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REVIEW

Deep Learning Techniques for Efficient Evaluation of
Asphalt Pavement Condition

Kamel Mahdy a,*, Ahmed Zekry b, Mohamed Moussa c,d, Ahmed Mohamed c,d,
Hassan Mahdy a, Mohamed Elhabiby a,d

a Public Works Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt
b Electrical and Computer Engineering Department, Queens University, Ontario, Canada
c Geomatics Engineering Department, University of Calgary, Alberta, Canada
d Micro Engineering Tech Inc., Cairo, Egypt

Abstract

For the last few decades, researchers have been devising a simple and cost-effective method to evaluate pavement
distresses to give decision-makers adequate feedbacks about the pavement condition of a certain road. Fortunately, with
the evolution and progression of computer vision tools and techniques, good results had been achieved regarding the
detection, classification, and quantification of road distress. In this paper, a new efficient process of road distress analysis
using deep learning models is introduced. This new process was tested on a collected road dataset to evaluate the ef-
ficiency and speed of this low-cost road maintenance system. Promising results were obtained from the proposed process
based on the deep learning model used with an outstanding performance of ~400 fps and distress detection every ~5 cm
for a vehicle moving at 40 km/h. Furthermore, the output of the developed process was used as an input for the Pavement
Condition Index (PCI) calculation module to determine the pavement condition of the road on a single-day mission. The
proposed system focuses on detecting some specific types of distresses: Alligator cracks, longitudinal cracks, transverse
cracks, block cracks, lane longitudinal cracks, reflective cracks, and sealed cracks. Experimental results show that this
process based on deep learning models achieved promising results of ~5% difference from the true PCI, currently
calculated in a month, just in a single day using very low-cost methods.

Keywords: Deep learning, Neural architecture search network (NASNET), Pavement, Pavement condition index (PCI),
Pavement distresses, Pavement maintenance management system (PMMS), Pavement management system (PMS, )

1. Introduction

I n 2021, nearly 41% of the United States federal
transportation and infrastructure expenditure

was directed toward highway transportation; this
was more than 60 billion USD with an annual in-
crease of ~20% from the previous year (USA Facts,
2022). Road quality is an essential part of a country's
infrastructure and growth: It denotes its economic
level, as defined by the World Bank as a rating in-
dicator (Queiroz and Gautam, 1992). Considering
this solid data, it is clear that every cent spent on
maintenance of the highway road network will lead
to savings of billions of dollars in the future. The

highway road network that serves cities worldwide
is comprised mostly of asphalt paved roads. For
example, the US road network is over 6.58 million
kilometers in length, approximately 65% of this is
paved roads (‘How Preventive Asphalt Road Main-
tenance, 2022). Needless to say, Asphalt pavement
serviceability has a great impact on economic
growth since it is a crucial component of the coun-
try's infrastructure and observing its condition is
vital, since the degradation of its condition may
result in inferior service quality of the whole trans-
portation network. Therefore, early detection of
pavement distresses and performing maintenance
are essential to ensure pavement quality during its
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lifecycle as these have a positive impact on driving
safety, socio-economic development of the country,
and an acceptable level of road serviceability.
Maintaining a pavement to be in good condition is
four to five times less expensive than regularly
renovating one that is in poor condition (Road
Traffic Technologies, 2022). Studies like (Road
Traffic Technologies, 2022) have proven that a
poorly maintained system could increase life cycle
costs. Recently (Mohamed et al., 2022a) reviewed
and spoke about the efforts made by earlier studies
to create mechanisms for making decisions on the
construction and maintenance and repair (M and R)
of flexible pavements at the project level. The study
provided and conferred the favored perspectives of
management strategies, system goals, system limi-
tations, evaluation procedures, indicators, and
models, as well as risk evaluations. As a result,
many perspectives on the decision-making systems
were discovered, and various restrictions and diffi-
culties with regard to coming up with ideal plans
were realized. Moreover (Mohamed et al., 2022b;
Hall et al., 1991), presented some viewpoint reviews
for mitigating the economic and environmental
consequences triggered during the road pavement
life cycle and reviewed the key findings of the prior
studies. It was discovered that the management
structure, rehabilitation tactics, and case setting all
had intricate relationships with and significant ef-
fects on the induced costs to the economy and
environment.
The organized practice of maintenance and reha-

