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I.INTRODUCTION 

MONG the most significant problems in the field 

of physics and engineering applications is the 

biharmonic equation. For example, the 

deformation of a thin plate, the modeling of bio-fluid dynamics 

and motion of a fluid, etc. All of these applications are modeled 

by the biharmonic equation. Also, an important role is played 

by the biharmonic equations in the applications of quantum 

mechanics, gravitational theory and structural and continuum 
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mechanics. The biharmonic problem was solved analytically to 

obtain a closed-form solution by using the separation of 

variables method. Recently it was solved by various analytical 

methods such as variational iteration, decomposition, 

Homotopy and the Fourier-Yang integral transform methods 

[1–4]. The numerical methods used for solving such types of 

problems have been widely discussed and can be classified into 

major classes. The spectral methods, finite element method and 

finite difference method. 

The method of finite difference uses a technique that 

discretized the solution domain into grid points with an equal 
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 Abstract—In the following work, the numerical investigation of 

biharmonic equation is explored. The approximate solution is 

approximated at specific points in the solution domain by using the 

collocation method based on the modified bi-quintic b-spline basis 

functions. These modified basis functions vanish at the boundary points. 

The main properties of these basis functions are discussed in detail. The 

method is based on reducing the proposed problem to a linear system of 

equations. The boundary conditions are combined in the resulting linear 

system of equations in specific order to guarantee that the approximate 

solution coincides with the exact solution at the boundary points. Three 

numerical examples show the effectiveness of our method, and the 

accuracy is measured by comparing three different types of error between 

approximate and exact solutions. The outcomes are graphically depicted to 

assess the performance of the intended method. The proposed method is 

easy to implement, and numerical results ensure that the method 

approximates the solution of the biharmonic problem very well.  
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step size. Such methods were presented by many authors as [5–

7]. The main advantage of finite element method is it can be 

implemented in flexible geometry and can be found in detail  

[8–12]. Recently, spectral methods are commonly used to solve 

such types of problems by approximating the solution as a 

series of basis functions. Here we can cite some of the most 

famous spectral techniques for example, Legendre [13], 

Chebyshev tau meshless method [14], Haar wavelets 

implemented in [15], and Trefftz method in [16]. Sinc-Galerkin 

method was introduced in [17]. The localized radial basis 

functions collocation method was used in [18]. 

Spectral methods such as collocation method is widely 

implemented to find the approximate solution to both ordinary 

and partial differential equations appearing in physical 

phenomena as well as engineering models. Due to the very 

important properties of b-spline basis, they have been induced 

with such methods for approximating the solution of various 

problems. Chang et al. [19] used cubic B-spline basis functions 

to solve numerically the linear ordinary differential equations. 

Caglar et al. [20] introduced the same technique to find the 

numerical solution of linear system of 2nd order boundary value 

problems. The method based on using cubic b-spline 

collocation was extended to solve higher ODE by Khalid et al. 

in [21] where the sixth order boundary value problems were 

solved. Another paper proposed the solution of linear fourth 

order BVP by Gupta and Kumar [22]. Further approaches deal 

with higher degree b-splines for approximating the solution of 

some well-known applied problems have been discussed in 

detail in [23–25]. 

On the other side, many authors proposed novel techniques 

to approximate the solution of partial differential equations 

such as singularly perturbed convection diffusion problem [26], 

the solution of Burger’s equation using B-spline finite element 

algorithms [27]. Mittal and Arora proposed an approach based 

on quintic B-spline collocation for solving the Kuramoto- 

Sivashinsky equation in [28]. Various techniques were 

examined by using different degrees of b-spline bases for 

solving heat equation, the equal width (EW) equation, the 

nonlinear Korteweg-de-Vries Burgers equation and Euler 

Bernoulli beam models in [29–32], respectively. 

The biharmonic problem has consisted of a fourth-order 

linear differential equation with boundary conditions of type 

Dirichlet and Neumann. It can be described as follows: 

Assume the non-homogeneous biharmonic equation in the form 
 

𝛬 [𝜓] =  𝜂(𝑥, 𝑦), (𝑥, 𝑦) ∈  Ω,                                         (1.1) 
 

Where the differential operator Λ is defined by 

𝛬[𝜓] = ∇4𝜓(𝑥, 𝑦) =
𝜕4𝜓(𝑥,𝑦)

𝜕 𝑥4
+

𝜕4𝜓(𝑥,𝑦)

𝜕 𝑥2𝜕 𝑦2
+

𝜕4𝜓(𝑥,𝑦)

𝜕 𝑦4
    ,  

 

With respect to the following boundary conditions 

𝜓|𝜕Ω = 𝑓,                                                                           (1.2) 
𝜕𝜓

𝜕𝑛
|
𝜕Ω
= 𝑔.                                                                          (1.3) 

 

Where Ω ⊂  ℝ2  is a simply connected domain and 𝜕Ω its 

piecewise (smooth) boundaries. The boundary conditions 

consist of two equations, the first is Dirichlet type and describes 

the values of the unknown function on𝜕Ω , and the other 

condition of Neumann type where 
𝜕𝜓

𝜕𝑛
 is the outward normal 

derivative of 𝜓 of the boundaries 𝜕𝜓. 

