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ORIGINAL STUDY

Critical Buckling Coefficient of Tapered Web Plate
Girders Under Compression and Bending Stresses

Saad Abouelela Yehia*, Ramy Ibrahim Shahin

Department of Civil Engineering, Higher Institute of Engineering and Technology, Kafr El-Sheikh, Egypt

Abstract

The tapered girders were developed as a cost-effective solution to the problem of long-span building construction.
These systems are very attractive from an economic viewpoint, combining wide spans, quick erection, and easy access to
services between the shallow parts of the beam and the ceiling below. Elastic local buckling is one of several modes of
failure that must be considered during the structure design. Although elastic local buckling has been studied for
decades, there is still a need to develop quick and comprehensive procedures that will reduce product design time,
particularly during the presizing stage. Most design codes have no specific provisions for the particular case of non-
rectangular panels, stating that they may conservatively be treated as rectangular panels with a larger width. This paper
presented an extensive numerical analysis to estimate the critical local buckling coefficient of two typologies for
trapezoidal tapered steel web plate girders with simply supported end conditions. The considered loading conditions are
compression and bending stresses. Moreover, the study identifies the relative importance of several parameters that
influence the local buckling phenomenon, such as the tapering ratio of the panel, normalized plate length, and ratio of
minimum and maximum compressive stresses. Numerical results are used to propose approximate closed-form ex-
pressions that can be used to compute the local buckling coefficient. In addition, the elastic local buckling coefficients
obtained from the proposed formulas were compared with the buckling coefficient predicted by both AISC and
ECP-LRFD specifications. The proposed formulas are also verified against results obtained from nonlinear numerical
analysis based on the finite element technique. The results indicate that the proposed formulas are valid for directly
estimating the critical local buckling coefficient of trapezoidal tapered steel web plates. However, it is worth noting that
the AISC and ECP-LRFD specifications have been shown to provide conservative predictions when calculating the local
buckling coefficient for trapezoidal tapered steel web plate girders under stress gradients.

Keywords: Combined compression and bending stresses, Elastic local buckling coefficient, Optimization technique,
Regression analysis, Stress gradient, Tapered plate, Trapezoidal plate

1. Introduction this variable inertia (Mirambell and Zarate, 2000).
Web-tapered members can construct to provide the
optimum strength and stiffness with the least
weight, making it more significant in areas with
high moments and thicker in regions with high
shear. As a result, the tapered plate girders saved an
amount of material compared with rolled shapes
(Diez et al., 2019), and the importance of research
into the behavior of tapered web plates emerged.
Fig. 1 displays the usage of tapered plates in steel
constructions, such as beams of industrial buildings.

T apered plate girders or columns are required
when the steel structures have long-span
lengths or massive loads. In contrast, hot-rolled
beams are either not strong enough, have too much
inertia, or are too expensive. Tapered plate girders
are made from welded plates to create a more
practical element. Consequently, trapezoidal parts
with various moments of inertia are created, where
a web panel with a linearly varying depth generates
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Fig. 1. Tapered structural elements.

Various steel design standards, such as AASHTO
(American Association of State Highway and
Transportation Officials, 2010) and AISC (A ISC,
2010), are used to determine the axial, bending, and
shear capacities of web-tapered members based on
experimental and theoretical research on prismatic
members (Brahim et al., 2020). For example, The
AISC Design Guide 25 (Kaehler and White, 2011)
presented the procedure for calculating the strength
of tapered members under shear, normal, and
moment loads. In addition, it determines the
reduction factor for the axial local web buckling and
the web bending buckling factor in the flexure
compression region.