bilitation works to maximize the benefits for trans-
portation users and minimizes expenses to the
administration or agencies responsible for pave-
ment management. Acknowledged as the Pavement
Management System (PMS), such a system allows
agencies to assign resources, capital, staff, etc., effi-
ciently (Tavakoli et al., 1992). A PMS is a system that
involves the coordination, scheduling, and comple-
tion of all actions carried out by a highway agency to
deliver acceptable pavement conditions for road
users (Abo-Hashema et al., 2006). It is a highly
structured, rational system that attempts to achieve
the best usage of the available funds to provide
pavements in good condition for the public. This
can be done by comparing investment alternatives,
design, construction, maintenance, and evaluation
activities, and using available approaches and stra-
tegies. One of the most prominent methods of
adding efficiency to the current processes is to
develop predictive models (Younos et al., 2020) for
the purpose of PCI calculations and estimations.
In this research, a less expensive and less labor-

intensive full process for road pavement

maintenance is explored. The process proposed is
less accurate in PCI estimation by a difference of 5%
from the true PCI estimate of the visual inspection
method, but it provides accurate results to the
ordinal PCI rating of Failed to Excellent. Meaning
that this 5% error does not change the PCI ordinal
rating from Failed to Very Poor or from Poor to Fair.
In addition, using a video from a smartphone cam-
era saves a lot of time and effort with a complete
process instead of the current single deep learning
model solutions.

2. Literature review

The pavement maintenance management system
(PMMS), a branch of the Pavement Management
System (PMS) (see Fig. 1), is a structured method for
evaluating the condition of a given pavement Abo-
Hashema and colleagues (Abo-Hashema et al.,
2006). A cost-effectiveness analysis of different
maintenance options is also performed by the sys-
tem. Considering the available budget, the system
can prioritize maintenance activities that ensure the
best results. Each road section is inspected, visually
or automatically, rated, and recorded on a database.
The collected data are analyzed using pavement
management software to provide recommendations
and predict future pavement conditions.

2.1. Related works

A case study was conducted with the integration
of new PMMS software with GIS Almuhanna and
colleagues (Almuhanna et al., 2018). Calculated PCI
values for a chosen zone of a 56.8 km long road
network in Karbala, Iraq, using PAVER (‘TM 5) and
ArcGIS software. The crucial PCI value was used to
illustrate the need for road network maintenance
and rehabilitation. PAVER 6.5.7 was integrated with
GIS to visualize the outputs and display the priority

Fig. 1. Pavement maintenance management system (PMMS) and
pavement management system (PMS) (Abo-Hashema et al., 2006).

2 K. Mahdy et al. / Mansoura Engineering Journal 48 (2023) 1e8



for network maintenance and rehabilitation based
on the crucial PCI value.
The aim of this was to give a wider overview of the

related works regarding [mostly vision-based]
automatic road analysis systems.
The main focus here is to introduce methods used

by earlier systems and research Siriborvor-
nratanakul (2018) used an Automatic Road Distress
Visual Inspection System using an onboard camera
to detect road stresses. This study focused on one
specific type of pavement distress called potholes.
Learning techniques of Support Vector Machine
(SVM) and Local Binary Patterns (LBP) cascade
classifier were used in this study comprising eight
experiments on different images of potholes with
different pixel size. This system setup was easy and
low cost, though its obvious disadvantage was that it
was not capable of detecting or recognizing road
distresses with significant three dimensional visual
characteristics.
Saar and Talvik (2010) proposed a detection and

