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I.INTRODUCTION 

dvanced Smart Grid )ASGs( is a self-healing, 

flexible, robust, and sustainable computerized two-

way load flow power system with ability to 
prediction in the face of a variety of suspicion. 

Smart Grid (SG) systems have been proposed as a cost-effective 
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solution to the global energy crisis due to their inherent 

connectivity, control, and optimization characteristics, which 

can result in a real-time equilibrium between power supply and 

demand [1,2]. Through demand response and energy efficiency 

technologies, ASG allows distributed generation to shed load 
demand. Demand response (DR) has become a helpful 

method for balancing power supply and demand, as well as 

promoting energy saving as well as emission reduction. 
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 Abstract— In this paper, a novel framework for effective energy management 

of residential customer is provided to reduce electricity consumption. Advanced 

Smart Grids (ASGs) can assist a variety of functions thanks to Internet of Things 

(IoT). These smart devices generate big data, which can be uploaded to the cloud 

for additional analysis. Fog computing tier operates as a bridge between the IoT 

devices integrated in Smart Electrical Grid(SEG) and the cloud to overcome cloud 

issues. Based on the indicated three-tier design, a novel Customer Demand 

Forecasting (CDF) strategy has been introduced. CDF strategy consists of (i) 

Feature Selection (FS) stage and (ii) Demand Forecasting (DF) stage. FS stage 

identifying the most important features that allow the demand forecasting model to 

produce quick and accurate results. A Hybrid Feature Selection (HFS) approach is 

used to pick the effective features, which integrates evidence from two feature 

selectors;(i) Information Gain (IG) as a filter method and (ii) Binary Particle 

Swarm (BPS)optimization is used as a wrapper method. Then, an Improved KN3B 

(IKN3B) predictor has been used in DF stage trying to provide accurate demand 

forecasts based on the selected subset of features from the previous stage. In fact, 

IKN3B combines both K-Nearest Neighbors (KNN) classifier and Naïve Bayes 

(NB)classifier and then it improves the characteristics of them to provide the best 

demand forecasts as possible. Based on experimental results, It is conduced that 

CDF strategy is demonstrated to have a positive influence on system reliability, 

resilience, and stability by introducing accurate demand predictions. 
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Nonetheless, employing a diverse variety of alternative 

resources, such as decentralized generation, is an important. In 

DR systems, energy storage as well as the regulated load by 

customers become critical components [3]. DR is essential for 

improving the reliability and efficiency of electricity networks. 
It can also help to balance power production and consumption, 

as well as encourage energy saving and pollution reduction. 

Analyzing the DR capacity of consumers factors that influence 

the DR application, customer responsiveness is used to keep 

track of time the duration of the DR, the preferences of the 

customers, and the physical characteristics of the 

customer devices, etc... A thorough comprehension of the DR 

of customers, potential may assist in determining a customer's 

profitability and offer customized services as a result. 

Currently, DR systems are introduced for industrial and 

residential customers with DR capital and consumer 
participation may participate. Additionally, DR systems are 

introduced to bridge the gap between suppliers and buyers [4]. 

IoT enables the SGs to monitor and organize smart devices, and 

also to clear the way for energy management of large-scale 

system. IoT envisions real-world objects to be integrated, 

coordinated, communicated, and collaborated for performing 

everyday tasks more intelligently and efficiently. For energy 

monitoring, IoT puts emphasis on consumer appliances and 

analyze their utilization to help comprehend the demand 

specifications of the customer and the grid before making smart 

decisions. Home automation services allow multiple members 

of a household to control the same set of devices [5,6]. Cloud 
computing provides access to customizable network resources 

and services, parallel processing, and ubiquitous access to 

overcome the computational needs of ASG systems [6]. Despite 

the fact that the cloud computing model is considered effective 

for ASG, it needs to reach the Quality-of-Experience 

(QoE)criteria to ASG applications, such as response time, 

bandwidth, energy exhaustion, and network cost. Hence, fog 

computing model has been built on cloud computing model by 

installing localized computing and processing facilities at the 

network's edge, allowing for location - based services, low 

response time, and Response time sensual analytics. 
Cloud data was initially stored by fog and then transmitted 

to SG users using high-speed local connections by installing 

local computing facilities in their residences. In addition, fog is 

certified as a technical enabler for ASG real-time analytics [7-

9]. Many ASG applications are time-sensitive and require rapid 

data analysis in order to respond rapidly to the different events 

that occur. In the field of SG, the latest and evolving paradigms 

of edge and fog computing promise to solve big data storage 

and analysis. There is a lot of data generated by smart devices 

and meters called Internet of Things (IoT) smart devices [10,11]. 

The amount of data collected in SG through smart meters and 
other IoT sensors is a big data. Huge, complicated, and 

expanding data sets coming from a variety of reliable sources 

are referred to as big data. Big data is currently growing rapidly 

in all sectors of research and engineering thanks to rapid 

advancements in networking, data storage, and data processing 

capability [12]. To increase the pliability of the energy system 

on both the generation and demand sides, new approaches are 

needed. Using big data analytics in SGs would aid in improving 

power system [13,14]. 

Big data analytics approaches are a subset of data mining 

techniques used to remove, clean, modify, and demonstrate data 

in order to discover important and useful insights that can aid 

in determining the best strategy and making decisions for the 

business in question. For the examination of numerous statistics 
linked to energy production, distribution mechanization, data 

transmission, taxation, and customer engagement in SGs, data 

mining is required. Data mining is vital for converting data into 

useful information for decision-making reasons, such as 

demand forecasting. In SG, when data is constantly gathered in 

actual time, data mining methods are required for energy 

conservation, stability, and real-time decision-making [15]. 

Dimensionality reduction is becoming more critical in big data 

analytics in which low-dimensional structures in high-

dimensional data can be identified and exploited by using 

dimensionality reduction techniques to select the most 
significant features. However, the energy demand profile is 

more volatile and does not always follow the same pattern. As 

a result of the recent implementation of decentralized energy 

systems, appropriate and relevant feature selection tools and 

forecasting models for cost-effective and productive 

consumption modeling are needed. 

When data is presented with very high dimensionality, there 

would be a greater chance of over fitting in forecasting model. 

The reason is that the training, testing, and validation times for 

the forecasting model will be increased while the accuracy of 

the forecasting model will be decreased. Accordingly, Feature 

Selection (FS) is a critical process before training the demand 
forecasting model. Filter, wrapper, and hybrid methods are the 

three types of FS strategies [16-19]. The growth of DR projects 

in SGs, there is a surge in demand forecasting (DF)for 

residential customers by forecast individual house energy loads. 

To supply the DF, anthropologic and structural data from 

houses have been used [20-22]. 

This study introduces a new conceptual framework for 

Customer Demand Forecasting(CDF) in smart grid based on the 

collected data from IoT devices such as smart meters. CDF 

consists of two stages, which are; FS and DF. FS aims to select 

the meaningful features for the next DF stage. This flawless 
feature selection methodology not only improves the adequacy 

of model prediction, but also speeds up the prediction process 

by considering fewer features. Hybrid Feature Selection(HFS) 

is used in FS to select the most effective features by integrating 

the manual of two feature selectors, which are; Information 

Gain(IG) and Binary Particle Swarm (BPS). In DF as the 

second stage, Improved KN3B (IKN3B) predictor that includes 

K-Nearest Neighbors (KNN) and Naïve Bayes (NB) classifiers 

is used on filtered data to provide rapid and accurate demand 

prediction. Results show that the introduced Customer Demand 

Forecasting (CDF) technology outperforms modern techniques 
when it comes to prediction accuracy with the lowest time 

penalty. The structure of this paper is as shown below; Section 

2 reviews the previous efforts about the most recent demand 

forecasting strategies. Section 3 describes the advanced smart 

grid based on IoT technology and fog computing. Section 4 

focuses on the proposed customer demand forecasting strategy. 

