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ORIGINAL STUDY

Optimized Deep Learning Audio Tagging Approach

Fatma S. El-metwally a, Ali I. ElDesouky, Sally M. Elghamrawy b,*

a Department of Computer Engineering and Control Systems, Faculty of Engineering, Mansoura University, Egypt
b Computer Engineering Department, Misr Higher Institute for Engineering and Technology, Mansoura, Egypt

Abstract

Audio signal processing is a method for applying powerful algorithms and techniques to record, improve, save, and
transmit audio content signals. Audio Tagging (AT) is a challenge that requires predicting the tags of audio clips. De-
velopments in deep learning and audio signal processing have resulted in a significant improvement in audio tagging.
Many techniques have been used. Several studies have introduced different audio tagging techniques, but the perfor-
mance of the results obtained from these studies is insufficient. This study proposes an Optimized Deep Learning Audio
Tagging (ODLAT) approach to classify and analyze audio tagging. Each input signal is used to extract the different
characteristics or features of the audio tagging. Such features are input into a neural network to carry out a multi-label
classification for the predicted tags. Adam and Adamax are used as effective optimization methods for learning rate.
Many experiments are conducted to test the validity of the Optimized Deep Learning Audio Tagging approach against
others. The results obtained have shown the superiority of the proposed approach.

Keywords: Audio tagging, Deep learning, Multielabel classification, Short time Fourier transform

1. Introduction

A udio signal processing is a method for
applying powerful methods and techniques

to audio signals (Rao, 2008). Devices such as
smartphones have been increasingly popular in
recent years, and communication remotely via the
internet has become the preferred way to connect
over face-to-face meetings. However, in any pro-
cess of communication, auditory noise, distortion,
and echo are unavoidable. Due to the widespread
use of electronic means of communication, a huge
number of multimedia recordings are produced
and published on the Internet continuously. These
recordings contain multiple media that include
music, news broadcasts, television programs, and
science articles. Many audio events can be identi-
fied and distinguished by humans. But it is a very
difficult task for a machine. As a result, more
studies are required to develop powerful systems
capable of recognizing a variety of acoustic events
(Virtanen et al., 2018). Audio signal processing

techniques are used in many applications. For
example, monitoring of health-related activities
(Goetze et al., 2012), robotic systems, eLearning,
and intelligent surveillance systems that use audio
signals to recognize activities in their environ-
ments. Therefore, much more research is required
to accurately acknowledge audio scenes and indi-
vidual audio sources in realistic audio scenes,
where there are multiple voices, often at the same
time and distorted by environmental noise
(Mesaros et al., 2017). The need for analyzing these
sounds has grown in recent years because it is
useful. Audio tagging is a technique for predicting
one or multiple labels in an audio clip. The
Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge (Giannoulis et al., 2013;
Stowell et al., 2015) provide strongly labeled data-
sets. For the musical tagging task (Pons et al., 2017;
Choi et al., 2016), deep learning methods have
proved their efficiency. Deep learning-based algo-
rithms have also been utilized for environmental
audio tagging, it is a suggested task in the DCASE
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2016 challenge () based on the CHiME-home
dataset (Foster et al., 2015). Until now, the majority
of audio-related recognition technologies have
been employed. The frequency domain of the audio
signal is used to extract features (Subramanian
et al., 2004), such as Mel frequency cepstral co-
efficients (MFCCs) (Cakir et al., 2015), log-fre-
quency filter banks (Nadeu et al., 2001), and time-
frequency filters (Chu et al., 2009).
The task of audio tagging has been extensively

studied. The Gaussian mixture model (GMM) is
trained on MFCCs (Yun et al., 2016), convolutional
neural networks (CNNs) with inputs from the Mel
spectrogram (Cakõr et al., 2016), and deep neural
networkswith inputs from theMel Filter Bank (Kong
et al., 2016). This study presents an optimized deep
learning audio tagging (ODLAT) approach for audio
signal classification. First, the features are extracted
from the input signal, and then these features are
input into a neural network. The learning rate may
be the most important hyperparameter when
configuring your neural network. An Adam or
Adamax optimizer is used to optimize the parame-
ters of the neural network. This studywas structured
into several sections. Section 2 discusses related
work, and Section 3 discusses the Proposed ODLAT
approach. Section 4 discusses the experimental re-
sults. Finally, in this section, the conclusion and
future work are presented.