Researchers also developed several models to
predict the behaviour of tapered members to obtain
design formulas. Pope (1962) suggested a pioneer's
first theoretical technique of tapered plate buckling.
The theoretical technique investigates the buckling
analysis of a tapered plate symmetrically in plan-
form under uniform compressive loading on the
parallel ends. Two cases are considered; different
uniform loads and equal uniform stresses applied
normally to the ends. On the experimental side, the
earliest references that investigated the plate buck-
ling effect on the tapered member's failure were
conducted by Pawel et al. (Prawel et al., 1974). In the
past, numerical techniques have been utilized
extensively to calculate the buckling stresses of
nonrectangular plates, especially for skew plates
(Wang et al., 1992; York and Williams, 1995; Huyton
and York, 2001). Based on the Rayleigh-Ritz and
Galerkin methods, Saadatpour and his team (Saa-
datpour et al,, 1998, 2002) developed a numerical
approach for analyzing arbitrary quadrilateral
plates with arbitrary boundary conditions. Eid
(1957) presented the analysis of thin tapered plates
using the finite difference method. Moreover, he
proposed a numerical expression of the thin plates

bending under a randomly distributed lateral load.
Additionally, the results of thin tapered plates were
compared with equivalent rectangular plates under
the same loading conditions, as well as different
loading conditions. Furthermore, the study explored
the effect of buckling mode shape and half-wave-
lengths on the minimum critical buckling stresses.
Sapalas (2010) studied the local tapered web stabil-
ity under pure bending moment using a theoretical
and finite element analysis utilizing a COSMOS
FEM code. Additionally, he conducted a thorough
simulation using a large domain of the second-
moment area ratio to calculate a critical load
multiplier and investigate the effects of relative
slenderness, steel grade, and moment of inertia of
beam ends on the local stability of tapered beams.
Ibrahim et al. (Brahim et al.,, 2020) conducted an
extensive numerical investigation to propose for-
mulas for the critical buckling coefficient of the
prismatic tapered web plate girders. The authors
studied the effect of different boundary conditions
(simply supported, flange restrained, and fixed
supported edges) and various loading conditions
(uniform compression, pure bending, and pure
shear) on the critical buckling coefficient. The AISC
specifications currently adopt the equation pro-
posed by Pekoz (1986) to determine the critical
buckling coefficient for simply supported rectan-
gular plate subjected to combined normal and
bending stresses. Furthermore, Ibrahim et al. (Bra-
him et al, 2020) modify the Pekoz formula to
determine critical buckling coefficient for simply
supported prismatic tapered plate subjected to
combined normal and bending stresses. Moreover,
Diez et al. (2019). Developed a numerical analysis of
trapezoidal plates subjected to uniform compression
with four different boundary ends to Propose a
closed formula to calculate the local buckling coef-
ficient for trapezoidal plates. Ibrahim et al. (2021)
conducted an experimental program utilizing three
specimens to investigate the axial compressive
strength of prismatic unstiffened slender tapered
steel web. Complying with AISC design standards,
new techniques are suggested to estimate the
effective width of the web. Higher width-to-thick-
ness and tapering ratios are proven conservative for
this technique, and a new correction factor was
proposed to determine these conservative results.
Abu-Hamd (Abu-Hamd and El Dib, 2016) devel-
oped an approximate empirical formula for tapered
plates girder. This formula is based on the numer-
ical results obtained from the FEM of steel tapered
web subjected to shear and moment. Kucukler et al.
(Kucukler and Gardner, 2018) suggested a simpli-
fied stiffness reduction method for the in-plane
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analysis of the tapered plates by dividing the web
member into prismatic elements. Ziemian et al.
(Ziemian, 2010) proposed a numerical technique to
investigate tapered beams' lateral buckling, consid-
ering the effect of initial stress and load eccentricity.
Finally, the composite plates field has provided a
significant result on the behaviour of local buckling
for trapezoidal plates (Ashok and Pitchaimani, 2018;
Kumar et al., 2019; Jiang et al.,, 2018) and an inter-
esting new field of research proposed by Jing and
coworkers (Jing et al., 2019) to determine buckling
loads of orthotropic plates.

Most design codes need more provisions to
determine the local buckling of nonrectangular
plates, where they can be considered conservatively
as rectangular plates with a larger width. Little
attention has been focused in the literature on
studying the elastic local buckling of trapezoidal
tapered web plate girders under compression and
bending stresses. The main objective of this paper is
to provide an extensive finite element analysis to
estimate the critical local buckling coefficient of two
typologies for trapezoidal tapered steel web plates
with simply supported end conditions. As its main
contributions, the paper first provides a complete
and clear picture of deformed shapes for trapezoidal
tapered plates. Moreover, the regression analysis
and optimization techniques were performed using
MATLAB software for the results of the finite
element models to propose a formulas for each to-
pology. The study ignored the role of the flange in
constraining the web, and the flange effect is close to
the hinged state.