classification system using neural network focusing
on Longitudinal, Transverse and Alligator cracks.
The overall accuracy of this system was 89.3% when
crack detection and classification were combined;
12% of the alligator crack images were classified as
longitudinal or transverse cracking. This result
could have been caused by thin cracks that the
system was unable to detect Shen (2016) developed
a model for crack detection based on video image
processing by collecting images for different types
of cracks and constructing a condition library for the
road surface. With the aid of the skeleton extraction
mathematical morphology method, the study suc-
cessfully identified the crack category, and then
created a pavement crack recognition software sys-
tem using MATLAB software.
An AI based system was developed by Radopou-

lou and Brilakis (2017) that automatically detected
several pavement distresses at the same time, such
as longitudinal and transverse cracks, patches, and
potholes using parking camera video data gathered
from local streets in Cambridge, U.K., employing a
semantic texton forests (STFs) algorithm as a su-
pervised classifier. Accuracy reached by the system
was over 82%, with a precision of more than 91% for
longitudinal cracks, over 81% for transverse cracks,
over 88% for patches, and more than 76% for
potholes.
Novel methods of using machine learning and

deep learning algorithms in calculating PCI are pio-
neered by the researchers in Majidifard and col-
leagues (Majidifard et al., 2020a). These researchers
used the Yolo family of models, especially YoloV2
Redmon and Farhadi (‘Redmon and Farhadi, 2017),

to detect, classify, and localize distresses along the
road. These authors also created a dataset Majidifard
and colleagues (Majidifard et al., 2020b) from Google
Images and labeled it to train and test the derived
models. On using Google Images, some artifacts
were revealed in the images, as shown in Radopou-
lou and Brilakis (2017), due to image stitching. Also
demonstrated were the results from the Fast-RCNN
model trained on the dataset. Almost all the models
and algorithms discussed so far do not address the
need for a real-time detection and classification of
road distresses for the efficient and regular calcula-
tion of the road PCI.
In this paper, a novel method is introduced for the

real-time detection and classification of different
road distresses. This go further and perform PCI
calculations on-the-fly. The new proposed method
will usher the era of low-cost mobile road inspection
units. A cost and time comparison between the
conventional method of PCI calculation and the
developed novel low-cost cloud-based deep-
learning-based method (see Table 1).

3. Methodology

In this section, the proposed process and the
methodology of testing in a real collected dataset are
described. The process starts with a smartphone
App to collect the positioned image frames for the
road data acquisition process (see Fig. 2). Next, the
App sends visual data to a deployed detection and
classification model on a cloud service. Following
that, a PCI calculation endpoint processes the
output classification for PCI determination of the
road.
The major advantage to the developed process is

the low-cost of the hardware required for the data
acquisition. In addition, the logistics need to include
human and time resources at a significantly lower
level. For the 40 km road section that was surveyed,
data was collected for testing using a stop and go
strategy in a 2e3 days’ work load. In this process,

Table 1. Cost and time comparison between conventional and the pro-
posed process.

Elements Conventional method
(Visual inspection)
Cost/day (USD)

Our process
Cost/day (USD)

Vehicle 25 25
Driver 20 20
Expert Engineer 25 e

Technical office Engineer 20 20
Cloud services e 5
Time Taken 2 months 1 day
Cost/120 Km 5400 70
Cost/1 Km 45 0.58
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1 h of driving time plus a fraction of that for the data
processing is needed. This leads to a significant
saving of time and resources.

3.1. Data acquisition app

The data acquisition App was developed to work
on Android smartphones, collecting camera and
location data. The collected data are then uploaded
to cloud storage. In this case, Amazon Web Services
(AWS) were used for all the cloud services needed,
e.g., storage, APIs, deep learning model deploy-
ment, etc.
The smartphone was tested in two scenarios,

attached with a holder to the wind shield, and
attached directly to the vehicle bumper. Having the
phone attached to the vehicle bumper enabled the
capturing of more road portions and from an
optimal angle for the images captured.
An advantage for placing the smartphone holder

on the windshield is that it will be safer, particularly
during rain or snowy weather. However, in this
case, the main testing dataset was collected in
Upper Egypt on Desert Road, so the smartphone
being positioned on the bumper was not an issue,
and the output images were clear for the model to
detect.