2. Related work

The DCASE challenge is a set of tasks designed to
improve sound classification and detection systems.
In (Hertel et al., 2016), a short-time fourier trans-

form was used to extract features from audio signals
that are input into a convolutional neural network to
perform multi-label classification for audio tagging.
They achieved an overall accuracy of 84.5% and an
average equal error rate (EER) of 0.17. In other
research (Vu and Wang, 2016), a MFCCs input
feature signal was used. Each audio signal was
transformed into 13-dimensional MFCCs with
frame sizes of 0.04 s and hop sizes of 0.02 s. Recur-
rent Neural Networks were used for classification.
On the evaluation set, they obtained an average EER
of 0.21.
In the research (Lidy and Schindler, 2016), con-

volutional neural networks were used, which were
trained on the constant Q shift (CQT) feature of the
audio signal. In the evaluation set, they obtained an
average EER of 0.166.
In the research (Xu et al., 2016), a MFCCS input

feature signal was used. Each audio chunk was

preprocessed by segmenting it with an (80 ms)
sliding window with a hop size of 40 ms and con-
verting it to 24-Dimensional MFCCs. They obtained
an average EER of 0.1785.
In this research (Xu et al., 2017), MFCCS and mel

filter bank features were used, and these features
were input to a deep neural network with an SGD
optimizer. The MFCC Feature achieved results with
an average EER of 0.168. The MFB Feature achieved
results with an average EER of.157. It turns out that
the feature MFB is better than MFCC, so it has taken
the MFB feature and conducted it with another
network that has a Denosing Autoencoder (DAE)
with SGD optimizer and achieved results with an
average EER of 0.148.
In (Wei, 2018), a sample mixed data augmenta-

tion was explored, which included mixup, sample
pairing, mixup with label preserving (mixup lp),
and extrapolation. It used a convolutional recurrent
neural network (CRNN) with an attention module
with a log-scaled mel spectrum as a baseline sys-
tem. The efficiency of the CRNN neural network
model was examined (without and with data
augmentation). Without data augmentation, they
achieved an ER of 0.13. In the case of data
augmentation, it can effectively improve classifi-
cation (including mixup, sample pairing, and
extrapolation). In the case of data mixup, different
ratios were used for the mixing approach, and
when using 1.5 and 2.0, achieved an average ER
of.11. But in the case of sample pairing, they ach-
ieved an average ER of.13, but in the case of
extrapolation, they achieved an average ER of.12.
This implies that the CRNN model with the mixup
approach produces better results.

3. The proposed optimized deep learning
audio tagging approach

ODLAT approach consists of four layers: signal
representations layer, data preprocessing layer,
deep learning layer, prediction layer (Fig. 1).

3.1. Signal representations layer

Audio is any waveform whose frequencies are in
the human audible range. Audio is produced by the
shaking of a body, and that shaking causes the
wiggle of air particles, which leads to a change in air
pressure. The combination of high and low air
pressure causes a wave, and we can represent this
wave using wave form. If you take a look at the
plotted audio wave in the time domain in Fig. 2, it
looks so complex to understand, but nature has
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given us an incredible way of knowing quite a lot
about complex sounds, and that's given through a
fourier transform (FT). A Fourier transform is used
to decompose complex periodic audio into a sum of
sine waves oscillating at different frequencies.
The ‘Fast Fourier Transform’ (FFT) is a significant

analytical technique in the field of audio. It de-
composes a signal into its spectral components and
offers information about the signal's frequency.
Feature extraction is the procedure for extracting

features in order to use them in analysis. Each audio
signal has a variety of features. So we need to extract
the features (Elghamrawy et al., 2022) related to the
problem we are trying to solve.
Short-time fourier transform (STFT) is an effective

audio signal processing tool that aims to mimic
human perception, such as the recognition of
auditory scenes or automatic music transcription. It
computes several FFT at different intervals, pre-
serves time information, and gives a spectrogram
(time þ frequency þ magnitude) as shown in Fig. 3
(Müller, 2015).