2. Material and methods

2.1. Problem statement

Two typologies of trapezoidal tapered web plate
girders in a cartesian coordinate system are given in
Fig. 2. The plate has a length a, a constant width “h”
at the larger side, and a variable width “h1” at the
smaller side with thickness “t”. The plate is sub-
jected to linearly varying in-plane loading in the
longitudinal direction, and all its edges are simply
supported in the out-of-plane direction. In other
words, there is no lateral edge displacement
perpendicular to the plate plane on all four edges.

This paper assumed the existence of two different
typologies of trapezoidal tapered web plate girders
for tapering ratio R > 1.00, which are among the
most commonly used types of tapered girders in
steel construction. The fundamental differences
between the two types are the stress state in the
inclined flange (tension or compression), where
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Fig. 2. Geometry design parameters considered for two typologies of
trapezoidal tapered web plate girders.

typology I inclined flange under compression and
typology II inclined flange under tension. The
loading conditions are case (1) has a uniform
compression load with W = 1, case (2) has a trape-
zoidal load with & = 2/3, case (3) has a trapezoidal
load with W = 1/3,case (4) has a triangular load with
¥ = 0, case (5) has an unequal reverse triangular
load with ¥ = —1/3,case (6) has an unequal reverse
triangular load with W = —2/3, and case (7) has a
pure bending load. for all compression and bending
cases, nodal force is applied and divided according
to different W ratios. Where, W is the ratio between
minimum and maximum compressive stresses
(¥ = 02/01) as shown in Fig. 3.

2.2. Finite element analysis procedure

For all study cases, the following steps were fol-
lowed to develop predictive models:

(1) Choosing the inputs that may affect the critical
buckling coefficient.

(2) The FE analysis using the ANSYS software
(ANSYS, 2009) is used to execute an eigenvalue
analysis to estimate the critical buckling load
under normal and bending stresses. The
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Fig. 3. Example of in-plane loading conditions at x = a.

program outputs are verified with well-known
theoretical values;

(3) The elastic buckling coefficient is determined for
each by using Timoshenko formula (Timo-
shenko and Gere, 1962).

(4) Construct the relations between the input vari-
ables and the predicted local buckling coefficient.

(5) Conducting a regression analysis to generate a
predictive formula for design purposes.

2.3. Influencing parameters

Based on the literature reviews (Diez et al., 2019;
Brahim et al., 2020; Pekoz, 1986), the fundamental
parameters governing the predicted buckling coef-
ficient are identified as the tapering ratio (R = h/h1),
the normalized plate length ratio (« = a/h), the ratio
of min. to max. Compressive stresses (¥ = g,/ 1)
and loading and boundary conditions. according to
Mirambell et al. (Mirambell and Zarate, 2000), the
influence of the web depth-to-thickness ratio (h / t,,)
is not significant, so the influence of this geometric
parameter is ignored in this study. The parameter
ranges and increments showed in (Table 1). The
tapering ratio R ranges from 1 to 8. The normalized
plate length o ranged from 0.25 to 8. The ratio of
minimum to maximum compressive stresses
(¥ = 0y/01) equals 1,2/3,1/3,0, —1/3, —2/3, and —1
for compression and bending cases. The steel is

Table 1. Different geometric of the parameter ranges and increments.

modeled as a linear material with a Poisson ratio
v = 0.3 and modulus of elasticity E = 200 GPa.

2.4. Linear buckling analysis

Finite element analysis is performed using
ANSYS engineering simulation software (ANSYS,
2009) with shell element to calculate the critical
buckling load. A four-node shell element
(SHELL181) is employed to model the tapered plate,
which has six degrees of freedom at each node:
translations in the x, y, and z directions and rota-
tions about the x, y, and z-axes. In addition,
SHELL181 is suitable for modeling thin to moder-
ately thick shell structures, which enables explicit
simulation of various buckling deformations. Buck-
ling loads are obtained from eigenvalue analysis.
Eigenvalue buckling analysis is also known as linear
buckling analysis, where buckling load can be esti-
mated by using the next equation (Chen et al., 2006).
(Ko + 2[K)){U} =0 (1)

where K, and K, is the linear stiffness matrix and the
geometric stiffness matrix, respectively. A is the load
scaling factor; {U} is the lateral displacement vector.
From Eq. (1), it is clear that the structure's linear
stability problem is the eigenvalue problem. By
solving the eigenvalue and eigenvector problems,
the critical load and buckling mode shape can be
determined.