Section 5 depicts the experimental results. Finally, conclusions 

and future work are presented in section 6. 

 



MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 47, ISSUE 6, DECEMBER 2022                                                   E: 13 

 

II.RELATED WORK 

The latest research activities on demand forecasting in smart 

grids will be reviewed in this section. In [23], to predict the use 

of electrical energy, an efficient model has been created. The 

introduced model is called CNN-LSTM module, which 

integrates Convolutional Neural Networks (CNNs) with Long 

Short-Term Memory Networks (LSTMs) to identify spatial and 

temporal features that can be used to predict the quantity of 

energy used in a home. One significant advantage of this 

method is that it could provide efficient forecast for previously 

difficult-to-predict electric energy consumption. As provided in 

[24], a novel Ensemble Forecasting Model based on the 
Artificial Bee Colony (EFM-ABC) algorithm was proposed and 

adopted to provide energy demand forecasting. One advantages 

of EFM-ABC is that it could provide predictive efficiency 

which can be obtained using the ABC algorithm, which 

combines the advantages of a local deep search with a global-

wide search. Although the benefits of EFM-ABC, it suffers 

from that it has uncertain time to convergence and dependent 

sequence of random decisions. In [25], A Deep Learning Model 

(DLM) was established using a convolutional recurrent neural 

network with multi-headed attention. The new solution reduced 

the error by 31.01 percent and increased the prediction 

performance compared to a state-of-the-art deep learning 
model. 

As introduced in [26], a Hybrid Ensemble Method 

(HEM) was provided for electricity demand forecasting. HEM 

consists of three main methods called; Discrete Wavelet 

Transform (DWT), Particle Swarm Optimization (PSO), and 

Radial Basis Function Neural Network (RBFNN). In contrast 

to other models, HEM has a lower average relative error with 

high forecasting accuracy of 97.5778 %. In [27], the electrical 

energy consumption of buildings based on a hybrid ARIMA-

GBRT model was proposed. This prediction model consists of 

Autoregressive Integrated Moving Average (ARIMA) and 
Gradient Boosting Regression Trees (GBRT).The proposed 

ARIMA-GBRT model provided accurate forecasting 

performance and lower values of the indices Root Mean Square 

Error  (RMSE)and Mean Absolute Error (MAE).Although the 

benefits of  ARIMA-GBRT, it consumes a long time because 

GBRT built its trees sequentially. As presented in [28], a Hybrid 

Demand Forecasting System (HDFS)was proposed. HDFS 

consists of three methods called Improved Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise 

(ICEEMDAN), Multi-Objective Grey Wolf Optimizer 

(MOGWO), and Support Vector Machine (SVM). Thus, the 

framework of this model was represented as data cleaning 
method-optimizer basic prediction model called ICEEMDAN-

MOGWO-SVM. HDFS has a lot of real-world implementations 

with high prediction accuracy and stability. 

 

III.ADVANCED SMART GRID (ASG) 

The traditional smart grid cannot work in real time as it lacks 

to use IoT technology [29-31]. Actually, IoT produces a real time 

data that perfectly helps smart grids to perform a variety of tasks 

[32-34]. In smart grid, the electricity consumers have the ability 

to manage their energy consumption and use it wisely and 

efficiently [35]. Accordingly, demand management plays an 

essential role in the construction of smart grid. At the customer 

side, demand forecasting is an effective way to optimize the 

demand scheduling that represents as an advanced automation 

way of moving a part of the demand from peak to off peak in 

order to smooth the demand curve [36]. According to traditional 

smart grids, customer demand forecasting approach is unable to 

provide real time estimations due to the loss of real time data. 

Hence, these traditional grids should be replaced by 

Advanced Smart Grids (ASGs) which have the ability to cope 

with real time actions depending on IoT technology and service 

areas depending on fog computing, as shown in figure1.In figure1, 

ASG consists of four main levels, which are; IoT, customer, 

service area, and cloud levels. In IoT level, there are IoT devices 

such as smart meters which supply the customers (e.g., smart 

home) with real time data to give them the ability to makefast 

and accurate decisions. In fact, the communication between the 

smart meters and the appliances in the system can be created by 
using wireless networking connections such as Bluetooth, Wi-

Fi, etc... While IoT supports the customers with real time data, 

it cannot formulate this data in appropriate form for analysis. 

Additionally, the volume of the generated data through IoT will 

be increased to be larger in size [31-34]. 

Hence, it is an important to represent the received data at the 

customer side in a suitable form (e.g., 2-dimensional form) to 

be analyzed [32]. Data summarization process should be 

performed on the data in customer level to remove ineffective 

data and to prevent the data replication before using it to give 

real time actions. In customer level, the customer can analyze 
the collected data after performing data representation and data 

summarization to provide fast and accurate decisions such as 

demand forecasting. Additionally, every customer will send a 

copy of data in its cache server to be stored temporarily in the 

cache server of its closed fog at the nearest service area. 

Customers can communicate to the nearest fog to store the 

current amount of data in which fog has a range of network 

equipment such as smart gates, routers, switches and other 

similar devices [32,37,38].  

According to fog level, fog can support the customer to take 

quick and effective action on the stored data in its cache. Fog 

can summarize the data in its cache to be more informative 
before sending it to the master fog in its service area. In fact, 

fog can be communicated to customer, another fog in its service 

area, and master fog of its area through wireless networking 

connections to support the customers. Additionally, each master 

fog is able to be connected to another master fog to support the 

fogs in its service area. The main aim of providing the service 

area as a middle level between the customers and the cloud level 

is to give fast and accurate actions coping with real time 

interactions. Sending all of the data collected by IoT to the 

cloud will exhaust network bandwidth and will not be viable 

[32-34]. Cloud is unable to support customers in the customer 
level to make a real time actions, but it is able to perform other 

essential tasks in smart grids such as future load prediction. 

Thus, master fogs have been communicated to the parent cloud 

to send the collected data from their cache servers to the cloud 

servers to be permanently stored according to many rules from 

the cloud. 
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Figure 1. Architecture of the advanced smart grid.  

 

 

 

 

  

  

 

Cloud Servers 

Area1 
 

Fog1 

 

Fogm 

 

Master Fog1 

C
a

c
h

e
 

S
e

rv
e

r 

C
lo

u
d

 L
e

v
e

l 
D

 
S

e
rv

ic
e

 A
re

a
 L

e
v

e
l 

C
 

C
u

s
to

m
e

r 
L

e
v

e
l 

B
 

Io
T

 L
e

v
e

l 
A

 

    

Customer1 Customer2 
 

Customern-1 
 

Customern 
 

Areaq 
 

Fog1 

 

Fogm 

 

Master Fogq 

C
a

c
h

e
 

S
e

rv
e

r 

 

Smart Meter1 

 

 

 

 

 

Smart Meter2 

 

 

 

 

 

Smart Metern-1 

 

 

 

 

 

Smart Metern 

 

 

 

 

Communication between customers regarding excess 
electricity.  
Communication between customer and fog regarding both data and excess electricity.  
 