 

II.SCHEME OF SOLUTION 

2.1. Basic Formulas of Quintic B-Spline Basis Functions. 

Assume the uniform 1D grid points 𝜁𝒾 , 𝒾= 0,1,···, 𝑁 in the 

interval [𝑎, 𝑏]which are divided uniformly with  
 

ℎ = 𝜁𝑘+1 − 𝜁𝑘   =
(𝑏 – 𝑎)

𝑁 

 𝜋 ∶  𝑎 =  𝜁0  <  𝜁1  < ··· <  𝜁𝑁  =  𝑏 

 

TABLE 1. 

 THE VALUES OF 𝜙𝒾(𝜁 ) AND THE FIRST FOUR DERIVATIVES 𝜙𝒾
′(𝜁 ) 

,𝜙𝒾
′′(𝜁 ), 𝜙𝒾

′′′(𝜁 ), 𝜙𝒾
(𝒾𝒱)(𝜁 ) AT THE NODAL POINTS. 

 

𝜻 𝜻𝓲−𝟑 𝜻𝓲−𝟐 𝜻𝓲−𝟏 𝜻𝓲 𝜻𝓲+𝟏 𝜻𝓲+𝟐 𝜻𝓲+𝟑 

𝜙𝒾(𝜁 ) 0 1 26 66 26 1 0 

ℎ𝜙𝒾
′(𝜁 ) 0 5 50 0 ‒50 ‒5 0 

ℎ2𝜙𝒾
′′(𝜁 ) 0 20 40 ‒120 40 20 0 

ℎ3𝜙𝒾
′′′(𝜁 ) 0 60 ‒120 0 120 ‒  60 0 

ℎ4𝜙𝒾
(𝒾𝑣)(𝜁 ) 0 120 ‒480 720 ‒  480 120 0 

 

The quintic B-splines are continuously differentiable, 

piecewise fifth degree polynomials defined on the interval 

[a, b]which are in the form [33]: 

 

 

𝜙𝑘(𝜁)

=
1

ℎ5

{
 
 
 

 
 
 

(𝜁 − 𝜁𝑘−3)
5,                                                              𝜁𝑘−3 ≤   𝜁 < 𝜁𝑘−2  

(𝜁 − 𝜁𝑘−3)
5 − 6(𝜁 − 𝜁𝑘−2)

5,                                𝜁𝑘−2 ≤   𝜁 < 𝜁𝑘−1  

(𝜁 − 𝜁𝑘−3)
5 − 6(𝜁 − 𝜁𝑘−2)

5 + 15(𝜁 − 𝜁𝑘−1)
5, 𝜁𝑘−1 ≤   𝜁 < 𝜁𝑘       

(𝜁𝑘+3 − 𝜁)
5 − 6(𝜁𝑘+2 − 𝜁)

5 + 15(𝜁𝑘+1 − 𝜁)
5, 𝜁𝑘 ≤   𝜁 < 𝜁𝑘+1      

(𝜁𝑘+3 − 𝜁)
5 − 6(𝜁𝑘+2 − 𝜁)

5,                                 𝜁𝑘+1 ≤   𝜁 < 𝜁𝑘+2  
(𝜁𝑘+3 − 𝜁)

5,                                                               𝜁𝑘+2 ≤   𝜁 < 𝜁𝑘+3
0,                                                                                     otherwise         

                                                                        (2.1) 
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Here we give some of the main properties of quintic B-

spline basis 

 Smoothness and continuity: the Quintic B-spline and 

their derivatives up to the fourth derivative are continuous 

i.e. 𝜙𝑘(𝜁 ) ∈ 𝐶
4[𝑎, 𝑏] 

 Finite support: B-splines of order 𝑘 have a finite support 

Supp 𝜙𝑘(𝜁 ) = [𝜁𝑘  , 𝜁𝑘+5] 𝑖. 𝑒. each quintic B-spline 

function 𝜙𝑘(𝜁 ) extended over five points 

𝜁𝑘−2 ,𝜁𝑘−1,  𝜁𝑘 , 𝜁𝑘+1 ,   𝜁𝑘+2. 

