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ORIGINAL STUDY

An Image-processing Technique for Studying the
Flame Structure Using Single Shots of
OH-PLIF Diagnostics

Hazem M. Al-Bulqini a,*, El-Shafie B. Zeidan a, Farouk M. Okasha a, Mohy S. Mansour b

a Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Egypt
b Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, Egypt

Abstract

Laser diagnostic techniques have played a crucial role in enhancing our understanding of combustion processes.
Among these techniques, Planar Laser-Induced Fluorescence (PLIF) using OH radicals has proven to be a powerful tool
for investigating reaction zones, flame curvature, and flame surface density in diverse flame modes including premixed,
non-premixed, and partially premixed flames. However, to fully harness the potential of experimental measurements
and laser diagnostics in studying combustion processes, a comprehensive grasp of image-processing techniques and
tools is essential for effectively analyzing captured images and extracting valuable information. In this study, we present
a detailed algorithm that facilitates the conversion of qualitative single-shot OH-PLIF images into quantitative data
regarding flame structure under different conditions, encompassing flame curvature, flame surface density, and flame
front angle. This methodology outlines the sequential steps necessary for extracting physical properties from images.
Furthermore, we showcase results obtained using this algorithm, using flames under varying conditions to validate its
effectiveness, compare studied parameters across different flames, and demonstrate its applicability to a wide range of
combustion processes. Otsu's method of thresholding provides more accuracy in detecting the reaction zone over a wide
range of conditions. Also, the Gaussian smoothing method with a standard deviation value of s ¼ 2 provides the most
suitable way of smoothing without removing valuable data. The comparison between different flames results in a higher
value of zero curvature (P(k) ¼ 3.25) and lower values of flame front angle (P(q)~0) when the flame shape has a less
turbulent nature and more vertical jet shape.

Keywords: Data processing, Flame curvature, Flame surface density, High-speed images

1. Introduction

D espite being an aging method of energy gen-
eration, combustion continues to be a promi-

nent source of energy that plays a crucial role in
various essential activities such as heating, trans-
portation, and electricity generation. Its significance
is expected to persist in the coming years. Many
countries, particularly those with abundant fossil fuel
resources, heavily rely on combustion for power
generation, propulsion, and vehicular operation.
Research efforts aimed at enhancing the efficiency
and environmental friendliness of engines, gas

turbines, and furnaces, as well as optimizing chem-
ical processes and minimizing fire damage, have the
potential to greatly enhance the quality of life
worldwide. These advancements will not only
improve competitiveness and sustainability but also
have positive impacts on the environment, economy,
and employment opportunities (Ald�e et al., 2011).
To optimize and control combustion processes

effectively, it is crucial to have measurement
methods capable of capturing important factors such
as temperature, species concentration, velocity, and
particle properties. However, the complex nature of
combustion, characterized by high temperatures,

Received 4 February 2023; revised 27 June 2023; accepted 3 July 2023.
Available online 8 December 2023

* Corresponding author. Mechanical Power Engineering Dept., Faculty of Engineering, Mansoura University, Elgomhoria St., Mansoura City
35516, Egypt.
E-mail address: h.albulqini@mans.edu.eg (H.M. Al-Bulqini).

https://doi.org/10.58491/2735-4202.3071
2735-4202/© 2023 Faculty of Engineering, Mansoura University. This is an open access article under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

mailto:h.albulqini@mans.edu.eg
https://doi.org/10.58491/2735-4202.3071
https://creativecommons.org/licenses/by/4.0/


high pressures, turbulent gas flows, a wide range of
fuels, and potential phase transitions, presents sig-
nificant challenges in this field (Ald�e et al., 2011).
Fortunately, the advancement of laser diagnostic
tools in recent decades has significantly enhanced
our understanding of combustion processes through
experimental progress. These nonintrusive tech-
niques offer several advantages compared with other
measurement methods, as they cause minimal noise
and disturbance to the measured data. Laser di-
agnostics enable precise measurements while mini-
mizing interference, allowing for more accurate
analysis and control of combustion processes. Planar
laser-induced fluorescence (PLIF) is widely recog-
nized as a standard tool for visualizing the spatial
distributions of temperature and various combustion
intermediate products (Skiba et al., 2018a). In the
study of turbulent flames, there has been a signifi-
cant focus on depicting flame front positions and
structures. Among the different species, measure-
ments of OH dispersion have garnered the most
attention due to its high concentration in flames and
the synchronicity of OH transitions with the wave-
lengths emitted by powerful excimer lasers (Bockle
et al., 2000). For this reason, many researchers
considered this method in their work.
Accordingly, Gordon et al. (2008) used the PLIF