Communication between fogs regarding excess electricity.  
 Communication between fog and its master fog regarding both 
data and excess electricity.  
 
Communication between master fogs regarding excess 
electricity.  



MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 47, ISSUE 6, DECEMBER 2022                                                   E: 15 

 

 

This paper focuses on demand forecasting at the customer 

side (e.g., smart home). In fact, smart home is an important 

component in ASG in which it includes the complete IoT 

infrastructure that composes of both smart devices (e.g., smart 

meters) and renewable energy sources (e.g., solar, wind etc.) 

[23,27]. Demand forecasting is an essential task to fulfill the 

energy demand at the customer. Demand   forecasting enables 

customers to efficiently manage the electricity demand in which 

they use less energy during the peak time [23-26]. Thus, 

electricity production expenses will be reduced, and reliable 

supply will be ensured. Based on the demand forecasting, 

customer knows if he can self-sufficient with the amount of 

electricity he has, or he will become a victim customer. 

Victim customer begins to communicate with his neighbors 

in the customer level to buy his need of electricity. If the 

neighbors cannot support the customer with his need, he starts 

to ask the closed fog for buying the amount of electricity he 

needs. In this case, fog either supports the customer with his 

need or asks other fogs in the fog level to provide this amount 

of electricity. In the case that these fogs are unable to provide 

the required electricity, the fog communicates to its master fog 

to provide its required. Master fog either provides the amount 

of electricity to the fog and then this fog buys this amount to the 

customer or asks other master fogs to buy the required 

electricity. If master fogs are unable to provide the request, then 

the victim customer should reduce his usage of electricity, 

otherwise the power will be cut off. 
 

IV.THE PROPOSED CUSTOMER DEMAND FORECASTING (CDF) 

STRATEGY 

The details of CDF strategy will be discussed in this section. 

CDF strategy aims to provide fast and accurate demand 

forecasting at the customer side. Actually, fast and accurate 

demand forecasting helps customers to efficiently manage the 

electricity demand in which they use less energy during the 

peak time [23-26]. The input of CDF strategy is an electrical 

dataset in the form of a set of features that affect electrical 

demands. Then, irrelevant features should be eliminated by 

using a suitable feature selection method to select the most 

informative features that enable the demand forecasting model 

to perform its tasks well. CDF technique composes of two 

stages in figure 2, which are; (i) Feature Selection (FS) stage, 

with (ii) Demand Forecasting (DF) stage. The details of each 

stage will be discussed in the following subsections. The 

symbols that used in this paper is presented in table 1. 
 

TABLE 1 

NOMINATIONS OF ALL SYMBOLS IN THIS PAPER. 
 

Symbols Definition 

PP(Pi)  The optimal position of each ith particle. 

Pi The particle's current position of ith particle. 

Ppi The particle's optimal personal position of ith particle. 

Fitness(Pi) The fitness value of the ith particle. 

Fitness(Ppi) The fitness value of the ith particle based on particle's 

optimal position. 

PG The optimal particle in swarm. 

Fitness(Ppi+1) The fitness value of the (i+1)th particle. 

t The present iteration 

Vi(t+1) The velocity of ith particle during the subsequent iteration. 

Vi(t) The velocity of ith particle at the present iteration . 

w The inertia weight; w[0.9-1.2] 

c1 and c2 The cognitive and social acceleration constants; c1,c2[2-4] 

r1and r2 Random numbers; r1,r2[0-1] 

TD Training demand data set contents of training samples  and 

its features, TD2S = (T, F). 

T Training samples. 

F Training samples or testing samples features. 

LTS Labels of training samples, LTS=Lts1;…..;LtsR. 

t No. of samples in training dataset, t=|LTS| or T|. 

DT Demand of training samples, DT=DT1;….;DTt 

ED2S Tested demand dataset contents of testing samples and its 

features, ED2S = (S, F) 

ES Testing samples. 

LES Labels of testing samples, LES=LEs1;….;LEsh 

h No. of samples or labels in examining data set, h=| LESI I| 

or | ES |. 

DE Demand of testing samples,  DE=DE1;…;DEs 

m No of features in training and testing dataset, m=|F|. 

RC Response classes of electrical demand ; RC= c1; c2; …; cR 

R No. of classes in the system, R=|RC|. 

FD Forecasted demand, FD=fd1;……;fdh. 

Sh Testing samples belongs to ES , Sh
   ES 

Tj Training samples belongs to T, Tt  T 

fi Feature of used sample. 

Wi Weight of used sample 

Cr Class belongs to classes of electrical demand, Cr
   RC 

Cvr Center vector of class of electrical demand, Cvr
  Cr. 

Witr Class Cr probability given the feature value  fi  of  training 

samples Tj. 

Wihr Class Cr probability given the feature value fi of  testing 

sample ESh. 

Ed (ESh,Tj) Space between testing sample ES h and training sample Tj 

at all features. 

FD(ESh) Forecasted demand of testing samples ESh 

K Neighbor's number. 

WiCvr Center vector probability given the feature value  fi of 

training samples Tj 

WS Weight space of  m-dimensions 

KNTC Training samples from T with smallest distance with center 

vector Cvr. 

a The feature. 

y The training sample. 

r Class labels. 

P(fayr|cr) The possibility of producing the feature fayr given the class cr. 

VH Very-High demand class. 

H High demand class. 

M Medium demand class. 

L Low demand class. 

VL Very-Low demand class. 

(continued on the next page) 



E: 16             NAGLAA R. KHALIL, ASMAA H. RABIE, KHALED M. ABO-AL-EZ AND AHMED I. SALEH 

  
(TABLE 1: continued)  

Symbols Definition 

CVH The center of Very-High demand class. 

CH The center of High demand class. 

CM The center of Medium demand class. 

CL The center of Low demand class. 

CVL The center of Very-Low demand class. 

Cβ The center of class “β”. 

α The number of samples. 

Tvβ The training sample that belongs to β class. 

Cv The weighted Center Vector . 

Cvr The weighted center of class crRC. 

Ed Euclidean distance. 

Ttr Sample of the training sample. 

KNTCcr The KNTC according to class cr. 

TNTCKr The distance among testing sample Sh and the KNTCcr 

wxhr The numerical weighted values for Sh at xth feature in 

weight space according to class cr. 

WxNTCKr The numerical weighted values for the weights of tntckr at xth 

feature in weight space according to class cr. 

n The number of classes. 

Ed (TNTCKr,Sr) The Euclidean Distance between the center of class tntckr 

and the testing sample Sr. 

BDr (Sr) The smallest Bay Degree (BD) for the testing sample 

belongs to the corresponding class cr. 

Ed (Sh,Tt) The Euclidean Distance between a examined sample Sh a 

training samples Tt in the m-dimensional weight space of cr 

wihr The weights of the ith feature of Sh in the weight space 

associated to class cr. 

witr The weights of the ith feature of Tt in the weight space 

associated to class cr. 

KAS K akin samples, kas={ t1as, t2as, t3as, ……, tkas}. 

FD(Sh ) The average demand of the identified samples in K Akin 

Samples (KAS). 