3.2. Preprocessing layer

Data preprocessing is a crucial stage in machine
learning, as the quality of the data influences the
learning model's performance. Most datasets
contain noise, insufficient variables, and are inac-
curate (contain errors). Therefore, they cannot be
used directly for machine learning. For this reason,
it is very important that our data be preprocessed
before being fed into our model. Data preprocessing
refers to the procedures that must be followed to
transform or encode data in order for it to be easily
recognized by a machine.
Categorical Encoding: categorical data is infor-

mation that has distinct categories within a data set.
Machine learning models work primarily with nu-
merical data. Categorical data is meaningless to a
computer, but it is useful to us. To make the dataset
useable, we must convert these categorical variables
into numerical representations. Label encoding is a
popular encoding method for dealing with cate-
gorical variables (Hancock and Khoshgoftaar, 2020).

Fig. 1. The proposed optimized deep learning audio tagging (ODLAT) approach.
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Feature scaling: it is an important step in the data
processing part. The goal of this technique is to
ensure that all features are on the same scale. So we
need to perform feature scaling so that one large
number does not have an impact on the model
simply because it is too large. A standardization
scale is used in which features are transformed by
subtracting them from the mean and dividing them
by the standard deviation. In the case of scaling the
feature, all data is on the same scale as shown in
Fig. 4. In the case of without scaling the feature, all
data is not on the same scale as shown in Fig. 5 (Ali
et al., 2014).
Here's the formula for standardization value:

Standardized value¼x� m

s
ð1Þ

Here, s is the standard deviation, s the mean.
Data set splitting: a data set splitting strategy is

required for building a model with good general-
ization performance, as well as for model validation,
k-folds Cross validation was used. The sample data
is divided into k parts, k-1 parts are used for
training, and 1 for testing repeat the procedure five
times, and rotate the test group. Determine expected
performance based on iteration results.

3.3. Deep learning layer

The DNN (deep neural network) is a nonlinear
multi-layer model for extracting characteristics
linked to a specific classification (Hinton et al., 2012)
or regression (Xu et al., 2014) task.

Fig. 2. Plot audio wave in time domain.

Fig. 3. Plot short-time fourier transform of the audio.
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3.3.1. Deep neural network structure
A DNN structure consists of three layers: input,

hidden, and output. Fig. 6 shows the DNN structure.
The hidden layer may have two or more layers,
whereas the input and output layers are single
layers. The hidden layer contains a set of neurons
The parameters used in a neural network are shown
in Table 1.
The input layer receives data features. After pro-

cessing in the hidden layers, prediction values are
produced from the output layer.
Due to the enormous number of variables in

neural networks, they are prone to over-fitting.
Dropout is a technique used in neural networks to
prevent over-fitting. Dropout indicates the removal
of units (both hidden and visible) from a neural
network, as well as all of its inbound and outgoing
connections. In the original method, during each
training iteration, each neuron in a neural network
is removed with a probability of 0.5, with all neurons
being included during testing (Srivastava et al.,
2014). The dropout rates for hidden layers are 0.1
and 0.2, respectively.

3.3.2. Optimizer
When applying the deep learning technique, we

have the notion of loss, which informs us of how
poorly the model is performing right now. Now we
need to use this loss to train our network so that it
works better. So basically, what we need to do is
take the loss and try to reduce it. Because a lower
loss indicates that our model will perform better.
The process of minimizing (or maximizing) is called
optimization. Optimizers are techniques that modify

Fig. 4. Impact of the feature scaling process.

Fig. 6. Deep neural network structure.

