages, inspiration has often come
from nature, with many things remaining to learn
and find out. Between many others, Swarm intelli-
gence draws inspiration from the intelligent collec-
tive behavior of bird swarms that are observed in
nature. In a flock of birds, each member moves in
unison and shares information about food sources,
resulting in an optimal hunt for the entire group. By
simulating this behavior, we can apply it to find the
best solution in a complex problem space. Each
‘bird‘ in the swarm contributes to the search for the
optimal solution, and the best solution found by the
group is considered the best overall. While this
approach is heuristic and cannot guarantee finding
the true global optimal solution, it has been shown
to be highly effective in finding solutions that are
very close to the global optimum (Kennedy and
Eberhart, 1995).
In 1995 Kennedy and Eberhard developed the

Particle swarm optimization. It is best used to find
the minimum or maximum of a function defined on
a multidimensional vector space (Kennedy and
Eberhart, 1995; Kennedy et al., 2001). Like a flock of
birds, we have a flock of particles that moving
around in the search space, each particle shares its
best solution. The movement of each particle de-
pends on three parameters: its old movement, its
best solution (Pbest), and the best solution of all
particles (Gbest).

V
!

iþ1¼uV
!

iþ c1

�
P
!

best � X
!

i

�
þ c2

�
G
!

best � X
!

i

�
ð3Þ
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X
!

iþ1¼ X
!

i þ V
!

iþ1 ð4Þ

u, c1 and c2 is constant chosen between 0 and 1.
V
!

i: particle's previous velocity. (uV
!

i is the inertia
effect).

P
!

best: particle's best position in all previous
iterations.
G
!

best: best position of all particles in all previous
iterations.
Particles‘ movements is guided by two important

parts one is the particles‘ best known position and
second is the entire swarm's particles best known
position. When improved positions are found, they
eventually guide the movements of the swarm. The
method is run as follows: some particles X are
chosen randomly in the space of search. Apply in
function F(X) (the function we need to find it
maximum or minimum value). In the first iteration
Pbest of each particle is the function F at this particle
Pbest i equal Xi. Gbest is Xi at which F(Xi) is maximum
if we need to find the maximum value of the func-
tion. Then use (3) to calculate the velocity of each
particle. Then use (4) to calculate the position of
each particle Xi+1. If F(Xi+1) is more than F(Pbest) then
new Pbest ¼ Xi+1 else Pbest stay the same. If there is
any F(Xi+1) more than F(Gbest) then Xi+1 will be the
new Gbest else Gbest stay the same. Then repeat the
previous steps until all particles become equal
(Zeng et al., 2016, 2018; Zhang and Li, 2015;

Hindmarsh and Petzold, 1995; Zhang et al., 2015;
Bonyadi and Michalewicz, 2017; Jain et al., 2018;
Gosciniak, 2015; Du and Swamy, 2016; Mustafa
Servat Kiran, 2017). At this moment, these particles
are the best solution. As shown in Fig. 1.

3. Constructing optimization problem

In this section, we construct many optimization
problems to determine the nonequidistant grid
points x0 < x1 < x2 <…< xn. Two ways are introduced
for solving the initial value problem of ordinary
differential equations (Zhong et al., 2019).
1. Differential method. The optimization problem

is formed by the differential method. By considering
the differential mean value theorem and the interval
½xk; xkþ1�, there is at least one ek2½xk; xkþ1� such that

uðxkþ1Þ � uðxkÞ
xkþ1 � xk

¼du
dx

����
x¼ek

¼ f ðek;uðekÞÞ;k¼0;1;2; ð5Þ

It is clear that, if the value of ek is replaced by xk,
equation (5) will be the Euler method. If the value of
ek is replaced by xkþ1 ,equation (5) will be the im-
plicit Euler method. If the value of ek can be deter-
mined, the application of (5) will lead to a formula as
follows:

ukþ1¼uk þ ðxkþ1�xkÞf ðek;uðekÞÞ ð6Þ
Unfortunately, the specified value of ek and

uðekÞ is always difficult to determined, and that is
why The Euler method used. Moreover, to construct
an optimization problem we have to change the way
of thinking as follows:

minjuðxkþ1Þ�ukþ1j ð7Þ

If there is a constant ck2½xk; xkþ1� and the unknown
ek is replaced by this constant the optimization
problem (7) can be written as:

min
��uðxkÞ�ukþðxkþ1�xkÞ

�
f ðek;uðekÞÞ� f ðck;uðckÞÞ

���
ð8Þ

Now, we can analyze the optimization problem
(8). It is appropriate to assume uðxkÞ ¼ uk meaning
that the local truncation error is considered.
Defining a new function