Studied parameter

Used parameter values for trapezoidal typology

Compression and bending cases

Tapering ratio

R (h/h1)

Normalized plate length
o (a/h)

1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 4,5, 6, 8

0.25, 0.30, 0.35, 0.4, 0.45, 0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90,0 0.95
1.00, 1.05, 1.10,1.15, 1.20, 1.25,1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70

1.75, 1.80, 1.85, 1.90, 1.95, 2.00, 2 0.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4, 6, 7, 8

The ratio between minimum and
maximum compressive stresses (¢ = g/ 71)

1,2/3,1/3,0, —1/3, —2/3, and —1
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Table 2. Numerical and theoretical results of critical buckling coefficient for tapered web plates with tapering ratio (R = 1.00).

Loading conditions Normalized plate Theoretical results Numerical results Error %
length (o0 = a/h) Pekoz (Pekoz, 1986) this study (FEM)
(Uniform Compression (¢ = 1)) 1 4.00 3.91 2.25
2 4.00 3.947 1.325
3 4.00 3.96 1.00
4 4.00 3.967 0.825
5 4.00 3.97 0.750
(Trapezoidal Load (¢ = 1/3)) 1 5.925 5.88 0.759
2 5.925 5.90 0.422
3 5.925 5.91 0.253
4 5.925 5.916 0.152
5 5.925 5.919 0.10
(Triangle load (¢ = 0)) 1 8.00 7.67 4.125
2 8.00 7.70 3.75
3 8.00 7.71 3.625
4 8.00 7.723 3.465
5 8.00 7.726 3.425
(Unequal reverse 1 11.40 10.710 6.00
triangular load (¢ = —1/3)) 2 11.40 10.745 5.70
3 11.40 10.758 5.63
4 11.40 10.760 5.63
5 11.40 10.758 5.63
(Unequal reverse 1 16.59 16.00 3.55
triangular load (¢ = —2/3)) 2 16.59 15.88 4.28
3 16.59 15.63 5.78
4 16.59 15.57 6.14
5 16.59 15.57 6.14
(Pure bending (¢ = —1)) 1 24.00 25.20 5.00
2 24.00 23.87 0.54
3 24.00 23.92 0.33
4 24.00 23.82 0.75
5 24.00 23.83 0.70

2.5. Validation of finite element model

To guarantee the finite element model accuracy, a
convergence test on mesh size has been carried out
employing a reference to the exact theoretical values
of the local buckling coefficient for supported rect-
angular plates (R = 1) (Pekoz, 1986). Table 2 pro-
vides the FEM error between the exact theoretical
values of the local buckling coefficient and numer-
ical results obtained from eigenvalue analysis,
where used a mesh size (25*25 mm) for all loading
cases. The normalized plate length ranged between
1 and 5. The last column of the table presents the
error percentage, which varies from 0.10% to 6.14%.
The comparison shows that the proposed boundary
condition was well defined, and the results from the
numerical are reasonable.

3. Results and discussions

3.1. Parametric study results and discussions

Using the validated FE model, a parametric study
that involved 9200 FE models was carried out for

compression and bending loading cases to investi-
gate the influence of the tapering ratio, normalized
plate length, and the ratio of minimum to maximum
compressive stresses ¥ equals (1,2/3,1/3,0, —1/3, =2/
3, and —1) on the local buckling coefficient (Ziemian,
2010) for uniform compression load, trapezoidal
compression load, triangle compression load, two
unequal reverse triangular load cases, and pure
bending, respectively. Fig. 4 shows the lowest
deformed mode shape of trapezoidal tapered ty-
pologies for all compression and bending cases with
simply supported boundary conditions.