Fig. 5. Impact without the feature scaling process.
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the neural network's properties, such as its weights
and learning rate, Optimizers are used to solve
optimization problems by minimizing the function.
As a result, the primary aim of the optimizer is to
find the optimal value for the neural network
weights to minimize the objective function (loss/cost
function). Adam or Adamax is used as an optimi-
zation technique.
Adam Optimizer: Adam is a deep neural network

training-specific adaptive learning rate optimization
algorithm that calculates individual learning rates
for various parameters.
The first momentum is obtained by

mi¼b1mi�1 þ ð1�b1Þ
vC
vW

ð2Þ
The second momentum is obtained by

Vi¼b2Vi�1 þ ð1�b2Þ ð3Þ

Wiþ1¼Wi � h
bmiffiffiffiffiffiffiffiffiffiffiffiffiffibV i þ 3

q ð4Þ

ui¼max
�
b2:ui�1;

���� vCvW ðWiÞ
����
�

ð5Þ

Wiþ1¼Wi � h
bmi

ui
ð6Þ

Where bmi ¼ mi/(1-b1), bV i ¼ Vi
1�b2

, h ¼ Learning rate;
b1; b23 ½0; 1� And C (W) denote Cost function with
parameters w, In comparison to Adam, Adamax is
superior (Yi et al., 2020).

3.4. Prediction layer

This layer presents the whole results obtained
from the proposed framework.

4. Experiment results and discussion

Before starting the stage of performing the model,
there are some limitations that must be taken into
consideration in order to avoid the model from
falling into any type of problems that affects the
accuracy of the model.

4.1. Selection neural network

The deep learning neural network was selected in
this research because the data used in this research
is audio recordings, which is unstructured data, and
deep learning deals better with structured data.
Solve challenging issues like audio processing and
eliminate the need for manual feature extraction.
Models can be trained on massive amounts of data,
and the model improves as more data. Automated
tasks that use Keras and Tensorflow can make
predictions in less time.

4.2. Optimal feature extraction

Each audio signal has a lot of features, so we must
choose the feature that best fits the problem that we
want to solve. Audio signal processing algorithms
analyze signals, extract their features, and detect the
presence of any pattern in the signal.

4.3. Specify the labels used in the research

In a DSCASE challenge, for example, the audio
has 9 labels, as shown in Table 2, but the set of labels
that are allowed is 7. Any subset of labels can be
assigned to an audio clip by an author. Except for
the labels S and U, they can only be set separately.

4.4. Data set DCASE2016 for audio tagging

A deep learning model is applied to the DCASE
2016 audio tagging challenge's CHIME-HOME

Table 1. Parameters of a neural network.

NN parameter Values

Classifier Sequential
Number of Hidden layer 2
Hidden activation function Relue
Number of Neuron in first

hidden layer
1000

Number of Neuron in second
hidden layer

700

Output activation function Softmax
Optimizer Adam - Adamax
loss function Categorical cross

entropy
Batch Size 100
Number of Epoch s 100
Learning rate 0.005
Momentum 0.9

Table 2. Labels of the audio DSCASE data set.

Label Description

c Child speech
m Adult male speech
f Adult female speech
v Video game /TV
p Percussive sounds,

e.g. crash, bang, knock, footsteps
b Broadband noise,

e.g. household appliances
o Other identifiable sounds
s Silence / background noise only
u Flag chunk (unidentifiable

sounds, not sure how to label)
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dataset. The audio recordings were created in a do-
mestic environment (Christensen et al., 2010). The
goal is to classify 4 s audio chunks using several labels
at a sampling rate of 16 kHz. There are seven labels
that appear in audio segments, as shown in Table 3.
Besides, sounds issued from outside the house.
A STFT is used to extract features from an audio

signal. Each audio clip is converted into 13 di-
mensions, with a window length of 320 and a hop
size of 160.

4.5. Evaluation metrics

Evaluation metrics are used to assess the model's
performance, such as the confusion matrix shown in
Table 4, which is a summarized table of a classifier's
correct and incorrect predictions and which is
widely utilized to offer a variety of classification
metrics and performance evaluation parameters.
True Positive (TP): is a term that refers to accurate

positive forecasts. False Negative (FN) is a term that
refers to inaccurate negative forecasts. False Positive
(FP): positive forecasts that are inaccurate. True
Negative (TN): negative forecasts that are accurate.
Evaluation metrics that are driven from the confusion
matrix.