technique to examine the stability of methane tur-
bulent flames in a high-temperature vitiated co-flow
system. Also, Frank et al. (2005) utilized PLIF di-
agnostics to acquire two-dimensional measurements
of mixture fraction, temperature, scalar dissipation
rate, and forward reaction rate in turbulent partially
premixed flames with argon dilution. In their study,
Li et al. (2010) designed a coaxial jet burner to
generate turbulent flames and used concurrent sin-
gle-shot PLIF imaging of CH, OH, and CH2O to
visualize the local flame front structure. Their
objective was to investigate the influence of turbu-
lence eddies on the structure of the reacting zone.
Moreover, Kiefer et al. (2008) also used simultaneous
single-shot OH and CH PLIF imaging to investigate
the flame structure, with a particular emphasis on
obtaining quantitative statistical data for different
flames and calculating flame surface density.
Wabel et al. (2017) conducted a study using OH-

PLIF diagnostics to qualitatively identify the flame
regimes of premixed flames subjected to extreme
turbulence levels. They specifically investigated the
thickness of the preheated layer, the residence time of
eddies in the flame, and the reaction layers in com-
parison to laminar values. Furthermore, numerous
other researchers have adopted similar approaches to

study flame structure under various conditions, using
qualitative and quantitative methods based on their
specific areas of investigation (Carter et al., 2014, 2016;
Skiba et al., 2017, 2018b). To gain deeper insights
into the reaction zone of premixed flames, heat rate
measurements play a crucial role. Kariuki et al. (2015)
conducted simultaneous OH- and CH2O-PLIF
imaging in premixed flames to obtain heat rate
measurements. These measurements were obtained
by multiplying the OH- and CH2O-PLIF images on
a pixel-by-pixel basis after a prolonged detection
period. This approach builds upon the earlier

Nomenclature and symbols

B Blue color value
CH Methylidyne radical
CH2O Formaldehyde
CH4 Methane
dA Flame surface area, mm2

dL Infinitesimal flame front length, mm
dV Flame volume, mm3

G Green color value
G(x, y) Gaussian filter value
GRAYSCALE Value of a certain point on the grayscale

color model
H Burner height, mm
HCO Bicarbonate
i Integer counter for successive points on a curve
l Horizontal distance downstream the laser direc-

tion, mm
L/D Dimensionless mixing length
max Maximum value
min Minimum value
OH Hydroxyl radical
P Arbitrary point
P(q) The Probability Density Function of a certain value

of flame front angle
P(k) The Probability Density Function of a certain value

of curvature
PLIF Planar Laser-Induced Fluorescence
Q The neighboring point to P
R Red color value
r Flame radius, mm
Re Reynolds number
RGB Redegreeneblue color model
x Horizontal spatial coordinates
ẋ First derivative in the horizontal direction
€x Second derivative in the horizontal direction
y Vertical spatial coordinates
ẏ First derivative in the vertical direction
€y First derivative in the vertical direction
z/H Dimensionless elevation above the burner tip
q Flame front angle
k Flame curvature, mm�1

s Standard deviation
S Flame surface density, mm�1

F Equivalence ratio
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work of Najm et al. (1998), who established a correla-
tion between the formyl radical HCO and heat
release rates in laminar premixed flames. By using
these techniques, researchers aim to gain a better
understanding of the heat release processes occurring
within premixed flames.
Therefore, all of the aforementioned experimental

work necessitates a comprehensive approach that
involves not only conducting the measurements but
also utilizing image-processing techniques. Dealing
with a large volume of single-shot images requires
the extraction of relevant information by effectively
handling noise reduction, addressing shot-to-shot
variation, identifying areas of interest, performing
calculations, and comparing results under different
conditions. While many research papers primarily
focus on presenting the results, their description,
and comparisons, the importance of providing a
solid reference for the necessary tips and tricks in
handling this type of data and conducting one's
experiments and analyses should not be overlooked.
However, it is worth noting that these steps are
often briefly outlined in the existing literature. As a
result, new researchers may face challenges in
acquiring a comprehensive understanding of the
techniques involved in working with this type of
data. For instance, the early work of Baldini et al.
(Comelico and Milan, 2000) presented initial work
demonstrating the application of image-processing
techniques for combustion analysis, providing a
brief overview of the methodology. Subsequently,
Bayley et al. (2012) introduced a well-structured
explanation of the image-processing algorithm they
used to calculate flame curvature in a lean, partially
premixed swirl-stabilized flame. Also recently,
Wang et al. (2020) showcased in their paper a
detailed image-processing algorithm for measuring
flame stability in gas-fired combustion. Their study
demonstrated the effectiveness of the algorithm in
analyzing combustion phenomena and extracting
valuable insights from the images obtained.
In addition, Wang et al. (2015) used high-speed