Qðxk;xkþ1;ek;ckÞ¼
��ðxkþ1�xkÞ

�
f ðek;uðekÞÞ�f ðck;uðckÞÞ

���
ð9Þ

We have the following result.
Theorem 1. Suppose that D 3 R2 is a domain with

f(x, u): D ⟶ R. If f(x, u) is continuously differenti-
ated on D, the following estimate holds:Fig. 1. Flowchart of PSO algorithm.
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Qðxk;xkþ1; ek; ckÞ � ðxkþ1 � xkÞ2ðMkþNk:LkÞ ð10Þ

where

Mk¼ max
x2½xk;xkþ1�

����vfvx
����;Lk¼ max

x2½xk ;xkþ1�

��f ��;
Nk¼ max

x2½xk;xkþ1�;ðx;uÞ2D

����vfvu
����

ð11Þ

Proof
according to (10), it follows:��f ðek;uðekÞÞ�f ðck;uðckÞÞ

��¼��f ðek;uðekÞÞ�f ðck;uðekÞÞ

þf ðck;uðekÞÞ�f ðck;uðckÞÞ
��¼����vf ðek;uðekÞÞvx

����jek�ckj

þ
����vf ðck;gÞvu

����juðekÞ�uðckÞj¼
����vf ðek;uðekÞÞvu

����jek�ckj

þ
����vf ðck;gÞvu

����:��f ðgk;uðgkÞÞ
��:jek�ckj

ð12Þ

Where ek and gk are located between ek and ck; g lies
between uðekÞ and uðckÞ. Then, defining

Mk¼ max
x2½xk;xkþ1�

����vfvx
����;Lk¼ max

x2½xk ;xkþ1�

��f ��;
Nk¼ max

x2½xk;xkþ1�;ðx;uÞ2D

����vfvu
����

ð13Þ

We have the following relation:��f ðek;uðekÞÞ� f ðck;uðckÞÞ
��� jek� ckjðMkþNk:LkÞ

ð14Þ
Under the consideration of ek; ck2½xk; xkþ1�, the

following result is determined:

Qðxk;xkþ1; ek; ckÞ � ðxkþ1 � xkÞ2ðMkþNk:LkÞ ð15Þ
The proof is completed.

From theorem 1, It is clear that the values of Mk,
Nk and LK are dependent on the interval ½xk; xkþ1�.
A new function is built as follows:

Qkðxk;xkþ1Þ¼ðxkþ1 � xkÞ2ðMkþNk:LkÞ ð16Þ

In addition, considering the error estimate of the
approximate solution ukþ1, we give the following
result.
Theorem 2. Assume that the function f(x, u) is

defined on D 3 R2 with f(x, u): D ⟶ R. If f(x, u) is
continuously differentiated on D, the error estimate
is obtained as follows:

juðxkþ1Þ�ukþ1j �
Xk
j¼0

Qj

�
xj;xjþ1

�
: ð17Þ

Proof

juðxkþ1Þ�ukþ1j¼
��uðxkÞ�ukþðxkþ1�xkÞ:

�
f ðek;uðekÞÞ

� f ðck;uðckÞÞ
����juðxkÞ�ukjþQkðxk;xkþ1Þ� juðxk�1Þ

�uk�1jþQkðxk;xkþ1Þ…………::�juðx0Þ
�u0jþQkðxk;xkþ1ÞþQk�1ðxk�1;xkÞþ…þQ0ðx0;x1Þ

¼
Xk
j¼0

Qj

�
xj;xjþ1

�
:

ð18Þ
The proof is completed.