3.2. Deep learning model

In this sub section the model used for training and
testing of the road distress classification problem are
described. The problem dictates that an image
classification model is used. The problem is seen as
a multi-class image classification, i.e., the model
takes as input a single frame RGB image and out-
puts the probability of the existence of the distress
class in the present two-dimensional image.
Following this, the training procedure was explored.
Training the model had different objectives than the
nominal objective of accuracy enhancement. Using
the Neural Architecture Search Network (NASNET)
mobile model advantages, the model was trained to

reach at least the same accuracy while maintaining
the small size and fast inference properties of the
backbone model. In the Results section of this
paper, a comparison of the results of two different
models are presented signifying the state-of-the-art
performance of the deep learning model. In addi-
tion, the results are presented after the successful
deployment of this model to an AWS Sage Maker
endpoint as part of the PCI calculation process.

3.3. Model architecture

The model used, which is based on the NASNET-
Mobile model Zoph and colleagues (Zoph et al.,
2018), is a backbone model. The model has many
advantages regarding the efficiency, speed, and
model size optimization. The NASNET family of
deep learning models were designed by the Google
Brain team Majidifard and colleagues (Majidifard
et al., 2020b). These models have a unique feature.
Their model architecture resulted from rigorous
training and testing for the best possible model
design architecture and hyperparameter tuning.
This means that the model layers are highly opti-
mized to give the best possible results for a given
problem. This type of classification model is fairly
recent and, by using the output of a deep learning
approach to come up with the architecture for
another deep learning problem, it is very innovative.
The usability of the NASNET family of models will
be tested in the problem at hand, as these have
proven to be efficient for solving such problems.
The NASNET-Mobile model consists of several

building blocks (see Fig. 3). The number and order
of these building blocks were estimated out of a
learning-based approach. The exact model
mentioned in Majidifard and colleagues (Majidifard
et al., 2020b) is shown in Fig. 3. The building blocks
used are called cells.
The NASNET-Mobile model utilizes two types of

cells, namely, a normal cell, and a reduction cell. The
algorithm behind the NAS, stands for Network Ar-
chitecture Search, model optimization is to estimate

Fig. 2. High-level architecture of the proposed low-cost cloud-based road
PCI calculation process.

Fig. 3. NASNET model architecture as consecutive normal and reduction
cells.
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the number of consecutive normal and reduction
cells to fit the performance requirements of the
problem and dataset at hand. As opposed to the
classical grid search approaches, NAS models search
for the architecture properties of the deep neural
network. In this research, the reduced version of the
original model, NASNET-Mobile was used.
This version of the NASNET model comes with

only 5 normal cells per normal layer. The normal
cell layers are interleaved with reduction cells. The
main difference between the reduction cell and the
normal cell is that the reduction cell starts with a
bigger stride. The larger stride is important to scale
down the size of the feature maps along the network
chain of cells. So, map size reduction is the re-
sponsibility of the reduction cells, hence the name.
This kind of architecture comprising of two standard
cell structures give more flexibility to change and
explores different architecture performances.
A model head with the suitable number of distress

classes was added. The model is estimating the
probability of the following road distresses: Reflec-
tive Cracks, Block cracks, Alligator cracks, Sealed
transverse cracks, Sealed longitudinal cracks, and
Lane longitudinal cracks. The cross-entropy loss in
equation (3.1) was used for computing the loss
during the training of the model.

L¼ �
X5

i¼0

ti log
�
pi
� ð3:1Þ

Where ti is the true label and pi is the output
probability that this distress exists in the current
input frame.

3.4. Training procedure

For the deep learning model training, a dataset
made available by the researchers in Radopoulou
and Brilakis (2017) was used. The dataset comprised
of 7237 labeled images collected from Google Street
map images and manually labeled by experts for the
different road distress types. The model used was
trained for 50 epochs on a batch size of 32 images.
The images needed to be resized as a preprocessing
step before the input layer for the model could be
finalized. A head of different classification classes
was added to the model to define the output classes
of the road distress features. The dataset was split
into 70% training and 30% testing sets. The mini-
batch was shuffled every epoch during training. The
model was trained on an RTX 2070 GPU and tested
on the same GPU before being deployed to the
AWS Sage Maker endpoint.