Accuracy ðAccÞ¼ TPþTN
ðTPþ FNþ FPþTNÞ ð7Þ

Equal Error Rate ðERRÞ¼ FPþþFN
ðTPþTNþ FNþ FPÞ ð8Þ

A model with a lower EER is regarded as more
accurate, whereas a model with a higher accuracy
coefficient (ACC) is regarded as superior (Saito and
Rehmsmeier, 2015).

4.6. Experiment result number one: the stability of
the algorithm with and with the optimizer

4.6.1. Test DCASE 2016 accuracy and loss with
optimizer
This experiment is used to test the accuracy and

loss of the proposed approach. A DCASE2016 Task 4
data set was used. This data was trained on a DNN
consisting of two hidden layers: an input layer and
an output layer. The binary cross entropy is used as
the cost function, and Adam or Adamax is used as
an optimizer. The training process stops after the
time period specified (100 epoch).
As shown in Fig. 7, the accuracy of the Adamax

optimizer is better than that of the Adam optimizer.

Table 3. Audio data set labels.

Label/Audio events Event Description

Event “b” Broadband noise
Event “c” Child speech
Event “F” Adult female speech
Event “m” Adult male speech
Event “o” Other identifiable sounds
Event “p” Percussive sound events
Event “v” Video game / TV

Table 4. Confusion matrix.

Actually
Positive (1)

Actually
Negative (0)

Predicted
Positive (1)

True
Positives (TPs)

False
Positives (FPs)

Predicted
Negative (0)

False
Negatives (FNs)

True
Negatives (TNs)

Fig. 7. Adamax accuracy and Adam accuracy by epoch.

Fig. 8. Adamax loss and Adam loss by epoch.
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At epoch 100, the accuracy of the Adamax optimizer
is 93% and the accuracy of the Adam optimizer is
87%. In Fig. 8, the loss of the.
Adamax optimizer is better than the Adam opti-

mizer. At epoch 100, the loss of the Adamax opti-
mizer is 0.22%. and the loss of the Adam optimizer
is 0.38%.

4.6.2. Test DCASE 2016 accuracy and loss without
optimizer
Performance optimization tools can be divided into

two groups, with each offering a variety of choices.
They take a different strategy to reduce the cost
function of a neural network and improve the model,
producing various results and also fluctuating in
speed and complexity, which affects training time
and resources.
In Figs. 9 and 10, the accuracy and loss without the

optimizer are shown. At epoch 100, the model
without an optimizer achieved an accuracy of 85%
and a loss of 0.38%, respectively.
When the model is used without an optimizer, it

affects the speed of the model's performance, accu-
racy, and loss.

4.6.3. Experiment result number two: test ODLAT's
accuracy
This experiment is used to test ODLAT's ACC for

seven tags, which measures the number of correct
predictions for the approach. The results obtained in
Table 5 ACC from the proposed approach work
show that ACC in Adamax optimizer is better than
Adam optimizer. The average acc increased from
0.972 to 0991 in the development set and from 0.956
to 0.966 in the evaluation set.Fig. 10. Epoch by loss without optimizer.

Fig. 9. Epoch by accuracy without optimizer.

Table 5. Accuracy results from the proposed framework.

Audio events Event ‘b’ Event ‘c’ Event ‘f’ Event ‘m’ Event ‘o’ Event ‘p’ Event ‘v’ Average

Development Set
STFT-DNN (Adam-opt) 0.995 0.961 0.982 0.987 0.961 0.945 0.978 0.972
STFT-DNN (Adamax-opt) 0.998 0.981 0.995 0.996 0.990 0.991 0.989 0.991

Evaluation Set
STFT-DNN (Adam-opt) 0.991 0.915 0.971 0.981 0.947 0.938 0.949 0.956
STFT-DNN (Adamax-opt) 0.994 0.925 0.981 0.984 0.961 0.964 0.956 0.966

Table 6. Equal error rate comparisons between the results obtained from the proposed framework.