Applying theorem 2, new optimization problem is
constructed as follows:

min
x0 <x1 <…<xkþ1

Xk
j¼0

Qj

�
xj;xjþ1

� ð19Þ

When the optimization problem (19) is solved,
the nodes xj (j ¼ 1, 2, …., kþ1) can be determined,
and there are further used to determine uj through
Euler type method. The approximation solution of
uðxÞðx0 � x� xkþ1Þ is given as

uaðxÞ¼
Xkþ1

j¼0

ujljðxÞ ð20Þ

where

l0ðxÞ¼
8<
:

x� x1
x0 � x1

;x2½x0;x1�

0;x2½x1;xkþ1�

ljðxÞ¼

8>>>>>><
>>>>>>:

x� xj�1

xj � xj�1
;x2

�
xj�1;xj

�
x� xjþ1

xj � xjþ1
;x2

�
xj;xjþ1

�
0;x;

�
xj�1;xjþ1

�
ð21Þ

lkþ1ðxÞ¼
8<
:

x� xk
xkþ1 � xk

;x2½xk;xkþ1�

0;x2½x0;xk�
The approximate solution ukþ1 calculated from

the previous method is more accurate than the
result obtained by the equidistant grid points in
Euler method. It means that when we need to
calculate approximate solution ukþ1 with high ac-
curacy, the optimization problem (19) can be solved
to determine the distribution of the nonequidistant
grid points (Kress, 1998; Wen, 2019; Sark and
Newton, 2008; Chong and Zak, 2013; Kennedy and
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Eberhart, 1995; Jordehi, 2014; Lin et al., 2019; Zhang
and Hui, 2016, 2017; Kennedy et al., 2001; Zeng et al.,
2016, 2018; Zhang and Li, 2015).
2. Integration method. Now, to construct an opti-

mization problem using the integration method. We
integrate both sides of the differential equation in
the initial value problem (1) with respect to x from x0
to xkþ1 . The following Volterra integral equation is
obtained:

uðxkþ1Þ¼u0 þ
Zxkþ1

x0

f ðx;uÞdx: ð22Þ

By considering all the grid points x0 < x1 < x2 <
…< xkþ1, integral equation (22) can be rewritten as

uðxkþ1Þ¼u0 þ
Xk
j¼0

Zxjþ1

xj

f ðx;uÞdx ð23Þ

Under the assumption of a continuous function
f ðx; uÞ on a domain D, there is at least one ej which
ej2½xj:xjþ1� such that

uðxkþ1Þ¼u0 þ
Xk
j¼0

�
xjþ1�xj

�
f
�
ej;u

�
ej
��
; ð24Þ

where the integral mean value theorem has been
applied (23). When the values of ej and uðejÞ can be
given explicitly, formula (24) is also explicit. How-
ever, it is always difficult to give the explicit values
of ej and uðejÞ. Then it is assumed that ej and uðejÞ are
replaced by cj and uðcjÞ, respectively. Hence, the
optimization problem is constructed as follows:

minjuðxkþ1�ukþ1j¼ min
cj2½xj ;xjþ1�

�����
Xk
j¼0

�
xjþ1�xj

��
f
�
ej;u

�
ej
��

�f
�
cj;u

�
cj
�������¼ min

cj2½xj;xjþ1�

�����
Xk
j¼0

Zxjþ1

xj

f ðx;uÞdx

�
Xk
j¼0

�
xjþ1�xj

�
f
�
cj;u

�
cj
�������¼ min

cj2½xj;xjþ1�

�����
Xk
j¼0

Zxjþ1

xj

f ðx;uÞdx

�
Xk
j¼0

Zxjþ1

xj

f
�
cj;u

�
cj
��
dx

�����¼ min
cj2½xj;xjþ1�

�����
Xk
j¼0

Zxjþ1

xj

�
f ðx;uÞ

�f
�
cj;u

�
cj
���

dx

�����
ð25Þ

Moreover, we introduce the Lipschitz condi-
tions as follows:

��f ðx;uÞ� f
�
cj;u

����Lj

��x� cj
��;x; cj2 �

xj;xjþ1

�
;

cu
��f ðx;uðxÞÞ� f

�
x;u
�
cj
����� ~Lj

��uðxÞ�u
�
cj
���;

cx2
�
xj;xjþ1

� ð26Þ

Where Lj and ~Lj are positive Lipschitz constants. It
gives

�����
Xk
j¼0

Zxjþ1

xj

�
f ðx;uÞ� f

�
cj;u

�
cj
���

dx

�����¼
�����
Xk
j¼0

Zxjþ1

xj

�
f ðx;uÞ� f

�
cj;uðxÞ

�þ f
�
cj;uðxÞ

�

� f
�
cj;u

�
cj
���

dx

������
�����
Xk
j¼0

Zxjþ1

xj

���f ðx;uÞ� f
�
cj;uðxÞ

���

þ ��f�cj;uðxÞ�� f
�
cj;u

�
cj
�����dx

�����¼
Xk
j¼0

Zxjþ1

xj

�
Lj

��x�cj
��

þ ~Lj

��uðxÞ�u
�
cj
����dx

ð27Þ

In addition, applying the differential mean value
theorem, there is at least one gj such that