 

A. Feature Selection (FS) Stage 

Usually, over fitting problem may be caused in smart grids 

because of the existence of non-informative features in the 

electrical dataset [29-34]. FS stage in CDF strategy aims to 

identify the most important features that enable the demand 

forecasting model to produce quick and reliable results. In fact, 

extraneous features can reduce the demand forecasting model's 

accuracy. Thus, it is a necessary operation to eliminate a subset 

of features that have a little effect on the output before starting 

to train the demand forecasting model. This step aims to 

enhance the demand forecasting model's performance, making 

it more rapid and more cost-effective. Feature selection 

techniques can be categorized into two main categories, which 

are; filter and wrapper [29-34]. While filter can quickly select 

the effective features on the demand forecasting model, it 

cannot accurately perform its process. On the other hand, 

wrapper is able to accurately select relevant features but it so 

slow. Thus, it is an important to utilize the benefits of both types 

of feature selection methods to rapidly and precisely choose the 

most effective features on the demands in the smart grid. In this 

section, a Hybrid Feature Selection (HFS) method as a simple 

but effective feature selection method is used to choose more 

important features as shown in figure 3.  

HFS consists of two layers called; fast layer and accurate 

layer. Fast layer aims to quickly select the informative features 

based on using Information Gain (IG) as a filter method [32]. 

Accurate layer aims to precisely choose optimum subgroup of 

the selected features from fast layer. In accurate layer, Binary 

Particle Swarm (BPS) optimization is used as a wrapper method 

[39,40]. In fast layer, to implement IG, entropy should be 

calculated because entropy is a measure of impurity in a training 

dataset [32]. IG is a symmetrical measure that can reflect extra 

details about SS as well as KK that is the degree by which the 

entropy of SS in which IG can be measured reduces by using 

(1) [32]. 

 

IG = H(SS) - H (SS |KK) = H (KK) - H (KK |SS)                 (1) 
 

 

In accurate layer, BPS is implemented based on the subset 

of features selected from the fast layer. BPS extended the 

original Particle Swarm Optimization (PSO) by employing a 

transfer function, called sigmoid function, which converts 

velocities from the continuous search space into binary space 

[39,40]. The implementation of BPS passes through many steps 

as shown in figure 3. Initially, BPS starts by initializing the 

swarm based on the subgroup of selected features from the fast 

layer to initialize each particle in swarm. The position of each 

particle in swarm will be represented in binary space in which 

every bit will be one or zero value that donated to the selection 

of feature or not. Then, all particles in the swarm should be 

evaluated by using a fitness function that indicates the precision 

of selected classifier such as NB as a standard classifier. Based 

on fitness values, every particle will update its personal position 

and also the global position as the best position in swarm will 

be determined by using (2) and (3) [39,40]. 

 
 

𝑃𝑃(𝑃𝑖)

= {

𝑃𝑖                      𝑖𝑓( 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖) > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑝𝑖))

𝑃𝑝𝑖                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
                  (2) 
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Figure 2. Demand forecasting strategy in smart grid.  
 

 

𝑃𝐺

= {

𝑃𝑝𝑖              𝑖𝑓( 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑝𝑖) > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑝𝑖+1))

𝑃𝑝𝑖+1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

             (3) 

 

Where PP(Pi) denotes the optimal position of each ith particle 

and Pi is the particle's current position of ith particle. Ppi also 

denotes the particle's optimal personal position of ith particle. 

Fitness(Pi) denotes the fitness value of the ith particle. 

Fitness(Ppi) denotes the fitness value of the ith particle based on 

particle's optimal position. Additionally, PG is the optimal 

particle in swarm and Fitness(Ppi+1) is the fitness value of the 

(i+1)th particle. Then, the velocity of each particle will be 

calculated based on the personal and global positions using (4) 

[39,40]. 
 

𝑉𝑖(𝑡 + 1) =  𝑤 ∗ 𝑉𝑖(𝑡) + (𝑐1𝑟1 (𝑃𝑝𝑖(𝑡) − 𝑃𝑖(𝑡)))

+ (𝑐2𝑟2(𝑃𝐺(𝑡) − 𝑃𝑖(𝑡)))               (4) 

Where t denotes the present iteration and Vi(t+1) denotes the 

velocity of ith particle during the subsequent iteration. Vi(t) is 

the velocity of ith particle at the present iteration. w is the inertia 

weight; w[0.9-1.2] [39,40]. c1 and c2 are the cognitive and 

social acceleration constants; c1,c2[2-4] and r1and r2 are  

random numbers; r1,r2[0-1]. After the calculation of each 

particle's velocity, sigmoid function is applied as a 
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transformation function that convert the positions from 

continuous to binary using (5).   
 

𝑃𝑖
𝑗(𝑡 + 1)

=  

{
 

 0               𝑖𝑓   𝑟𝑎𝑛𝑑(0,1) ≥ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑉𝑖
𝑗) =

1

1 + 𝑒−𝑉𝑖
𝑗

 1                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

  (5) 

 

Every particle inside the swarm is assessed using the fitness 

function depending on its new position. These calculations are 

repeated until the terminal condition is met. PG is the result and 

the process comes to an end. All features which have one value 

in this particle indicate the most important features. Then, the 

electrical dataset based on the selected features will be passed 

to the next stage called DF stage to allow the provided 

methodology to quickly provide accurate results.  

 

B. Demand Forecasting (Df) Stage 

In this subsection, a new demand forecasting methodology 

is introduced to quickly offer precise values based on the subset 

of features selected from the previous stage called HFS stage. 

The proposed methodology is called Improved KN3B (IKN3B) 

that aims to improve the features of KNN classier. In fact, 

IKN3B combines Naïve Bayes (NB) as a weighted method and 

KNN classifier. Generally, KNN algorithm is easy 

understanding and implemented in which it is widely used to 

nonlinear problems solving [41,42]. Additionally, it can reduce 

the variables influences on the experimental processes [43]. 

KNN is able to perform effectively in applications where the 

sample contains many class labels [44]. Although the benefits 

of KNN, KNN is a lazy learner as all training items are stored 

and a classifier is not generated till a new item needs to be 

classified [45]. KNN as a lazy leaner requires more 

computation time during the classification process [46,47]. For 

classifying a data item X, its K-nearest neighbors are tested and 

then X is allocated to class label to which majority of its 

neighbors belongs to. 

In KNN algorithm, choosing of the hyper parameter k is 

important. A given single value of K is used to determine the 

total number of nearest neighbors to classify the class label for 

unknown item. If k is too small, the algorithm would be more 

sensitive to outliers. Also, if k is too large, the neighborhood 

may include too many points from other classes. Thus, the 

choice of k affects the performance of KNN algorithm [44,48]. 

In this work, KNN has been enhanced to utilize its advantages 

and to avoid its mentioned issues. Hence, IKN3B is a modified 

version of KNN that integrates KNN with NB to provide 

accurate outcomes. Based on various weighted spaces, NB is 

used to allocate the class of the nearest training samples to a 

testing sample in which each space belongs to one of the 

response [30,49]. Hence, the existence of ‘R’ response classes 

indicates that there are ‘R’ of weight spaces. Given every 

response class, every weight space evaluates the input training 

data items depending on its feature values. Suppose that there 

are ‘m’ of features and ‘R’ of response classes; RC={C1, C2, 

C3,…., CR}. 

The main aim of using NB is to calculate the conditional 

probability of a tasted sample in a Feature Space (FS) described 

by the set; F={f1, f2, f3,…., fm} belongs to a response class Cr. 

Thus, it is an important to use a Weighted Function (WF) which 

transfers all training sample's feature vector to the relevant 

weight for every response class. Thus, it is an important to 

implement WF for all feature of any training sample depending 

on its response class by implementing NB before using IKN3B 

classifier [30,32]. Accordingly, WF: fayrwayr, where a is the 

feature, y is the training sample, and r is class labels. Suppose 

that the number of weight spaces is ‘r’ equals the size of Cr. 