schlieren/stereo imaging and image-processing
techniques to investigate the ignition process of a
methane diffusion-impinging flame. Boxx et al.
(2013) developed an image-processing routine to
autonomously identify and statistically characterize
flame-kernel events using planar laser-induced fluo-
rescence (PLIF) measurement. Besides, Darabkhani
et al. (2013) used photomultipliers, high-speed
photography, and digital image-processing tech-
niques to study the structure of stable and unstable
flame characteristics. Cui et al. (2021) studied a
new image-based fire detection and processing

technology using computer graphics, digital image-
processing, and computer vision technology. Tach-
tatzis and Lu (2014) proposed an optimized image-
processing technique to smooth flame contours for an
improved accuracy in the measurement of the 3-D
mean surface area ratio of a turbulent premixed
flame. Moreover, Villani and Aquino (2020) reported
the image acquisition process and the image pro-
cessing necessary to evaluate the geometric charac-
teristics of the propagating flame front. Shao (2007)
used edge detection operators for flame image
recognition and processing. Khalid et al. (2014) used
optical visualization and image-processing tech-
niques to determine the relation between mixture
formation and flame development of burner com-
bustion. Kim et al. (2015) investigated the variation of
flame behavior, including the flame structure, using
high-speed Schlieren photography and post-pro-
cessing analysis of the high-speed images.Wang et al.
(2018) applied special digital image-processing tech-
niques to visualize the weak blue flame and weak
yellow flameduring the ignition process of amethane
jet diffusion flame.
However, there are still gaps in the existing liter-

ature when it comes to image-processing algorithms
for combustion analysis, primarily due to two main
reasons. First, there is a lack of detailed explanations
and step-by-step analysis of the algorithms used,
leaving out crucial information about how to
address challenges encountered after imaging.
Second, there is a need for the development of a
comprehensive algorithm that can be applied to a
wide range of combustion physics, enabling the
study of flame structure in terms of flame curvature,
flame surface density, and flame front angle.
In this paper, we aim to fill these gaps by intro-

ducing a general algorithm for image processing in
combustion analysis. Our algorithm will be pre-
sented in detail, providing guidance for upcoming
researchers to quickly and comprehensively learn
about image-processing techniques for combustion
analysis. In addition, we will apply this algorithm to
various OH-PLIF images at different physics and
different types of fuels, conducting a statistical
analysis of flame curvature and flame surface den-
sity. By comparing the results obtained under
different flame conditions, we demonstrate the
versatility of this algorithm for studying flames in
diverse settings.

2. Methodology

Experimental setups are specifically designed to
generate images of flames. One commonly used
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technique for visualizing temperature and com-
bustion intermediate products’ spatial distributions
is planar laser-induced fluorescence (PLIF) (Skiba
et al., 2018a). Researchers have focused on studying
flame front positions and structures in turbulent
flames, with a particular emphasis on measuring the
dispersion of OH due to its abundance in flames
and its compatibility with excimer lasers that emit
powerful wavelengths (Bockle et al., 2000). Conse-
quently, many researchers have incorporated this
approach into their studies. In the following sub-
section, we describe the implementation of the OH-
PLIF system used to examine the structure of spe-
cific flames.
The setup comprises an Nd:YAG laser (Edge-

wave IS411-E) used for pumping a Rhodamine 6G
dye laser (Sirah Credo) to generate an emission with
a wavelength of 566 nm. Using a BBO crystal, the
second harmonic generation (SHG) of the pumping
wavelength (566 nm) produces an excitation wave-
length of 283 nm. This particular wavelength is well
suited for the A2S)X2P (1,0) transition necessary to
obtain the fluorescence signal. Laser sheet optics are
used to transform the laser beam into a laser sheet
measuring 1 mm in thickness and 100 mm in height.
To capture the OH fluorescence signal, a LaVision
high-Speed-Star 6 (HSS6) CMOS camera is used,
operating at a frame rate of 10 kHz. The camera is
equipped with a LaVision IRO lens-coupled two-
stage intensifier, as well as a UG1-bandpass filter
and a WG295-longpass filter. For more details about
those experimental setups, a proper explanation can
be found in (Mansour et al., 2017, 2020).
After generating images, each OH-PLIF image has

to go through many steps in corrections. These
corrections are as follows.