 Positivity: quintic B-spline functions 𝜙𝑘(𝜁) >  0 for 𝜁 ∈
[𝜁𝑘  , 𝜁𝑘+5]. Further properties and derivation of the quantic 

b-spline can be found in [34-36]. 
 

The nodal values of 𝜙𝒾(𝜁) and its derivatives 

𝜙𝒾
′(𝜁), 𝜙𝒾

′′(𝜁), 𝜙𝒾
′′′(𝜁), 𝜙𝒾

(𝒾𝒱)(𝜁 )at these points are given in 

table (1).  
 

2.2. Modified Quintic B-Spline. 

Because of the extra knot points 𝜁𝒾−2 ,𝜁𝒾−1, 𝜁𝒾+1 ,   𝜁𝒾+2 the 

collocation matrix of the quintic b-spline has the size 

(N +  5) × (N +  5).  By using the boundary conditions, one 

can eliminate the extra points and the new basis functions are 

called the modified quintic B-spline. In the next parts of this 

paper, for simplicity the modified quintic B-spline will be 

called the MQBS method. MQBS can be derived from the 

classical quintic B-spline as follows [37]: 
 

�̃�1(𝜁) = 𝜙1(𝜁) + 2𝜙0(𝜁) + 3𝜙−1(𝜁) , 

�̃�2(𝜁)  = 𝜙2(𝜁) − 𝜙0(𝜁) − 2𝜙−1(𝜁) , 

�̃�𝑗(𝜁)  = 𝜙𝑗(𝜁) ,                          𝑓𝑜𝑟 , 𝑗 = 3,4, … , 𝑁 − 2 , 

�̃�𝑁−1(𝜁) = 𝜙𝑁−1(𝜁) − 𝜙𝑁+1(𝜁) − 2𝜙𝑁+2(𝜁) , 

�̃�𝑁(𝜁) = 𝜙𝑁(𝜁) + 2𝜙𝑁+1(𝜁) + 3𝜙𝑁+2(𝜁) ,                        (2.2) 
 

The nodal values for the modified b-spline function and 

their derivatives up to the Fourth derivative can be derived 

easily from equations (2.2). 

The collocation method with MQBS is an efficient method 

solving the boundary Value problems [38]. Here we apply the 

modified bi-quintic B-spline function to find the approximate 

solution of the 2D biharmonic problem (1.1-1.2). 
 

2.3. Collocation Method Using Modified Bi-Quintic B-Spline 

for Solving Biharmonic Equation. 

Definition 2.1. Tensor product [39]. 

For any two matrices 𝐆 = [𝑔𝒾𝑗] ∈ ℝ
𝑚×𝑛 𝑎𝑛𝑑 𝑯 = [ℎ𝒾𝑗] ∈

ℝ𝑟×𝑠.The tensor product 𝐺 ⊗ 𝐻 = [𝑔𝒾𝑗𝐻] ∈ ℝ
𝑚𝑟×𝑛𝑠𝑖. 𝑒.  

 

𝐺 ⊗ 𝐻 [

𝑔11H 𝑔12H … 𝑔1𝑛H
𝑔21H 𝑔22H … 𝑔2𝑛H
⋮ ⋮  ⋮

𝑔𝑚1H 𝑔𝑚2H … 𝑔𝑚𝑛H

] 

Define the solution domain Ω is the triangle a ≤ x ≤ b,  
 c ≤ y ≤ d  , and let the boundary conditions (1.2) is described 

in detail as follows: 

 
 

𝜓(a, y) = 𝑓1(𝑦),          𝜓(b, y) = 𝑓2(𝑦),        
𝜓(x, c) = 𝑓3(𝑥) ,         𝜓(x, d) = 𝑓4(𝑥) ,                      (2,3) 
 𝜓𝑥(a, y) =  𝑔1(𝑦),       𝜓𝑥(b, y) = 𝑔2(𝑦),      
 𝜓𝑦(x, c) = 𝑔3(𝑥),       𝜓𝑦(x, d) = 𝑔4(𝑥),       

 

By dividing the 𝑥 ‒ interval into a uniform 𝑁 +
 1 collocation points 𝑥𝒾 =  𝑎 = 𝑥0 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑁 = 𝑏, ℎ𝑥 =
𝑏−𝑎

𝑁
and the y‒  interval into a uniform M +  1 collocation points 

𝑦𝑘 = 𝑐 = 𝑦0 ≤ 𝑦1 ≤ ⋯ ≤ 𝑦𝑀 = 𝑑,with step size ℎ𝑦 =
𝑑−𝑐

𝑁
. 