After that, wayr can be calculated using (6). 
 

Wayr =P(cr|fayr)=P(cr)*P(fayr|cr)                                        (6) 
 

Where cr is the possibility of class incidence and P(fayr|cr) is the 

possibility of producing the feature  fayr given the class cr. Thus, 

to provide the prediction demand of the testing sample; S(f1, 

f2,….,fm) = (f1s, f2s, ….., f3s,fms), WF is used  as a diversion 

process to transfer it to each of the available ‘r’ weight spaces. 

For the electrical demand data samples (D2S) divided to a 

training data sample of ‘t’ samples;  T={T1, T2, T3,……, Tt} and 

testing data samples of ‘h’ items; ES={S1,S2,S3,……,Sh}. All 

samples of  TtT and ShES is uttered as an ordered set of ‘m’ 

features; Tt (f1, f2, f3,…., fm)=[f1t, f2t, f3t,…, fmt] and Sh(f1, f2, f3,…., 

fm)=[f1h, f2h, f3h,…, fmh]. Depending on the number of responding 

classes, the feature space is converted into the respective weight 

spaces. The conversion of the feature values of Tt to the 

associated weights in the weight spaces is accomplished using 

(1). There are R weight spaces for response classes (e.g., 

RC={c1, c2, c3, …., cR}), For each class crRC uttered in the 

weight space of cr by implementing (1). For the space associated 

to the class cr, the training sample Tt(f1, f2, f3,…., fm)=[f1t, f2t, 

f3t,…, fmt], which belongs to class cr, will be uttered as; Tt(w1r, 

w2r, w3r,…., wmr)|class=cr=[w1tr, w2tr, w3tr,…., wmtr].  

The feature values of Sh(f1, f2, f3,…., fm)=[f1h, f2h, f3h,…, fmh] 

adjusted to the associated weights for any class crRC, then 

uttered as Sh(w1h, w2h, w3h,…., wmh)|class=cr =[w1hr, w2hr, w3hr,…., 

wmhr]. Then, for each corresponding weighted KNN class, it is 

an important to determine the weighted center. The expected 

demand for the CDF problem might be "Very-High," "High," 

"Medium," "Low," or "Very-Low," which are indicated as VH, 

H, M, L, and VL, respectively, and stated by the Response 

Classes series as; RC={VH, H, M, L, VL}. The center of each 

class shall be specified by (7), represented as; CVH, CH, CM, CL, 

CVL, respectively whereas Cβ is the center of class “β”. Cβ can 

be calculated by (7), considering the class ‘β’ that has α samples 

represented as; Tβ={T1β, T2β, T3β,….., Tαβ}.   
 

𝐶𝛽 =
1

𝛼
∑𝑇𝑣𝛽

𝛼

𝑣=1

                               (7) 

 

Where α is the number of samples and Tvβ the training sample 

that belongs to β class. Hence, all data sample D2S are uttered 

in the m-dimensional weight space. Generally, data samples in 
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the weight space from the same class is logically closed with 

each other. Then, based on the data samples of each RC, the 

center of each class is found as a weighted Center Vector 

(Cv).Considering the class crRC that has α samples uttered as; 

Tr={T1r, T2r, T3r,….., Tαr} (e.g., |Nr|=α). Data sample Ttr is 

uttered as; Ttr(w1r, w2r, w3r, …., wmr)|class=cr=[w1tr, w2tr, w3tr,…., 

wmtr]while the weighted center of class crRC is uttered as; Cvr 

(w1, w2, w3, …., wm) |class=cr =[ w1Cvr, w2Cvr, w3Cvr,…., 

wmCvr].Thus, KNN has been improved by transform the data 

samples from feature space to weight space by using NB to find 

the relation between features and response classes.  

 

 

Figure 3. Steps of implementing HFS method. 
 

 

Additionally, the problem of determining the suitable value 

of  K has been solved by calculating the center of response 

classes, and then each testing items could be assigned to its 

relevant class depended solely upon its nearest training samples 

to the center of their class. To implement IKN3B, Euclidean 

Distance is evaluated  at first to get the distance in between 

crRC class's weighted center vector and each sample of the 

training sample TtN by using (8). 
 

Ed (Cvr,Tt)|class=cr =√∑ (𝑊𝑥𝐶𝑣𝑟 −𝑊𝑥𝑡𝑟)
2𝛼

𝑥=1                             (8) 

Generate initial Swarm (S). 

Calculate fitness values for each 

particle in swarm using:                     
𝑭𝒊𝒕𝒏𝒆𝒔𝒔(𝑷𝒊 ) = 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚(𝑷𝒊)  
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Where Cvr is the weighted center vector of class; Cvr(w1, w2, 

w3,…., wm) |class=cr =[ w1Cvr, w2Cvr, w3Cvr,…., wmCvr]. Ttr is sample 

of the training sample; Ttr(w1r, w2r, w3r,…., wmr)|class=cr=[w1tr, 

w2tr, w3tr,…., wmtr]. Corresponding the K-Nearest-To-Center 

(KNTC) of each response classes Cvr with the smallest Ed 

(Cvr,Tt)|class=cr, are defined and represented by the set; KNTC = 

{TNTC1, TNTC2, TNTC3,….., TNTCK} where KNTC is K-nearest 

training samples to the center in the considered ‘r’ weight 

spaces. The distance between the testing sample Sh and the 

KNTC of every class is measured using Euclidean distance. 

Taking  the space according to class cr, the distance among 

testing sample Sh(w1r, w2r, w3r, ….,wmr)|class=cr=[w1hr, w2hr, 

w3hr,…., wmhr]and the KNTCcr is uttered as; TNTCKr (w1r, w2r, w3r, 

…., wmr) |class=cr =[ w1NTCKr, w2NTCKr, w3NTCKr,…., wmNTCKr]. The 

Euclidean distance between each testing sample Sh and the 

center of class KNTC in cr's m-dimensional weight space Ed 

(TNTCKr,Sh)|class=cr can be calculated using (9).  

 

Ed (TNTCKr,Sh)|class=cr =√∑ (𝑊xNTCKr −𝑊𝑥ℎ𝑟)
2𝑚

𝑥=1            (9) 

 

Where𝑊𝑥𝑁𝑇𝐶𝐾𝑟and wxhr are the numerical weighted values for 

the weights of TNTCKr and Sh respectively at xth feature in weight 

space according to class cr. The smallest Bay Degree (BD) for 

the testing sample belongs to the corresponding class cr can be 

calculated using (10). 

  

BD𝑟(𝑆𝑟) =
1

𝑛
∑Ed(𝑇𝑁𝑇𝐶𝐾𝑟 , 𝑆𝑟)                             (10)

𝑛

𝑘=0

 

 

Where n is the number of classes and Ed (TNTCKr,Sr) is the 

Euclidean Distance between the center of class TNTCKr and the 

testing sample Sr. For ability to Forecast the Demand (FD) 

responding to Sh, Euclidean Distance is applied to measure the 

distance between the examined sample Sh and the training 

samples For every response space. Taking into account the 

space relating to class cr, the distance in between a examined 

sample Sh(w1h, w2h, w3h,…., wmh)|class=cr=[w1hr, w2hr, w3hr,…., 

wmhr]and a training samples Tt(w1r, w2r, w3r,…., wmr)|class= cr 

=[w1tr, w2tr, w3tr,…., wmtr] in the m-dimensional weight space of 

cr using (11).  