2.1. Laser beam inhomogeneity

The laser beam has an inhomogeneous distribu-
tion of energy most of the time due to many factors.
For example, a part of laser energy is absorbed in-
side the reaction zone instead of exciting the OH
radical, which leads to some gradient of error in
signal in the downstream direction of the laser
beam. If this error is not solved, misleading infor-
mation about the local OH intensity results and
gives low intensities in some regions due to the
energy absorption not due to real low values of OH
intensity. So, we need to know the gradient by
which the laser energy is absorbed and remove its
effect from images, so we can reproduce the real
values of OH radical in the generated images. We
deal with each image as a 2D matrix, and each cell of
the matrix has a certain value that represents the

local OH intensity at that position. So, we use
MATLAB software to deal with images and make
our corrections and calculations. Hence, for a large
dataset of n images, we create a 3D matrix of di-
mensions x, y, and n, where x and y are the number
of rows and columns of each image (the number of
pixels) and n the number of images in a dataset.
And for determining the gradient error of the laser
beam, we make a single 2D matrix in which we
calculate average values of OH intensities at each
cell/pixel. In this averaged image, we can notice
how the laser beam deviates from being homoge-
neous across the reaction zone, and we can extract a
gradient by which the laser energy is absorbed. So,
we apply the reverse of this gradient to every single
image of the dataset, modifying the values of OH
intensities and bringing them back as there is no
energy absorption in the reaction zone. Fig. 1 shows
the difference between the laser beam profile before
correction due to absorption and the modified one.
A quantitative method to show the difference is to
take three vertical profiles at three different hori-
zontal positions downstream of the direction of the
laser beam (the right direction) to illustrate how the
laser intensity decreases in the horizontal direction.
This can be noticed by the reduction in the peak
value for each profile (Fig. 1c and d).
Another sort of inhomogeneity is the natural dis-

tribution of the laser sheet, from having a maximum
value (around 1) at the center of the sheet, and this
value decreases above and below the centerline.
This distribution also gives incorrect values of the
resulted OH intensity at the top and the bottom of
the images, leading to correct values of OH radical
in the middle of images and lower values at the
sides. This also needs to be modified by normalizing
each image by this Gaussian profile of the laser
beam. So, if the values in the middle of the images
are divided by values ~1, this gives almost the same
value, but when the pixels are divided by values
below 1. This increases their local values and gives
the real intensity of OH radical at those regions.
Fig. 2 shows an example of a single image from Ref
(Mansour et al., 2020). before and after modification.

2.2. Smoothing

For images to represent real flames, an accurate
smoothing of each image has to be done. This
smoothing should eliminate the so-called ‘salt and
pepper’ noise in images and also should preserve
the real shape of the flame front. When compared
with the traditional filters now in use, smoothing
images with a 2D Gaussian filter produces the
greatest results (Tyagi and Mishra, 2016). A 2D
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convolution operator called the Gaussian smoothing
operator is used to ‘blur’ images and eliminate noise
and detail. It is comparable to the mean filter (which
reduces the intensity value variation between one
pixel and the neighboring) in this regard, but it
makes use of a different kernel that simulates a
Gaussian (or ‘bell-shaped’) hump. In 2D, an
isotropic (i.e. circularly symmetric) Gaussian has the
form

Gðx;yÞ¼ 1
2ps2

e�
x2þy2

2s2 ð1Þ

where G (x, y) is the value of the Gaussian filter; s is
the standard deviation; and x and y are the spatial
coordinates.
This distribution is shown in Fig. 3.
To achieve the result of proper smoothing,

changing the value of standard deviation plays a key

Fig. 2. A comparison of the flame from Ref (Mansour et al., 2020): (a) before modification and (b) after modification.

Fig. 1. (a, c) Beam profile before correction and (b, d) beam profile after correction.
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role in this aspect. So, we need to try and see until
the resulting images reach a satisfying form.
Fig. 4 shows the comparison between different

values of s in the Gaussian filter and how it affects
the resulting image. It is proved that a value of s ¼ 2
gives the best smoothing result to maintain the
shape of the flame front to remove the unwanted
noise in the image.

2.3. Grayscaling and thresholding

A color model is an abstract mathematical repre-
sentation of how colors can be expressed as sets of
three or four numerical values, or color components.
The resulting collection of colors is known as ‘color
space’ when this model is coupled with a clear
description of how the components are to be inter-
preted, taking into consideration the visual percep-
tion (Hirsch, 2005). One of the most used color
models is RGB. RGB is a model in which the red,
green, and blue primary colors of light are added
together in various ways to reproduce a broad array
of colors. The name of the model comes from the
initials of the three additive primary colors, red,
green, and blue (Fairman et al., 1997). Digital

cameras adapt this color model for producing im-
ages. So, for the OH single shots we have: each pixel
of each image has a combination of three colors to
represent the value of the pixel and to identify its
color. A color is specifically described using three
integer values for red, green, and blue that range
from 0 to 255. A value of zero denotes darkness,
while a value of 255 denotes brightness. When we
combine these three primary colors, weighted by
their values, the final color is determined by the
values. White is produced by mixing all three colors
equally (RGB ¼ (255, 255, 255)), while black is pro-
duced by not using any colors at all (RGB ¼ (0, 0, 0)).
We can see all the various colors that the model can
describe in the RGB coordinate system shown in
Fig. 5.
So, the simplest model is grayscale because it just

uses one component to define color, namely light-
ness. A value between 0 (black) and 255 is used to
define the degree of brightness (white). However,
images in grayscale provide less information than
those in RGB. However, they are frequently used in
image processing because doing so is quicker and
uses less space when dealing with complex com-
putations. The ways to convert RGB into grayscale
are different. One of them is the lightness method. A
very simple method is to take the average value of
the components with the highest and lowest RGB
values:

Grayscale¼minðR;G;BÞþmax ðR;G;BÞ
2

ð2Þ

Since one RGB component is not utilized, it is
clear that this approach has a severe flaw. The de-
gree of lightness that our eyes detect depends on all
three primary colors, thus this is unquestionably a
problem. Another approach is to use the average of
the red, green, and blue components as the gray-
scale value:

Grayscale¼RþGþB
3

ð3Þ

Fig. 3. 2-D Gaussian distribution with mean (0, 0) and s ¼ 1.

Fig. 4. Single shot from (Mansour et al., 2020) after smoothing by the Gaussian filter of (a) s ¼ 1, (b) s ¼ 2, and (c) s ¼ 5.
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Although we now consider all components, the
average technique is equally flawed because it gives
each component the same weight. We know that our
eyes respond to each color differently based on a
study on human eyesight. In particular, green, red,
and blue are the colors that our eyes are most sen-
sitive to. As a result, the weights in the equation
above should be adjusted. The luminosity method,
which effectively addresses the shortcomings of
earlier approaches, is the best approach. We should
compute a weighted average of the components in
light of the aforementioned findings. The final
number should have a smaller percentage of blue
and a larger percentage of green. Researchers have
concluded the equation below after some trials and
a more thorough analysis:

Grayscale¼ 0:3*Rþ0:59*Gþ0:11*B ð4Þ
Consequently, each pixel now has a single ac-

curate value instead of 3 different values.
Now, each image is converted into grayscale with

each pixel assigned a single value, so the next step
now is to determine a value for thresholding in
order to binarize the image into pixels of only two

values: zero for no reaction zone and 1 for reaction
zone contours. The method of thresholding should
be accurate so the details of the flames do not vanish
after thresholding in addition to excluding the very
low intensities that mostly represent the noise in the
images or very low OH radical intensity that should
not be considered for further calculations. Lots of
papers such as those of (Juddoo and Masri, 2011 and
Cantu et al., 2016) make a threshold value by
establishing a general threshold for the magnitude
of the OH signal. This could be accurate for some
cases, but to ensure that neither important details
are ignored, nor noisy signals are considered, a
more dynamic way of thresholding should be
applied to the images, especially when they are a
large amount covering many conditions. This is also
in favor of the generality of the image-processing
technique we previously mentioned. Hence, Otsu's
method of thresholding (Otsu, 1979) is considered a
suitable method for that purpose. Automatic image
thresholding is carried out with Otsu's technique.
The algorithm returns a single intensity threshold,
dividing pixels into the foreground and background
classes. This threshold is established by maximizing
interclass variation or, alternatively, minimizing
intra-class intensity variance. Fig. 6 shows the steps
of thresholding and detecting the flame front
contour.

2.4. Calculations

After extracting, in order, the points representing
flame front contours from each single image of the
data, it becomes available to do any calculations for
the different flames. In this subsection, we will
discuss the calculations done on the flame front
contours to obtain informative results of flame cur-
vature and flame surface density.

2.4.1. Flame curvature
The curvature, as the name suggests, is the devi-

ation of a curve from a straight line. The flame front

Fig. 5. A coordinate illustration of the RGB color model.

Fig. 6. (a) Single shot from Ref (Mansour et al., 2020). before thresholding, (b) after thresholding by Otsu's method, and (c) flame front capturing.
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is considered a differentiable curve as it is a
continuous varying irregular line. So, to calculate
the curvature for a flame front contour, we should
use the oscillating circle method at each point of the
contour. The oscillating circle is the circle which at a
given location, most closely resembles the curve. To
put it more properly, given a point P on a curve,
each subsequent point Q forms a circle (or occa-
sionally a line) that passes through Q and is
perpendicular to the curve at P. If this circle has a
limit when Q goes to P, it is the osculating circle, see
Fig. 7. The center and radius of the osculating circle
are then the center and radius of the curve at P. The
reciprocal of the radius of curvature is the curvature.
In other words, the curvature is defined as

k¼1
r

ð5Þ

where r is the radius of curvature.
Equation (4) turns into this parametric represen-

tation of a twice differentiable plane curve according
to the following equation (Kheirkhah and Gülder,
2013):

ki¼
_y€x� _x€y

ð _x2 þ _y2Þ32
ð6Þ

where x and y are the horizontal and vertical co-
ordinates of the point on the flame front contour,
respectively, whereas ($) and ($$) represent the first
and second derivatives, respectively. The curvature
(ki) at any x and y can be estimated by the dis-
cretization of the previous equation as follows
(Lomax and Polliam, 1999):