3.5. Cloud-based deployment

The cloud solution starts with an upload of the
captured images (see Fig. 4). The cloud services used
were AWS API Gateway, which received requests
with the uploaded image stream. The tested images
were then uploaded to an S3 bucket storage. After-
wards, an AWS Lambda function was triggered
whenever a new test image was present in the S3
bucket. This function is a script that pre-processes the
image, sends it to the deployed deep learning model,
and then interprets the output results. In the end, the
result was added to a record base for PCI calculation
and stored in another S3 bucket. The image with the
location and distress type is then used to determine
whether there is a distress in that location. With these
results a database of georeferenced road distresses is
built. The process does not classify the severity, so an
average severity to be medium is assumed. In future
work a more precise model to determine the severity
of the road distress is targeted.

3.6. Process testing dataset

The dataset collected for the testing and validation
of the process was derived from a 50 km road sec-
tion on the Upper Egypt Desert Road between Beni
Suef and El-Minia (see Fig. 5). The vehicle had the
data collection App installed on the smartphone
attached to the bumper. One-way drive was
collected in one of the two-lane road.
The output dataset had a low angle (see Fig. 6),

where the smartphone collecting data was attached
to the vehicle bumper. The vehicle was driving at a
120 ░km/h speed. The dataset was in the form of
20 k low resolution frames of highway road section.

4. Results

First, the model's results shown in Table 2 will be
discussed on the road distress classification problem

Fig. 4. System architecture for the cloud-based AI road distress detection
and classification service.
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with the objective of achieving the maximum
possible performance, in terms of speed and model
size, using the minimum acceptable accuracy. The
models were tested to be mobile-ready so that they
could be used in real-time road inspection units.
Then, the overall performance of the PCI calculation
will be presented on the cloud-based process.

4.1. Evaluation metrics

The precision, recall and F1-score error metrics
are the suitable metrics for the application. The
precision represents a measure of how many correct
detections to the total number of detections from the
model. The recall is a measure of how many correct
detections to the total number of distress cases in
the dataset. An F1-score is an average of both
metrics.
The same evaluation metrics were used as the

ones used in Radopoulou and Brilakis (2017). The
weighted F1-score is the most accurate error metric
to use for this application. Therefore, the results
could be easily compared with Radopoulou and
Brilakis (2017) state-of-the-art results. Also

compared were hardware performance and model
size to show how superior this model is compared
with the models these previous researchers resorted
to. Further, this shows how compatible this new
model is for real-time applications.

4.2. Experimental results

As depicted in Table 3, the 5% and 10% are PCI
values. The 10% PCI was calculated using manual
visual inspection, while the 5% PCI was calculated
using the deep-learning-based process. The pro-
posed model slightly outperformed the Faster.
ReCNN model in the average weighted F1-score.

As for the model size, a 90% reduction was ach-
ieved, compared with the most accurate Yolo-v2
model size. It also achieved 87.5% reduction in size
compared with Fast-RCNN, the smaller of the two
models. In terms of speed, this new model achieved
4x frames per second metric, which makes it 4x
times faster than Yolo-v2, the fastest of the two
models in Radopoulou and Brilakis (2017).
Although, the proposed model did not exceed the

Yolo-v2 model in terms of overall accuracy using the
weighted F1-score metric, it did achieve an overall
recall score of 100%. This means that the developed
model gave zero false negatives through the whole
testing set of the dataset. This recall score was
crucial for the calculation of the PCI score of the
road, because false negatives in the model output
will lower the overall score for the road and may
result in the decommissioning of the road for
maintenance purposes, while not reflecting the real
PCI. The developed model's 100% recall score will
save additional costs due to the unnecessary main-
tenance and road closures.
In addition, the proposed model's F1-score ach-

ieved higher results than the Faster-RCNN model.
This deemed the use of the Faster-RCNN model
useless compared with this new model that per-
formed better in terms of accuracy, speed, and size.
Furthermore, the proposed model outperformed

the Yolo-v2 model in classification of the sealed
transverse cracks and lane longitudinal cracks,
which are two of the most important and widely
common road distresses along highways. It also,
came very close to the performance of the Yolo-v2
model in classifying the reflective cracks.