Audio events Event ‘b’ Event ‘c’ Event ‘f’ Event ‘m’ Event ‘o’ Event ‘p’ Event ‘v’ Average

Development Set
STFT-DNN (Adam-opt) 0.011 0.094 0.037 0.027 0.055 0.072 0.060 0.050
STFT-DNN (Adamax-opt) 0.005 0.080 0.010 0.008 0.030 0.020 0.040 0.027

Evaluation Set
STFT-DNN (Adam-opt) 0.011 0.095 0.030 0.025 0.054 0.064 0.060 0.048
STFT-DNN (Adamax-opt) 0.003 0.061 0.012 0.009 0.023 0.018 0.039 0.023
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4.6.4. Experiment result number three: test ODLAT's
equal error rate
This experiment calculates the test ERR. The re-

sults obtained in Table 6 EER from the proposed
approach for seven tags show that EER in the
Adamax optimizer is better than in the Adam opti-
mizer. The average EER decreased from 0.050 to
0.027 in the development set and from 0.048 to 0.023
in the evaluation set.

5. Discussion

In the proposed approach, input signals are pro-
cessed using the STFT feature to extract the features
or characteristic from the audio signal, and these
features are entered into the deep neural network
with Adam or Adamax optimizer. Table 7 shows the
results obtained from the proposed approach
ensuring that Adamax outperforms Adam. The
comparative study results showed the superiority
of the proposed approach to Hertel1 and Phan

(Hertel et al., 2016), Toan and Wang (Vu and Wang,
2016), Thomas Lidy and Schindler (Lidy and
Schindler, 2016), Yong Xu (Xu et al., 2016), and Yong
Xu (Xu et al., 2017). as shown in Tables 7 and 8.

5.1. Conclusion

We provide an ODLAT approach in this study.
Experiments were carried out on DCASE 2016 Task
4. In the classification of environmental sound
sources, the STFT has been applied. DNN have
been demonstrated to be useful for audio tagging
and classification. To prevent the neural network
from over-fitting, a dropout was also implemented.
As an optimization strategy, Adam or Adamax is
employed. In future work, this study will be applied
to another audio feature to extract features from
audio signals, such as MFCCs or CNNs. This may
extract more high-level features for the audio
tagging task, or different binary optimizers may be
tested.

Table 4. Summary of the proposed approach with previous studies.

Ref
Year System characteristics Equal error rate (Average) Accuracy

Features Classifier Optimizer (evaluation
dataset)

(development
dataset)

Lars Hertel1
(Hertel et al., 2016)

2016 STFT Convolutional Neural
Networks (CNN)

Adam 0.210 0.170 84.50%

Toan H
(Vu and Wang, 2016)

2016 MFCCs Recurrent Neural
Networks (RNN)

ADADELTA 0.210 0.20

Thomas Lidy
(Lidy and Schindler,
2016)

2016 CQT Features CNN Stochastic
gradient
descent
(SGD)

0.178 0.166

Yong Xu
(Xu et al., 2016)

2016 MFCCs Deep Neural
Networks (DNN)

SGD 0.1785

Yong Xu
(Xu et al., 2017)

2017 MFCCs DNN SGD 0.168 0.151

MFBs DNN SGD 0.157 0.135
MFBs Denosing

Autoencoder (DAE)
SGD 0.148 0.126

The proposed approach 2022 STFT DNN Adam 0.048 0.050 87%
2022 STFT DNN Adamax 0.023 0.027 93%

Table 5. Summary of previous studies.

Ref Lars Hertel1 [18] Toan H [19] Thomas Lidy [20] Yong Xu [21] Yong Xu [22]

Broadband noise 0.18 0.26 0.032 0.0868 0.067
Child speech 0.2 0.24 0.21 0.1686 0.124
Adult female speech 0.23 0.11 0.214 0.2409 0.202
Adult male speech 0.06 0.21 0.182 0.1943 0.092
Other identifiable sounds 0.19 0.29 0.32 0.2867 0.231
Percussive sound events 0.11 0.23 0.168 0.2197 0.143
TV sound 0.24 0.06 0.035 0.0530 0.023
Average 0.17 0.20 0.16 0.1785 0.126
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