ki¼
8
�
xi�1

�
yiþ1 � yi

�þ xi
�
yi�1 � yiþ1

�þ xiþ1
�
yi � yi�1

��
h
ðxiþ1 � xi�1Þ2 þ

�
yiþ1 � yi�1

�2i3
2

ð7Þ
It is important to keep in mind that ki has

positive values when the curvature is convex toward
the reactants’ region and negative values when the
curvature is concave. Along the flame edge, curve-
fitting is performed. By carefully choosing the
appropriate interval length during the curve-fitting
procedure, oversampling and undersampling were
avoided (Soika et al., 2003).
The LaVision high-Speed-Star 6 (HSS6) CMOS

camera has an uncertainty of 2.8 electrons per pixel
(LaVision). This indicates that there is a 2.8%
probability of a pixel displaying a value different
from its actual value. Several factors contribute to
this uncertainty, including noise from the camera
sensor, readout noise, and quantization noise. The
sensor noise results from the random movement of
electrons within the sensor, while readout noise
stems from the electronic circuits responsible for
retrieving the signal from the sensor. In addition,
quantization noise arises from rounding the signal
to a finite number of bits. So, to determine the un-
certainty of ki when the variables xi, yi, xi-1, yi-1, xiþ1,
and yiþ1 have an uncertainty of 2.8%, we can use
error propagation principles.
Let's assume that Dxi, Dyi, Dxi-1, Dyi-1, Dxiþ1, and

Dyiþ1 represent the uncertainties (expressed as a
percentage) for their respective variables. Given that
the uncertainties are all 2.8%, we can substitute
Dxi ¼ Dyi ¼ Dxi-1 ¼ Dyi-1 ¼ Dxiþ1 ¼ Dyiþ1

¼ 2.8% ¼ 0.028.
Using error propagation, the uncertainty of ki (Dki)

can be estimated as follows:

Dki ¼ jvki/vxij * Dxi + jvki/vyij * Dyi + jvki/vxi-1j * Dxi-1
+ jvki/vyi-1j * Dyi-1 + jvki/vxi+1j * Dxi+1 + jvki/vyi+1j *
Dyi+1

To simplify the equation, let's consider that
x_(iþ1) - x_(i-1) and y_(iþ1) - y_(i-1) are constants
denoted as A1 and A2, respectively.
After evaluating the partial derivatives of k_i with

respect to each variable and substituting the un-
certainties, we obtain

Dki ¼ 8 * (A2/A1) * 0.028 * [(A1
2+A2

2)1.5]�0.5

Simplifying further

Dki ¼ 0.224 * (A1
2+A2

2) �0.5

Fig. 7. An illustration of how an oscillating circle with a radius r
resembles the curve C at a given point P.
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Therefore, the uncertainty of ki, when xi, yi, xi-1,
yi-1, xiþ1, yiþ1 have an uncertainty of 2.8%, is given
by the equation Dki ¼ 0.224 * (A1

2 þ A2
2)�0.5, where

A1 ¼ xiþ1 - xi-1 and A2 ¼ yiþ1 - yi-1.

2.4.2. Flame surface density
The flame surface density (S) is estimated based

on this assumption (Kiefer et al., 2008; Soika et al.,
2003):

S¼ dA
dV

¼ dL
dA

ð8Þ

where dL, dA, and dV are the infinitesimal flame
front length in dA, flame surface area in dV, and
volume, respectively. An interrogation box area
assigned for S calculations is made movable all

along the flame front contour and we calculate the
arc length dL inside this box at each point. So, high
values of S representa more wrinkled flame at this
position and also represent how the flame spreads
and oscillates in time within the reaction zone.
Fig. 8 shows in conclusion how the algorithm

work from the start of the corrected images to finally
calculate the required parameters.

3. Results and discussion

In this section, we present the studied parameters
that our algorithm can detect and calculate for flame
at different conditions. These parameters are flame
curvature, flame surface density, and flame front
angle. These parameters are selected for their
importance for combustion. For instance, by

Fig. 8. A flowchart of the image-processing algorithm.
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examining the curvature, researchers can under-
stand the influence of factors such as burner ge-
ometry, flow conditions, and combustion properties
on the shape and structure of the flame. This in-
formation is crucial for optimizing combustion sys-
tems, improving fuel efficiency, and reducing
emissions. In addition, flame curvature affects the
stability and propagation characteristics of the
flame, making it essential to study safety consider-
ations in applications such as engines, furnaces, and
turbines. Flame surface density is an important
parameter that indicates the degree of flame wrin-
kling and mixing. Higher flame surface density
suggests greater interaction between the fuel and
the oxidizer, leading to enhanced combustion effi-
ciency and heat release. And flame front angle
provides insights into the flame propagation char-
acteristics, turbulent flow interactions, and com-
bustion behavior. It helps in understanding how the
flame interacts with different flow patterns, obsta-
cles, or confinement within combustion systems.