��uðxÞ�u
�
cj
���¼ ���f	gj;u

	
gj



���:��x� cj
�� ð28Þ

Where gj is located between x and cj. By considering

Lj¼ max
x2½xj;xjþ1�

��f ��; ð29Þ

we have

Xk
j¼0

Zxjþ1

xj

�
Lj

��x� cj
��þ ~Lj

��uðxÞ�u
�
cj
���� dx

¼
Xk
j¼0

Zxjþ1

xj

	
Lj

��x� cj
��þ ~Lj

���f	gj;u
	
gj



���:��x� cj
��
 dx

�
Xk
j¼0

Zxjþ1

xj

�
LjþLj:~Lj

���x� cj
�� dx

ð30Þ
Applying the Cauchy-Schwarz inequality to

(28) together with (27), the following relation is
given:
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�����
Xk
j¼0

Zxjþ1

xj

�
f ðx;uÞ� f

�
cj;u

�
cj
���

dx

�����
�
Xk
j¼0

�
LjþLj:~Lj

� Zxjþ1

xj

��x�cj
��dx

�
Xk
j¼0

�
LjþLj:~Lj

�" Zxjþ1

xj

12dx :
Zxjþ1

xj

��x� cj
��2dx

#1
2

¼
Xk
j¼0

�
LjþLj:~Lj

�nxjþ1�xj
3

h�
xjþ1� cj

�3þ �xj� cj
�3io1=2

ð31Þ
Then, the optimization problem (25) is trans-

formed to the following form:

min
cj2½xj;xjþ1�

Xk
j¼0

�
LjþLj:~Lj

�
nxjþ1 � xj

3

h�
xjþ1 � cj

�3 þ �xj � cj
�3io1=2

ð32Þ

It is easy to get the optimal solution of (32) as

4¼
ffiffiffi
3

p

6

Xk
j¼0

�
LjþLj:~Lj

��
xjþ1 � xj

�2 ð33Þ

with cj ¼ ðxj þxjþ1Þ=2 this means that when the
optimization problem (32) is solved, the approxi-
mate solution of uðxkþ1Þ can be determined as
follows:

ukþ1¼u0þ
Xk
j¼0

�
xjþ1�xj

�
f
	xj þ xjþ1

2
;u
	xj þ xjþ1

2


!

ð34Þ
To put it differently, the midpoint formula (34)

was obtained through the solution of an optimiza-
tion problem. It is worth noting that in this case, the
arrangement of grid points is not constrained,
making it a crucial aspect. As a result, a fresh opti-
mization problem is formulated as follows:

F¼ min
x0 <x1 <…<xkþ1

4 ð35Þ

In other words, the optimization problem (35)
determines the distribution of grid points, enabling
the use of formula (34) and the Euler method to
approximate the solution ukþ1. This approach offers
the potential for greater accuracy than using equi-
distant grid points. However, formula (34) includes
an unknown term, uðxj þ xjþ1=2.Which can be
simplified using the Euler formula.

u
	xj þ xjþ1

2



zuk þ

xjþ1 � xj
2

f ðxk;ukÞ ð36Þ
Formula (34) is rewritten as

ukþ1¼u0 þ
Xk
j¼0

�
xjþ1�xj

�
:f
	xj þ xjþ1

2
;
xjþ1 � xj

2
f
�
xj;uj

�

ð37Þ

As compared with the differential method, the
obtained functions (19) and (33) are similar, when
the Lipschitz constants Lj and ~Lj are replaced by Mk
and Nk, respectively.
As shown, the two optimization problems (19) and