Ed (Sh,Tt)|class=cr =
)11(

2

1
)( 

m
i itr

W
ihr

W  

 

Where wihr and witr are the values obtained for the weights of 

the ith feature of Sh and Tt in the weight space associated to class 

cr. To calculate FD associated to Sh, which is the average 

demand of the identified samples in K Akin Samples (KAS), 

the training KAS are established and described by the set in the 

considered R weight spaces (R represents response classes); 

KAS={ T1AS, T2AS, T3AS, ……, TKAS} whereas K is number of Akin 

Samples with the smallest distance, then FD conforming to Sh 

would be the mean demand of the samples described in KAS, 

which can be dictated by (12). In algorithm 1, the general steps 

of the Improved KN3B (IKN3B) model are illustrated.  
 

)12(/)()( kKASSyT yAS
TdemandhSFD               (12) 

 

To explain the idea, suppose two response classes, "High" 

and "Low" respectively, as indicated by; "H" and "L." Consider 

of the space of two dimensional features as; F={f1,f2}. Figure 

4 shows the steps of implementing IKN3B, suppose K=5. 

 

V.EXPERIMENTAL RESULTS. 

The introduced CDF strategy will be implemented in this 

section. CDF composes of two stages; FS stage using HFS 

technique and DF stage using IKN3B techniques. The EU-27 

electricity consumption dataset collected from Europe is used 

in our implementation [50,51,53].EU-27 electricity consumption 

dataset is a dataset based on the internet that was utilized to 

corroborate the findings in this study. EU-27 electricity 

consumption dataset is split into two groups; training and 

testing sets. The training set is used to learn the demand 

forecasting model, while the testing set is used to assess the 

proposed model's accuracy. The implementation of CDF 

strategy will be passed through two scenarios. In the first 

scenario, HFS technique will be implemented and compared to 

the most recent feature selection methods. In the second 

scenario, the whole strategy called CDF will be implemented 

and compared to the most recent demand forecasting strategies. 

To evaluate the model’s performance, many metrics based on 

the confusion matrix will be used [30]. As shown in table 2 These 

metrics are accuracy, precision, recall, and error [30,31]. Table 3 

shows the applied parameters and their corresponding 

implemented values. 

 

C. Testing Hybrid Feature Selection (HFS) Method.  

This paper presents HFS technique that is comprised of two 

layers called; fast layer and accurate layer. While fast layer try 

to quickly select the informative features based on using IG as 

a filter method, accurate layer aims to accurately select the best 

subset of the selected features from fast layer depending on the 

use of BPS as a wrapper method. To demonstrate the efficiency 

of the proposed HFS technique, it is compared to many features 

selection techniques. These techniques are Binary Genetic 

Algorithm-Gaussian Process Regression (BGA-GPR) [53], 

Genetic Algorithm (GA) [54], and Least Absolute Shrinkage 

and Selection Operator (LASSO) [55]. Table 4 shows the 

applied techniques. NB classifier as a demand forecasting 

model has been used to evaluate the feature selection 

techniques. Results are illustrated in figure 5, figure 6, figure 7 

and figure 8. 
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1. K=5. 
2. m=2, e.g., two feature space (f1, f2). 
3. Two response classes {“Low”, “High”}, so we have two weigh spaces, 

“Low Space”, and “High Space”. 
 

Assumptions 
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“High” class 

W2 

Testing         

sample Sh 

 

Z(W1,W2)=(W1ZH,W2ZH

) 

Z 
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Weight 

Space 
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G 

W1 

 

Sample of “Low” 

class 

Sample of “High” 

class 

1 

F1 

F2 

Testing         
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Feature 

Space 

Z 

Z(F1, F2)=(F1Z,F2Z) 

G 
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Space 

Z(W1,W2)=(W1ZH,W2Z

H) 

Z 
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CvL (W1,W2)=( W1CvL,W2CvL) 

G 

CvH 

CvH (W1,W2)=( W1CvH,W2CvH) 

Sample of 
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W2 
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W1 

W1 

As illustrated in step 7 we find that the5-Nearest Neighbors considering “High Space” and 

“Low Space”, are distributed as following: 

 In “High Space” there are 2 neighbors, which are; A and B. 

 In “Low Space” there are 3 neighbors, which are; D, E, and F. 

Let the demand of the 5-Nearest Neighbors to be as illustrated in the shown demand table 

(in KW), so the forecasted demand of the examined sample will be: 

 

So, forecasted demand = (75+60+35+45+20)/5 
Forecasted demand =47 KW. 

Sample A B D E F 

Demand 75 60 35 45 20 

Figure 4. Demand forecasting using IKN3B. 
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 Inputs:  
TD2S = (T, F); Training demand dataset. 

LTS=Lsr1;…..;Lsrt ; Training samples labels. 

 t=|LTS| or |T|; No. of samples or labels in training dataset. 

DT=DT1;….;DTt, Training samples demand. 

ED2S= (ES, F); Testing dataset. 

LES=LEs1;….;LEsh; Testing samples labels. 

h=|LTE| or |ES|; No. of samples or labels in testing demand dataset. 

DE=DE1;…;DEh;  Demand of testing samples.  

m=|F|; No. of features in training and testing demand dataset. 

  RC=c1;…..;cR ; Response classes of electrical demand. 

R=|RC|; No. of classes in the system. 

KNTC= K-Nearest to center samples. 

K=No. of neighbors. 

 Output:  

 FD=fd1;……;fdh ; forecasted demand . 

 Steps:  

 /* Training samples weight (probability) calculation of each feature with the 

     class by using Naïve Bayes*/ 

1: For every Tj   T 

2:    For every fi   F 

3:        For every Cr   RC 

4:                    Calculate Witr = PTi,fj (Cr | fij) =P(Cr)*P(fij|Cr). 

5:        End for 

6:    End for  

7: End for 

 /* Examining samples weight (probability) calculation of each feature with              

       the class by using Naïve Bayes*/ 

8:  For every Sh   ES 

9:       For every fi   F 

10:         For every Cr   RC 

11:                      Calculate Wihr= PSh,fi (Cr | fih) =P(Cr)*P(fih|Cr).  

12:         End for 

13:     End for  

14: End for  

 /* Determine the center for each response class at WS*/ 

15: For every Cr   RC 

16:      For every Tt  T 

17:         For every Wi  W 

18:            Calculate CVr =
1

𝛼
∑ 𝑇𝑡𝑟 .
𝛼
𝑖=1  

19:            Cvr (w1, w2, w3, ….,wm) |class=cr =[ w1Cvr, w2Cvr, w3Cvr, …., wmCvr]   

20:        End for 

21:     End for  

22: End for 

/* Space calculation between weight (probability) of training samples and it’s   

     corresponding  Cvr*/ 

23: For every Cvr  Cr 

24:    For every Tj  T  

25:        For every Wi  W 

26:             Calculate Ed (Cvr ,Tj) =

 

 

27:         End for  

28:     End for 

29: End for 

//Corresponding K-nearest to center Cvr for each response class. 

30:  For every Cvr  Cr 

31:        For every Tj  T  

32:           Calculate KNTC (Cvr) =K of training samples with smallest Ed (Cvr,Tj). 

33:        End for 

34:  End for 

// Calculate Euclidian distance for each testing sample in ES with KNTC.  