Figs. 5 and 6 show the relationship between the
plate buckling coefficients with normalized plate
length (a) for several tapering ratios (R) of typology I
and typology II, respectively, for uniform compres-
sion load (¥ = 1), trapezoidal load (¥ = 2/3), trap-
ezoidal load (¥ = 1/3), triangle load (¥ = 0), unequal
reverse triangular load (¥ = —1/3), and unequal
reverse triangular load (¥ = —2/3) cases. It can be
observed when the normalized plate length (a) is
more than 1.00; the k values reduce with increasing
() and R values. For a less than 1.00, buckling
behavior is exactly the opposite, where k values
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Fig. 4. The lowest buckling mode of trapezoidal tapered typologies for (a) uniform compression load (Y = 1) (b) trapezoidal compression load (y = 2/
3) (c) trapezoidal compression load (¢ = 1/3) (d) triangle compression load (¢ = Zero) (e) unequal reverse triangular load (Y = —1/3) (f) unequal

reverse triangular load (¢ = —2/3) (g) pure bending load ((y = —1).

increase with decrease o and decrease with increase
R because the buckling waves are shorter when o
values less than 1.00 compared with values more
than 1.00. Moreover, for all R values, k declines with
increases o up to 5.00, at which point the rate of
decrease sharply declines. Typically, the applied
stress along the loaded edges of plates ranges from
uniform compression case to pure bending moment
case. The uniform compression case is considered
the most critical loading, and it has the lowest elastic
local buckling stress. The parameter W (o2/ 01) rep-
resents the varying stress distributions in a plate,
where ¢; is the maximum compressive stress and o
is maximum tensile stress or minimum compressive
stress. It can be noted that if the condition o1 >0 is
not satisfied, the Local buckling will not happen
because the plate is subjected to only tension stress
(Gardner et al., 2019).

Fig. 7 shows the relationship between the plate
buckling coefficients with normalized plate length
(o) for several tapering ratios (R) of typology I and
typology II, respectively of the pure bending load
(¥ = —1). It can be observed when the normalized
plate length (@) is more than 2.00, the predicated
plate buckling coefficient values for all tapering
ratios (R) values tend to reach 23.90 for simply
supported edges. For the range of a < 2.00 (hatched
in Fig. 7), the critical buckling coefficient k values
are noticeably lower than expected, especially for
higher tapering ratios. Because the interaction with
the induced shear stresses developed by additional
shear force results from the vertical component of
the flange force (Studer et al., 2015). So, it can be
ignoring these deviations because they aren't in the
practical application domain of these tapered
plates.
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Fig. 5. Plate buckling coefficient against normalized plate length (o) for several tapering ratios (R) of typology I for uniform compression load
( = 1), trapezoidal load ( = 2/3), trapezoidal load (¢ = 1/3), triangle load ( = 0), unequal reverse triangular load (y = —1/3), and unequal reverse

triangular load (y = —2/3) cases.

3.2. Proposed formulas of the elastic local buckling
coefficients of trapezoidal tapered web plate girders
under compression and bending stresses

3.2.1. Formulas for compression and bending cases
A regression analysis is employed in the output
results to propose a prediction of the critical

buckling of tapered web subjected to compression
and bending stresses. Regression analysis with
MATLAB is performed to estimate the relation
between the output (k) and inputs, including stress
ratio (¥), normalized length (), and tapering ratios
(R). Moreover, regression analysis can measure the
validity of predicted values with actual datasets
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Fig. 6. Plate buckling coefficient against normalized plate length («) for several tapering ratios (R) of typology II for uniform compression load
(Y = 1), trapezoidal load (Y = 2/3), trapezoidal load (y = 1/3), triangle load (y = 0), unequal reverse triangular load (¢ = —1/3), and unequal reverse

triangular load (Y = —2/3) cases.

using many tools, such as coefficient of correlation
(R), Mean Square Error (MSE), and Standard De-
viation (SD). Table 3 shows the proposed buckling
coefficient formulas for compression and bending
stresses cases under simply supported boundary
conditions of typology I and typology II.