3.1. Flame curvature

To verify the proposed algorithm, we applied this
technique to five cases of OH-PLIF images of flames
at different conditions from the literature. Figs. 9e14
show the selected single shots we chose to apply the

algorithm on and to compare their results. Flames a,
b, and c are CH4 flames, flame d is for ammonia,
flame (e) is hydrogen flame, and flame (f) is pro-
pane. This variety helps in selecting fuel types to
further validate the generality of our algorithm and
to cover a wider range of cases. Table 1 indicates the
properties of used fuels.
For all of the flames, the flame front has been

detected and flame curvature k has been calculated
at each point, and to easily compare the different
cases, a statistical analysis has been made to eval-
uate the frequency by which a certain value of k has
appeared. So, a probability density function of cur-
vature P(k) has been calculated for each flame and a
comparison of them has been made in Fig. 15. Zero
values of k indicate a straight line at a certain po-
sition on the flame front. In other words, k ¼ 0 and
the high value of P (0) mean less wrinkled flames. As
shown in Fig. 9, flame (a) shows less wrinkled

Fig. 9. OH field of partially premixed turbulent flame in concentric flow
conical burner at L/D ¼ 7, F ¼ 2, Re ¼ 10000 (flame (a)) (Mansour
et al., 2017).

Fig. 10. OH field of partially premixed turbulent flame in concentric
flow slot burner at L/D ¼ 7, F ¼ 2, Re ¼ 10000. (flame (b)) (Mansour
et al., 2020).
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flames with a high value of P (0) compared with
flame (b), and this, in turn, shows the effect of
burner geometry on flame curvature as both flame
(a) and (b) are partially premixed under the same
conditions of mixing length L/D, equivalence ratio
F, and Reynolds number Re.
A more wrinkled flame with lower value of P (0) is

shown in flame (c), and much more wrinkled flames
with lower values of P (0) are shown in flames (d,e).
And these results agree with the shapes of the OH
fields shown in Figs. 9e13, while more flame kernels
and flame separations appear obviously in the OH
fields. This is mostly due to the burner nature of
flame (e) as the combustion occurs in a cavity-based
scramjet combustor. Another important factor to
link between the cases is the equivalence ratio. A
higher equivalence ratio leads to less curvature
regardless of the fuel type, and this is very clear in
(a,b) compared with flame (e), which indicates the
effect of this parameter on flame structure.
To further investigate the flame curvature, we

have also studied how the curvature changes
downstream of the burner jet. We divided the area
downstream of the burners into three zones and
calculated the average k within each zone to see
how the average value of curvature changes in the
downstream direction. We defined a dimensionless
parameter z/H, where z is the height of the zone
above the burner and H is the total height of the
image. Fig. 16 shows how the absolute value of the
average curvature changes at different z/H.
It is noticeable that the average curvature in-

creases as the flame propagates downstream as the
natural behavior of jet flows tends to have more
eddies and vortices downstream the jet stream,
which leads to a higher curvature. Also, we can
notice similar trends with the results of P(k) as flame
(a) has overall lower curvature values compared
with (b) and (c) while much higher curvature values
resulted in flames (d,e) due to the separation and
higher turbulent nature of the flames.

3.2. Flame surface density

Flame surface densityS has also been calculated for
the selected flames. Fig. 17 illustrates the value of S at
each position on the flame front contour. More
qualitative information about the flame surface den-
sity shall appear when comparing the selected flames
by a set of images over a period of time to show how
the flames spread and widen at different conditions,
but this figure also indicates the accuracy of flame
front selection, which in turn validates the image-
processing technique which is the core of this article.

Fig. 11. OH field of premixed turbulent flame in a circular burner at
F ¼ 0.9, dilution of N2 ¼ 30%, Re ¼ 6000. (flame (c)) (Yang et al.,
2020).

Fig. 12. OH field of premixed ammonia/air turbulent flame at F ¼ 1,
Re ¼ 892 (flame (d)) (Fan et al., 2022).
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3.3. Flame front angle

As illustrated in Fig. 18, the angle between the
vertical axis and the normal vector to the flame front
toward the unburned zone is used in this study to

evaluate the local flame front angle. Researchers
(Tamadonfar and Gülder, 2015; Zhang et al., 2014)
earlier used a similar definition for premixed tur-
bulent flames. It was established that the local flame
front angle is positive (negative) when it is moving
in the counter-clockwise (clockwise) direction.
The local flame front angle gives additional infor-

mation to the curvature as it describes the direction
and orientation of the flame front. Fig. 19 illustrates
the probability density functions’ P(q) curves for the
local flame front angle of all flames of this study.
The figure shows that flame (c) has a more sym-

metric profile of P(q) around the zero value, which
means that it has nearly similar local flame front
angles along the flame front. And this agrees with its
OH field image in Fig. 11. However, due to the local
tilting of flames (a) and (b) and the local reaction
zones and kernels of these cases for being partially
premixed, their curves of P(q) tend to be less sym-
metric, which as previously mentioned can add to
the information provided by P(k) about the flame
front and its propagation. As for flames (d,e), they

Fig. 13. OH field of premixed hydrogen turbulent flame at F ¼ 0.3 (flame (e)) (Gao et al., 2022).