35:  For every Kt  KNTC 

36:      For every Sh  ES 

37:          Calculate Ed (Kt, Sh) =

 

 

38:      End for 

39:   End for 

 

Algorithm Parameters 

TD 
Training demand data set contents of training samples  and its 

features, TD2S = (T, F). 

T Training samples. 

F Training samples or testing samples features. 

LTS Labels of training samples, LTS=Lts1;…..;LtsR. 

t No. of samples in training dataset, t=|LTS| or T|. 

DT Demand of training samples, DT=DT1;….;DTt 

ED2S 
Tested demand dataset contents of testing samples and its 

features, ED2S = (S, F) 

ES Testing samples. 

LES Labels of testing samples, LES=LEs1;….;LEsh 

h 
No. of samples or labels in examining data set, h=| LESI I| or | 

ES |. 

DE Demand of testing samples,  DE=DE1;…;DEs 

m No of features in training and testing dataset, m=|F|.  

RC  Electrical demand classes; RC= c1; c2; …; cR. 

R No. of classes in the system, R=|RC|. 

FD Forecasted demand, FD=fd1;……;fdh. 

Sh Testing samples belongs to ES , Sh   ES 

Tj Training samples belongs to T, Tt  T 

fi Feature of used sample. 

Wi Weight of used sample 

Cr Class belongs to classes of electrical demand, Cr   RC 

Cvr Center vector of class of electrical demand, Cvr  Cr. 

Witr 
Class Cr probability given the feature value  fi  of  training 

samples Tj. 

Wihr 
Class Cr probability given the feature value fi of  testing 

sample ESh. 

Ed (ESh,Tj) 
Space between testing sample ES h and training sample Tj at 

all features. 

FD(ESh) Forecasted demand of testing samples ESh. 

K Neighbor's number. 

WiCvr 
Center vector probability given the feature value  fi of training 

samples Tj 

WS Weight space of  m-dimensions 

W Training samples or testing samples weight. 

KNTC 
Training samples from T with smallest distance with center 

vector Cvr. 

 // Calculate Euclidian distance for each testing sample in ES with KNTC.  

40: For every Kt  KNTC 

41:   For every Sh  ES 

42:      Calculate Ed (Kt, Sh) =

 

 

43:   End for 

44: End for 

// Calculate Euclidian distance for testing sample in ES.  

45: For every Sh  ES 

46:     For every Tj  T 

47:       Calculate Ed (Sh, Tj) =

 

 

48:     End for 

49: End for 

// Determine KNN of training items for each testing sample. 

50: For every Sh  ES 

51:   For every Tj  T 

52:     Calculate Neighbors (Sh) =K of training items with smallest Ed (Sh, Tj) 

53:   End for 

54: End for 

 // Calculate demand forecasting value for each testing sample. 

55: For every Sh  ES 

56:     FD (Sh) =

 

  

57: End for 

58: Measure an accuracy of proposed model based on FD and DE values. 

 

Demand Forecasting Using IKN3B Algorithm 

Algorithm1: Demand forecasting using IKN3B.  

 



MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 47, ISSUE 6, DECEMBER 2022                                                   E: 23 

 

 
 

TABLE 2 

CONFUSION MATRIX 

 
 

 

Predicted Label 

Positive Negative 

Known 

Label 

Positive 
True Positive 

(TP) 

False Negative 

(FN) 

Negative 
False Positive 

(FP) 

True Negative 

(TN) 

 
TABLE 3 

CONFUSION MATRIX FORMULAS 
 

Measure Formula Intuitive Meaning 

Precision(P) TP / (TP + FP) 

The percentage of 

positive classifications 

that are correct. 

Recall / 

Sensitivity(R) 
TP / (TP + FN) 

The percentage of 

positive classifications 

that are positive. 

Accuracy(A) 
(TP + TN) / (TP + 

TN + FP + FN) 

The percentage of correct 

classifications. 

Error(E) 1- Accuracy 
The percentage of 

incorrect classifications. 

 

As shown in figure 5, figure 6, figure 7 and figure 8, 

increasing the number of items in the training dataset improves 

the performance of all methods. At the maximum number of 

training items, the highest "Precision," "Recall," and 

"Accuracy," as well as the lowest "Error," are achieved, at the 

utmost number of items for training (e.g., 498 items). The 

reason is that IKN3B depends on KNN that is straightforward 

classifier and NB as a weighted method to convert the dataset 

from feature space to weighted space. As a result of weighting 

the data before learning the forecasting model, the performance 

of demand forecasting method is enhanced. It should also be 

observed that the proposed HFS method has the best 

performance compared to other methods. True Positive (TP) 

and True Negative (TN) are therefore increased, whereas False 

Positive (FP) and False Negative (FN) are reduced. This 

improves the accuracy, precision and recall of the proposed 

selection method while reducing errors. BGA-GPR, GA, 

LASSO, and HFS reach to accuracy values equal 

0.83,0.81,0.82, and 0.94 respectively at the maximum number 

of training data (e.g.,498).  

 

 

 

 

Figure 6. Error of features selection methods using NB. 
 

 

Figure7. Precision of features selection methods using NB. 
 

 

Figure 8. Sensitivity of features selection methods using NB.  

 

HFS achieves the highest accuracy value by using IG as a 

filter method and then BPS as a wrapper method that improves 

the performance of the NB classifier as a demand forecasting 

model by precisely selecting the best features. Accordingly, 

BGA-GPR, GA, LASSO, and HFS algorithms provide error 

values reach to 0.18, 0.21, 0.19, and 0.06 respectively. HFS 

provides precision equals 0.74 while BGA-GPR, GA, and 

LASSO provide 0.66, 0.61, and 0.62 respectively. While the 

recall of HFS is 0.73, the recall of BGA-GPR, GA, and LASSO 

are 0.67, 0.65, 0.60, and 0.62 respectively. Hence, figure 5, 

figure 6, figure 7 and figure 8 demonstrate that HFS is superior 
to other current techniques, that are; BGA-GPR, GA, and 

LASSO because the greatest accuracy and the lowest error are 

reached by HFS. 
 

D. Testing Customer Demand Forecasting (CDF) Strategy. 

At the end, it's necessary to turn the proposed CDF 

methodology to the test, ensuring that the used HFS as a feature 

selection method and IKN3B as a demand forecasting 

methodology working together well. To measure the 

performance of CDF methodology, it is examined with some of 

the most lately utilized demand forecasting methodologies.  
Figure 5. Accuracy of features selection methods using NB. 
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These recent methods are CNN-LSTM [23], EFM-ABC 

[24], DLM [25], HEM [26], ARIMA-GBRT [27], and HDFS 

[28]. All the indicated capabilities are implemented in CDF 

methodology, therefore HFS is being used to feature selection 

and IKN3B is being used to demand forecasting. Results are 

shown in figure 9, figure 10, figure 11 and figure 12.  

 

  

Figure 9. Accuracy of the different demand forecasting methods. 

 
Figure 11. Precision of the different demand forecasting methods. 

 

 
 

 Figure 10. Error of the different demand forecasting methods. Figure12. Sensitivity of the different demand forecasting methods.  
 

TABLE 4: 

SOME OF RECENT FEATURE SELECTION METHODS USED FOR EVALUATION. 
 

Features Selection Technique Description 

Binary Genetic Algorithm-Gaussian 

Process Regression  (BGA-GPR)[53] 

In [53], BGA-GPR is a new features selection method which has been used to effectively 

discover the much more important and non-repetitive variables for valid and exact Electricity 

Demand Forecasting .Binary Genetic Algorithm (BGA) is implemented for the variable 

selection process and Gaussian Process Regression (GPR) is used to evaluate the fitness score 

of the variables. 