3.2.2. Validation of proposed formulas

Comparison with nonlinear numerical analysis based
on the finite element technique: The local buckling
coefficients predicted by the proposed formulas
were compared with the local buckling coefficients
obtained from the finite element (FE) models of
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Fig. 7. Plate buckling coefficient of pure bending load (Y = —1) against normalized plate length («) for several tapering ratios (R).

typology I and II, as shown in (Figs. 8 and 9). The
comparison was made to all cases where 1< W < —1.
It can be noted that the mean values and the stan-
dard deviation (¢) values of the Krg /Kpmp ratio are

(1.04 and 1.033) and (0.15 and 0.23) for typology I
and typology II, respectively. Moreover, the coeffi-
cient of determination R? value is 0.953 and 0.930 for
typology I and typology II, respectively, which in-
dicates a very strong fit since it is close to 1. it can be
noted that the proposed formulas provide a good
prediction of the elastic buckling coefficient with
high accuracy.

Comparison with the design codes of practice: For the
case of combined bending and compression of a
plate simply supported on all four sides. The
American Institute of Steel Construction (AISC)
specifications (A ISC, 2010) presented the following
Eq. (2) to calculate the local buckling coefficient.

k=4+21-w) +2(1-W) (2)

Figs. 10 and 11 show a comparison between the
local buckling coefficients obtained from the AISC
formula and the local buckling coefficients obtained
from the finite element (FE) models of typology I
and II. The comparison was made to all cases where
1< ¥ < —1. It can be noted that the mean values and
the standard deviation (o) values of the KF'E/KECP
ratio are (1.30 and 1.28) and (0.44 and 0.37) for ty-
pology I and typology II, respectively. Moreover,
the coefficient of determination R? value is 0.893 and

4 A
50 1

40 4

30 1

20 A

mean (p) = 1.04
Standard Deviation=0.15
y=0.9134X, R*=0.953

(Proposed formulas)

10 A

predicated local buckling coefficient

T T T T d
0 10 20 30 40 50

L actual local buckling coefficient (KFE) )

Fig. 8. Comparison between the local buckling coefficients predicted by
the proposed formulas and the local buckling coefficients obtained from
the finite element (FE) models of typology L.
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Fig. 9. Comparison between the local buckling coefficients predicted by
the proposed formulas and the local buckling coefficients obtained from
the finite element (FE) models of typology II.

Table 3. Proposed buckling coefficient formulas for compression and bending stress cases under simply supported boundary conditions.

Typology number

Stress gradients

Buckling coefficient formulas

Typology 1

Typology 11

¥ = 1.00
100>y > — 1.00
¥ = 1.00

1.00>y > — 1.00

KC — 0'270[—2.3 _ 1565Rl)4 + 200{70‘“221{0'35

K, = —0.48 + 2.1C — 4.07y — 1.16yC + 4.99> Where, C = 3.87 + 0.95¢ 16R0:30
KC = 3.862 + 1.03(1—1.[)64R().35$i

K, = 4.00+ 1.28Kc — 9.00y — 0.07yKc + 3.95¢2

Where, Kc is the buckling coefficient at = 1.00; C is constant; and K, is the buckling coefficient at 1.00 >y > — 1.00.
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Fig. 10. Comparison between the local buckling coefficients obtained
from the AISC formula and the local buckling coefficients obtained from
the finite element (FE) models of typology L
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Fig. 11. Comparison between the local buckling coefficients obtained
from the AISC formula and the local buckling coefficients obtained from
the finite element (FE) models of typology II.

0.879 for typology I and typology II, respectively,
which indicates a poor fit since it is close to 1.
Additionally, The elastic local buckling co-
efficients obtained from the F.E. models were
compared with the local buckling coefficients pre-
dicted by the ECP-LRFD, 2008 (ECP-LRFD, 2008).
The ECP-LRFD provides the following buckling
coefficient formulas to calculate the local buckling
coefficient, as shown in Table 4. Furthermore, it
provides a single provision for tapered plates, which
suggests that general design rules may be applied

Table 4. Buckling factor formulas for internal compression elements
according to the ECP-LRFD, 2008.