(35) are constructed to determine the nonequivalent
girds x0 < x1 <…< xk such that the approximate so-
lution ukþ1 to uðxkþ1Þ has more accuracy than that by
using the equivalent grids. Furthermore, when we
consider the grids a ¼ x0 < x1 <…< xn ¼ b and the
error estimate on all the grids xk ðk ¼ 1; 2…; nÞ, the
optimization problem (7) can be reread as

min
Xn�1

k¼0

juðxkþ1Þ�ukþ1j ð38Þ

4. Numerical results

This section presents numerical results to
demonstrate the efficacy of the PSO method.
Example: Initial value problem of the first order

ordinary differential equation. Consider the
following problem:
Example 1:8>><

>>:
duðxÞ
dx

¼ 2x3 � u
x
;x>1

uð1Þ ¼ 4
5

ð39Þ

With the exact solution

uðxÞ¼2
5
x4 þ 2

5x
ð40Þ

First, let us construct an optimization problem
according to (19) in terms of (39)

f ðx;uÞ¼2x3 � u
x

ð41Þ
Meaning that����vfvx

����¼ ���6x2þ u
x2

�������vfvu
����¼ 1

jxj ð42Þ

We further have the following estimates:

Mk¼ max
x2½xk ;xkþ1�

h
6x2þ u

x2

i
�6x2kþ1 þ

1
x2k

: max
x2½xk ;xkþ1�

juj
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Nk¼ max
x2½xk;xkþ1�

1
jxj¼

1
xk

Lk¼ max
x2½xk;xkþ1�

���2x3�u
x

����2x3kþ1 þ
1
xk

max
x2½xk;xkþ1�

juj ð43Þ

Then, it follows

MkþNk:Lk�6x2kþ1þ
2x3kþ1

xk
þ 2
x2k

max
x2½xk ;xkþ1�

juj ð44Þ

From the last relation the value of max
x2½xk;xkþ1�

juj is

unknown. Hence, the main term is related to the
nodes, which extracted to yield the following
function:

F¼
Xk
j¼0

�
xjþ1 � xj

�2 
6x2jþ1þ

2x3jþ1

xj
þ 2
x2j

!
ð45Þ

The optimization problem

min
x0 <x1 <…<xkþ1

F ð46Þ

is used to determine the values of the nodes.
The computation formula to determine the value of
u(x) as follows:

ukþ1¼u0þ
Xk
j¼0

�
xjþ1�xj

��
2
	xjþxjþ1

2


3

� 2
xjþ1þxj

�
3xj�xjþ1

2xj
ujþ

�
xjþ1�xj

�
x3j

� ð47Þ

By using Particle Swarm Optimization, we can
find optimal solution of (46). For numerical com-
putations it is assumed that u ¼ 0:2 and the constant
c1 ¼ c2 ¼ 0.5. The particle x is considered as (kþ2)
dimensional vector:

x!¼ðx0;x1;…;xkþ1Þ ð48Þ
Subject to the condition

1¼x0 <x1<… <xk <xkþ1 ¼ c ð49Þ

Where c is a specified constant. The number of the
swarm's particles is 20. Assumed k ¼ 4 and xkþ1 ¼ 2.
We can see from Fig. 2 that there is a rapid
decreasing in the values of F then tends to a con-
stant value with the increasing in the generation
number. When ‘F’ become a constant value that
means an optimal and stable solution has been ob-
tained. The nonequidistant grid points that have
been computed are given as follows:

ð1;1:23717507;1:47559418;1:68708177;1:8446576;2Þ
ð50Þ

By using (47) and the nonequidistant grid
points, the approximate solution can be obtained as
u5 ¼ 6:609287. When the equidistant grid points and
Euler method we obtain ~u5 ¼ 5:6813. When the
equidistant grid points and Runge-Kutta Method
were used we obtained u5 ¼ 6:5998.The exact solu-
tion is uð2Þ ¼ 6:6. Clearly, the solution u5 ¼ 6:609287
which determined by PSO is more approximate to
the exact solution uð2Þ ¼ 6:6 than ~u5 ¼ 5:6813 which
is determined by Euler Method but slightly less
approximate than u5 ¼ 6:5998 which determined by
Runge-Kutta. Accordingly, we report that the PSO
method more accurate than the Euler method.
However, in linear differential equations, the
Runge-Kutta method is slightly more accurate than
the PSO method.
To be sure that PSO has really low errors, the

values of u5 computed at xkþ1 ¼ 2; 3; 4; 5; 6 with k ¼ 4
and shown in Table 1. It is found from Table 1 that
the values of u5 computed by PSO is really close to
the exact ones uðxkþ1Þ and the error percentage
doesn't exceed 0.25% even if the number of non-
equidistant grid points still only 6 as shown in Fig. 3.
Let's discover the effect of increasing the number

of nonequidistant grid points on the error and error
percentage. Let's determine the approximate value
of u5 at xkþ1 ¼ 5 using 6; 7; 8; 9; 10 nonequidistant

Fig. 2. The relation between F and generation number.