Genetic Algorithm (GA) [54] 

In [54], genetic algorithm (GA) is used to enhance feature sets for machine( ML) algorithms 

which don't include a built-in feature selection technique, Selection, crossover, and mutation 

are the three key operators in GA, which is a random search optimization process .The GA 

feature selection increases the efficiency among any algorithms as well as demonstrates that 

the most important parameters affecting heat demand prediction are historical heat demand, 

temperature, and "agent schedules," which are generated from major occupancy shifts in the 

building. 

Least Absolute Shrinkage and Selection 

Operator (LASSO) [55] 

In [55], LASSO is a useful way for selecting features aids in the reduction of problem size 

and the elimination of over fitting. By eliminating redundant variables, it is possible to reduce 

the number of dependent variables. The number of the absolute values of model variables is 

constrained by LASSO to be less than a given bound value. Using a regularization method 

stigmatizes the regression coefficients by decreasing some of them to zeros. Features are 

chosen after regularization depend on that their coefficient is non-zero. By regularizing and 

eliminating coefficients to reduce the number of irreverent elements, the LASSO approach 

can reduce variance without significantly raising bias. In[55] showed that, under the 

condition of maintaining classification precision, this approach greatly improves feature 

selection operation performance while reducing modeling and classification time costs. 
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As shown in figure 9, figure 10, figure 11 and figure 12, 

CNN-LSTM, EFM-ABC, DLM, HEM,ARIMA-GBRT,HDFS, 

and CDF reach to accuracy values equal 0.82, 0.81, 0.86, 0.85, 

0.87, 0.93, and0.97 respectively at the maximum number of 

training data (e.g.,498). CDF achieves the highest accuracy 

value by using IKN3B that provides accurate demand forecasts 

with the shortest possible time penalty based on the most 

efficient nearest neighbors. Accordingly, CNN-LSTM, EFM-

ABC, DLM, HEM, ARIMA-GBRT, HDFS, and CDF 

algorithms provide error values equals 0.19, 0.16, 0.11, 0.17, 

0.12, 0.1, and 0.05 respectively. CDF provides precision value 

equals 0.76 while CNN-LSTM, EFM-ABC, DLM, HEM, 

ARIMA-GBRT, and HDFS provide 0.64, 0.66, 0.66, 0.70, 0.69, 

and 0.70 respectively. while the recall of CDF is 0.74, the recall 

of CNN-LSTM, EFM-ABC, DLM, HEM, ARIMA-GBRT and 

HDFS are 0.6, 0.65, 0.64, 0.67, 0.67, and 0.69 respectively. 

Hence, figure 9, figure 10, figure 11 and figure 12 demonstrate 

that CDF is superior to other current techniques, that are; CNN-

LSTM, EFM-ABC, DLM, HEM, ARIMA-GBRT, and HDFS 

because the greatest accuracy and the lowest error are reached 

by CDF. 

 

VI.CONCLUSIONS AND FUTURE WORK. 

In this paper, a three-tier architecture of IoT, fog, and cloud 

has been presented for enhancing the smart electrical grid based 

on IoT smart devices. In ASGs, CDF is a critical process, thus, 

it is a vital process to use an effective forecast technique. The 

results of the literature review reveal that an optimal 

methodology has yet to be identified. As a result, the 

appropriate one must be chosen in order to deliver quick and 

precise forecast values. Hence, an accurate CDF method, which 

has the potential to bring increased intelligence (smartness) to 

future smart grids has been provided in this work. CDF strategy 

in this paper is divided into two main stages, which are; FS and 

DF stage. HFS as a features selection technique that integrated 

IG as a filter method and BPS optimization method as a wrapper 

method has been introduced to eliminate irrelevant features. 

Then, the filtered data without irrelevant features has been 

proceeded to DF stage to provide accurate demand forecasts by 

using Improved KN3B (IKN3B) that combines both KNN and 

NB classifiers. The provided HFS technique gives more 

accurate results than existing methods in terms of accuracy, 

error, precision, and sensitivity/recall. The accuracy, error, 

precision, and recall values provided by HFS are as follows; 

0.94, 0.06, 0.74, and 0.73 respectively. Additionally, 

experimental results show that the proposed CDF strategy 

provides better accurate results than the current demand 

forecasting strategies according to accuracy, precision, and 

sensitivity. The accuracy, error, precision, and recall values 

provided by CDF are as follows; 0.97, 0.05, 0.76, and 0.74 

respectively.  

In the future work, the more superior forecasting model will 

be investigated. To increase the forecasting model's 

performance such as bi-directional long short-term memory, 

many optimization approaches and deep learning methods can 

be used. The evaluation of the studied techniques' performance 

on a dataset with higher resolution and longer forecasting 

horizons could be a future research area of work.  
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Arabic Title 

 على الضباب  ة( المبني(CDFجية التنبؤ بطلبات العملاء تياسترا

 انترنت الأشياء. للشبكات الذكية باستخدام
 

Arabic Abstract: 

في هذا البحث، يتم توفير إطار عمل جديد لإدارة الطاقة الفعالة للعملاء المقيمين من 

في   (ASGs)يمكن أن تساعد الشبكات الذكية المتقدمة حيث أجل تقليل استهلاك الكهرباء. 

تولد هذه الأجهزة الذكية  (IoT).مجموعة متنوعة من الوظائف بفضل إنترنت الأشياء 

بيانات ضخمة يمكن تحميلها على السحابة لتحليل إضافي. تعمل طبقة حوسبة الضباب 

غلب على مشكلات والسحابة للت SEGكجسر بين أجهزة إنترنت الأشياء المدمجة في 

السحابة. بناءً على التصميم ثلاثي المستويات المشار إليه سابقاً، تم تقديم استراتيجية جديدة 

( مرحلة اختيار الميزات 1من ) CDFتتكون استراتيجية  .(CDF)لتوقع طلب العملاء 

(FS) ( مرحلة التنبؤ بالطلب 2و )(DF).  تحاول مرحلةFS ح تحديد أهم الميزات التي تسم

لنموذج التنبؤ بالطلب بإنتاج نتائج سريعة ودقيقة. يتم استخدام نهج اختيار الميزات 

لاختيار الميزات الفعالة، والتي تدمج الأدلة من اثنين من محددات  (HFS)المختلطة 

( يتم استخدام التحسين ثنائي 2كطريقة تصفية و ) (IG)( اكتساب المعلومات 1الميزات؛ )

 KN3Bباعتباره طريقة المجمع. بعد ذلك، تم استخدام متنبئ  (BPS)الجسيمات 

(IKN3B)  المحسن في مرحلة تحديد الاتجاه في محاولة لتقديم تنبؤات دقيقة للطلب

استنادًا إلى المجموعة الفرعية المحددة من الميزات من المرحلة السابقة. في الواقع، يجمع 

IKN3B  بين مصنفK-Nearest Neighbors (KNN) صنف ومNaïve Bayes 

(NB)  ثم يقوم بتحسين خصائصهما لتوفير أفضل توقعات الطلب قدر الإمكان. بناءً على

لها تأثير إيجابي على موثوقية النظام  CDFالنتائج التجريبية، يسُتنتج أن استراتيجية 

 ومرونته واستقراره من خلال تقديم تنبؤات دقيقة للطلب.
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