Stress gradients (Y = g2/ 1) Buckling factor K,

¢ = 1.00 4.00

1.00 > ¢ > 0.00 8.2 /(1.05 + )

¢ = 0.00 7.81

0.00 > ¢ > —1.00 7.81— 6.29 ¢ + 9.78 y?
¢ = —1.00 23.90

4 R
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2 erlammmmee o mean () = 1.32
= (X Standard Deviation= 0.446
< o o 2
= J y=0.7411 X, R*=0.891
< ’
S
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Fig. 12. Comparison between the local buckling coefficients obtained
from the ECP-LRFD formulas and the local buckling coefficients ob-
tained from the finite element (FE) models of typology I
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Fig. 13. Comparison between the local buckling coefficients obtained
from the ECP-LRFD formulas and the local buckling coefficients ob-
tained from the finite element (FE) models of typology IL

by assuming that the panel is rectangular with the
maximum width

Figs. 12 and 13 show a comparison between the
local buckling coefficients obtained from the ECP-
LRFD, 2008 formulas and the local buckling co-
efficients obtained from the finite element (FE)
models of typology I and II. The comparison was
made to all cases where 1< W < —1. It can be noted
that the mean values and the standard deviation (o)
values of the Kg. E/Kpcp ratio are (1.32 and 1.30) and
(0.446 and 0.38) for typology I and typology II,
respectively. Moreover, the coefficient of determi-
nation R? value is 0.891 and 0.876 for typology I and
typology II, respectively, which indicates a very
poor fit since it is close to 1.

After conducting comparisons, it has been
demonstrated that both AISC and ECP-LRFD
specifications are conservative when calculating the
local buckling coefficient for trapezoidal plates
under stress gradients. This is because these codes
do not consider the significant impact of normalized
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plate length and tapering ratio on the buckling co-
efficient. However, it is worth noting that the pro-
posed formulas provide highly accurate predictions
for the elastic buckling coefficient.

4. Summary and conclusions

This study presents a comprehensive finite
element investigation into the structural behaviour
for two different typologies of trapezoidal tapered
web-girders under compression and bending
stresses. More than 9200 models are employed to
investigate the effect of several geomatic configu-
rations, including the normalized plate length ratio
(o0 = a/h), tapering ratio (R = h/h;), and the ratio of
minimum to maximum compressive stresses
(¥ = 0g2/01) on the elastic critical buckling of the
trapezoidal tapered web. The parameters range
between the extreme values, keeping them in the
practical range. The critical buckling coefficients are
estimated for different compression and bending
cases with simply supported boundary conditions,
including uniform compression load, trapezoidal
compression load, triangle compression load, two
unequal reverse triangular load cases, and pure
bending load. The regression analysis is employed
to present a new formula for each case separately.
Finally, statistical measurements were used to vali-
date the research's proposed formulas such as cor-
relation coefficient, mean square error, and
standard deviation. Additionally, the elastic local
buckling coefficients obtained from the proposed
formulas were compared with the buckling coeffi-
cient predicted by both AISC and ECP-LRFD spec-
ifications. the main conclusions can be drawn as
follow:

(1) Where the load is applied on the shorter edge,
the buckling resistance of the tapered plate is
directly proportional to the tapering of the web
plate because the smaller edge provides a stiffer
zone compared to the larger edge.

(2) The proposed formulas represent a significant
improvement in predicting the critical buckling
coefficient under compression and bending
stresses and can be used to check web breathing
in tapered web panels.

(3) For the pure bending moment case, it is rec-
ommended to ignore the decrease in k values for
a tapering ratio of less than 2.00.

(4) The AISC and ECP-LRFD specifications have
provided conservative predictions when calcu-
lating the local buckling coefficient for

trapezoidal plates under stress gradients. How-
ever, the proposed formulas have been demon-
strated to provide highly accurate predictions for
the elastic buckling coefficient.

5. Recommendations for future work

When conducting future research, there are
several essential matters that researchers should
consider, such as:

(1) This paper presented an extensive numerical
analysis to estimate the critical local buckling
coefficient of two typologies for trapezoidal
tapered steel web plate girder with simply sup-
ported end conditions; However, further re-
searches may be required to identify other types
of tapered girders such as prismatic tapered
steel web plate girder.

(2) Further research may be required to identify the
effect of other end conditions, such as fixed-free
and fixed-hinge, in estimating the critical local
buckling coefficient of tapered girders.

(3) Additionally, the study ignored the role of the
flange in constraining the web, and the effect of
the flange is close to the hinged state. This em-
phasizes the need for further research to inves-
tigate the impact of the flange on the local
buckling coefficient of tapered girders.
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