Table 1. Comparisons between PSO results and exact solution at
different xkþ1.

xkþ1 Exact
solution

u5 Error Error
percentage

Consumed
Time (s)

2 6.6 6.6092 0.0092 0.139% 7.96e-5
3 32.533 32.6008 0.0478 0.147% 4.57e-5
4 102.5 102.7044 0.2044 0.199% 4.53e-5
5 250.08 250.6249 0.5449 0.218% 4.67e-5
6 518.4667 519.4615 0.9948 0.192% 5.19e-5
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grid points. We can see from Fig. 4. That increasing
the number of nonequidistant grid points increases
the accuracy of approximate solution. In Table 2 we
can see the effect of increasing the number of non-
equidistant grid points on the accuracy of the
approximate solution obtained by PSO. It is clear
that increasing the number of nonequidistant grid
points increase the accuracy of the obtained values
of uðxkþ1 Þ. The error percentage decreases with the
increase on nonequidistant grid point as shown in
Fig. 5. Now, let's see the effect of increasing the
number of nonequidistant grid points on the re-
sidual as shown in Fig. 6, Table 3.

5. Conclusion

In Euler method always deals with equidistant
grid points for numerically solving ordinary differ-
ential equations and that make the approximate
solution far from the exact one and with the
increasing of iteration number, the error of
approximate solution versus the exact one increase,
the approximate solution could be greatly away
from the exact solution. In PSO method deals with
nonequidistant grid points which make the
approximate solution really close to the exact one
with a low error percentage. The main findings are
given as follows.

Fig. 3. The distribution of Error percentage versus XKþ1.

Fig. 4. The variation of values of approximate solution and the exact
solution versus the number of nonequidistant grid points.

Table 2. Comparisons between PSO results and Euler results and their
errors at different xkþ1.

xkþ1 Exact
solution

PSO Error
of PSO

Euler Error
of Euler

2 6.6 6.6092 0.0092 6.60918 0.00918
3 32.533 32.6008 0.0478 32.6043 0.0713
4 102.5 102.7044 0.2044 102.7571 0.2571
5 250.08 250.6249 0.5449 250.7494 0.6694
6 518.4667 519.4615 0.9948 519.9069 0.4402

Fig. 5. The variation of error percentage versus the number of non-
equidistant grid points.

Fig. 6. The residual versus the number of nonequidistant grid points.

Table 3. Comparisons between the approximate values of u5 at different
number of grid points.

Number of
nonequidistant
grid points

Exact
solution

u5 Error Error
percentage

Consumed
Time (s)

6 250.08 250.6249 0.5449 0.217% 4.67e-5
7 250.08 250.4188 0.3388 0.135% 5e-5
8 250.08 250.3873 0.3073 0.122% 6.12e-5
9 250.08 250.3282 0.2482 0.099% 7.77e-5
10 250.08 250.3074 0.2274 0.091% 8.27e-5
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(1) Using nonequidistant grid point can increase the
accuracy of the approximate solution and be
more effective that equidistant grid points of
Euler method.

(2) The nonequidistant grid points‘ positions can be
determined by constructing and solving an opti-
mizationproblemdependingon theerror estimate.

(3) Increasing the number of nonequidistant grid
points increases the accuracy of the approximate
solution and decreases the error percentage.

(4) Runge-Kutta method has a great accuracy in
determining the approximate solution and
slightly better than the nonequidistant grid
points of PSO in solving linear first order ordi-
nary differential equation.

In conclusion, the study proves that using non-
equidistant grid points increasing the accuracy of
the approximate solution. Increasing the number of
nonequidistant grid points decreases the error. PSO
method more accurate than Euler method.
In the future work, the PSO method could be used

to develop some methods which using in solving
ordinary and partial differential equation like finite
element method. Making a comparison between
Runge-Kutta and PSO methods in solving nonlinear
ordinary differential equations and comparing their
accuracies.
The list of equations legend.
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