Fig. 14. OH field of premixed Hydrogen turbulent flame at F ¼ 0.18
(flame (f)) (Johansen et al., 2014).

Table 1. Properties of fuels.

Fuel Property Value

Methane Viscosity (m. Pa.s) @ 300 K (Izzaty et al., 1967) 11.1
Diffusion coefficient (Torr.cm2.s�1) @ 298 K (Tang et al., 2015) 168 ± 5
Heating value (MJ/kg) (McAllister et al., 2011) 55.5
Molecular weight (kg/kmole) 16
Density (kg/m3) @ 20 �C (Steven et al., 2000) 0.668

Ammonia Viscosity (m. Pa.s) @ 300 K 10.07
Diffusion coefficient (Torr.cm2.s�1) @ 298 K (Spiller, 1989) 0.228 ± 0.012
Heating value (MJ/kg) (Valera-Medina et al., 2018) 18.8
Molecular weight (kg/kmole) 17.031
Density (kg/m3) @ 20 �C 0.73

Hydrogen Viscosity (m. Pa.s) @ 300 K 9.92
Diffusion coefficient (Torr.cm2.s�1) @ 298 K 0.19
Heating value (MJ/kg) 120.1
Molecular weight (kg/kmole) 2.016
Density (kg/m3) @ 20 �C 0.08

Propane Viscosity (m. Pa.s) @ 300 K (Propane) 8
Diffusion coefficient (Torr.cm2.s�1) @ 298 K 0.189
Heating value (MJ/kg) 46
Molecular weight (kg/kmole) 44.097
Density (kg/m3) @ 20 �C 2.005
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Fig. 15. Probability density function of flame curvature of selected flames.

Fig. 16. Behavior of the average curvature downstream of the burner exit for flames (a), (b), (c), (d), (e), and (f).
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Fig. 17. The flame surface density values at their local position for the selected flames.
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have different nature from the other flames due to
the burner geometry and fuel types. The flames do
not have the axial symmetric shape as a flame (a,b,c
and f), so the flame front angle profiles give a
different trend from the other flames with higher
values of P(q) ¼ 0 as the flames tend to be horizontal
at many positions in the OH field images.

3.4. Conclusion

A detailed algorithm dealing with each step of
image processing from being raw data of images
with noise and error to having valuable quantita-
tive data of flame structure has been developed
and illustrated. To validate this algorithm, a wide
range of flame conditions has been tested and
covered in this study from premixed to partially
premixed conditions and with more than one fuel
type. And the results of this work can be concluded
as follows:

(1) The study of flame structure can greatly benefit
from the application of image-processing
techniques.

(2) To avoid misleading results, it is crucial to
consider various correction factors.

(3) The Gaussian filtering method is a powerful tool
for image smoothing, particularly with standard
deviation values of around 2.

(4) Otsu's thresholding method is a more reliable
approach for dynamic thresholding compared
with using a single value in different cases.

(5) This algorithm demonstrates its versatility by
effectively working with both premixed and
partially premixed flames.

Fig. 18. The local flame front angle definition (Tamadonfar and Gülder,
2015).

Fig. 19. Probability density functions' curves of the flame front angle q for flames (a), (b) (c), (d), (e), and (f).
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(6) The geometry of the burner impacts the curva-
ture of the flame, as observed when comparing
flame (a) to flame (b).

(7) Despite a relatively lower Reynolds number (Re),
premixed conditions exhibitmorewrinkledflames
compared with partially premixed conditions.

(8) The equivalence ratio (F) has a significant effect
on flame curvature. Lower values of F lead to
more winkled flames and higher values of cur-
vature regardless of the fuel type.

(9) Curvature tends to increase downstream as the
flame propagates due to the formation of eddies
and the dispersion of the flow.

(10) Flames (d, e) have higher values of curvature
and flame surface density due to the wrinkled
nature of the flames and lower values of F.

(11) Flames (c, d, e) show a higher flame surface
density, indicating increased wrinkling.

(12) The local flame front angle adds valuable in-
formation about the flame front orientation
with more symmetric probability for the pre-
mixed flames compared with the partially pre-
mixed ones.
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