4.3. Process results

When testing the new process on the Upper Egypt
Desert Road 50 km dataset, two methods of PCI
calculation were compared. The first was the tradi-
tional stop-and-go visual inspection. The low-cost

Fig. 5. Upper Egypt Desert Road dataset collected for process testing and
verification.

Fig. 6. A sample frame from the Upper Egypt Desert Road dataset.

6 K. Mahdy et al. / Mansoura Engineering Journal 48 (2023) 1e8



cloud-based process was then used to demonstrate
the advantages of the new method. The results,
shown in Table 3, reveal that the proposed low-cost
cloud-based deep learning process can get a PCI
calculation accurate to a 5% difference of the true
PCI in 1 day of operation, and at a much lower cost
as that shown in Table 1, compared with the con-
ventional visual inspection methods that consumes
time and human resources.

5. Future work

As noted thus far, the proposed technique out-
performed the comparison the other approaches in
terms of size and speed, while giving an above
average performance, sometimes even out-
performing other deep learning models for some
distress types. These results will be enhanced by
labeling the resultant new road distress dataset and
use that for the training, testing, and evaluation of
the proposed model in comparison to other models
solving the same road distress problems.
In addition, the proposed process doesn't

currently provide a way to determine the severity of
the distress. In future work, a pixel-based semantic
segmentation model is to be used with image depth
estimation to provide an accurate severity estimate
for each distress in the image.
The proposed model will also be tested with that

of the original NASNET-Large model to evaluate
the performance of the mobile version to a non-real-
time one. It is expected that the proposed model will
outperform the other two models and become the
new state-of-the-art system in the road distress
classification problems.

5.1. Conclusion

In this paper, a new low-cost cloud-based deep
learning approach was proposed for near-real-time
PCI calculation. Within the developed process, a
real-time mobile-ready classification deep learning
model was designed for the road distress inspection
application. The proposed process produced a PCI
accurate to 5% difference from the true PCI pro-
duced by the manual visual inspection approach.
The used deep learning model showed 87.5e90%
reduction of model size and ~400% increase in
model inference speed compared with the current
road distress deep learning models state-of-the-art.
It also showed that the proposed mobile model
outperformed the state-of-the-art system in most
common road distress features. These results have
the potential to lead to a breakthrough in the eco-
nomics of road inspection methods.
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Table 2. Training results compared with the models in (Radopoulou and Brilakis, 2017) trained on the same road distress dataset.

Yolo v2 Faster ReCNN Proposed model

Distress type Precision Recall F1 Precision Recall F1 Precision Recall F1

Reflective Crack 0.93 0.76 0.84 0.73 0.72 0.72 0.7 1.0 0.82
Block crack 0.93 0.79 0.85 0.82 0.59 0.68 0.44 1.0 0.61
Alligator crack 0.91 0.74 0.82 0.81 0.43 0.57 0.15 1.0 0.27
Sealed transverse crack 0.93 0.83 0.87 0.83 0.68 0.75 1.0 1.0 1.0
Sealed longitudinal crack 0.93 0.79 0.85 0.81 0.54 0.65 0.26 1.0 0.42
Lane longitudinal crack 0.94 0.57 0.71 0.75 0.3 0.42 0.63 1.0 0.78
Average 0.93 0.74 0.82 0.79 0.54 0.63 0.53 1.0 0.65
FPS 93 30 410
Model size 202.7 MB 159.74 MB 20.6 MB

Table 3. PCI calculation tests between conventional methods and our
proposed process.

Conventional method
(Visual inspection)

Proposed
process

Calculated PCI 10% 5%
Time Taken 25 days ~1 day
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