 

Assume that the approximate solution of (1.1) is expressed 

as follows: 

�̃�(𝑥, 𝑦) =∑∑𝛿𝒾𝑗 �̃�𝒾𝑗

𝑀

𝑗=0

(𝑥, 𝑦)                                          (2.4)

𝑁

𝒾=0

 

Where 

�̃�𝒾𝑗(𝑥, 𝑦) = �̃�𝒾(𝑥)�̃�𝑗(𝑦), 

is the two-dimensional modified quintic B-spline basis 

functions. By substituting the approximate solution (2.4) into 

(1.1-1.2), the next theorem summarizes the solution's process. 

 

Theorem 2.1. If the function �̃�(𝑥, 𝑦)(2.4) is the 

approximate solution of the given biharmonic equation (1.1-

1.2), then the unknown coefficients are determined by solving 

the linear system of equations. 

  [𝑊; µ].                                                                       (2.5) 

Proof: from the series expansion of the approximate 

solution (2.4), one can deduce easily the first four derivatives 

according to the two variables 𝑥 , 𝑦 as follows 

�̃�𝑥(𝑥, 𝑦) = ∑∑𝛿𝒾𝑗 �̃�𝒾
′(𝑥)�̃�𝑗(𝑦),

𝑀

𝑗=0

𝑁

𝒾=0

 

�̃�𝑥𝑥(𝑥, 𝑦) =∑∑𝛿𝒾𝑗�̃�𝒾
′′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥)�̃�𝑗(𝑦),   

 �̃�𝑥𝑥𝑥(𝑥, 𝑦) = ∑∑𝛿𝒾𝑗 �̃�𝒾
′′′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥)�̃�𝑗(𝑦),                           (2.6)  

�̃�𝑥𝑥𝑥𝑥(𝑥, 𝑦) = ∑∑𝛿𝒾𝑗 �̃�𝒾
(4)

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥)�̃�𝑗(𝑦).   

             

Similarly, the 𝑦 derivatives can be deduced by the same 

way. And the fourth derivative term 
 

𝜕4𝜓(𝑥, 𝑦)

𝜕 𝑥2𝜕 𝑦2
=

𝜕2

𝜕 𝑥2
𝜕2𝜓(𝑥, 𝑦)

𝜕 𝑦2
=

𝜕2

𝜕 𝑦2
𝜕2𝜓(𝑥, 𝑦)

𝜕 𝑥2
 

=∑∑ 𝛿𝒾𝑗  

𝑀

𝑗=0

𝑁

𝒾=0

�̃�𝒾
′′(𝑥)�̃�𝑗

′′(𝑦)                           (2.7) 

 

by substituting the expansion (2.6-2.7) into the biharmonic 

equation (1.1), the following formula is obtained 
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∑∑𝛿𝒾𝑗 �̃�𝒾
(4)

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥)�̃�𝑗(𝑦) + 2∑∑𝛿𝒾𝑗 �̃�𝒾
′′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥)�̃�𝑗
′′(𝑦) + 

 (2.8) 

∑∑𝛿𝒾𝑗�̃�𝒾(𝑥)�̃�𝒾
(4)

𝑀

𝑗=0

𝑁

𝒾=0

(𝑦) = 𝜂(𝑥, 𝑦),       (𝑥, 𝑦) ∈ Ω .    

 

By inserting the collocation points {𝑥𝑟}𝑟=0
𝑁  and {𝑦𝑠}𝑠=0

𝑀   into 

equation (2.8) and representing the double summation with the 

tensor product notation, we obtain the following system of 

equations: 

W𝛿 = 𝜇 ,                                                                           (2.9)  
                  

where 

𝑊(𝑁+1)2×(𝑀+1)2 = [𝑣](𝑁+1)2×(𝑀+1)2 + 2[𝑘](𝑁+1)2×(𝑀+1)2 +

[𝜗](𝑁+1)2×(𝑀+1)2  ,  

 

and each matrix is the tensor product of two (𝑁 +  1) ×
 (𝑀 +  1) matrices as follows: 

 

𝑣 = 𝑣1⊗𝑣1 ,      𝑣 = 𝑘1⊗ 𝑘2 ,      𝜗 = 𝜗1⊗𝜗2. 
Where 

 

 

𝑣1 =
1

ℎ𝑥
4

[
 
 
 
 
 
 
 
120 −240 120 0 0 0 … 0 
−240 600 −480 120 0 … … 0
120 −480 720 −480 120 0 … 0
0 120 −480 720 −480 120 ⋮ 0
0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0
0 … 0 0 −480 720 −480 120
0 … … 0 120 −480 600 −240
0 0 0 0 0 120 −240 120 ]

 
 
 
 
 
 
 

(𝑁+1)×(𝑁+1)

 

 

𝑣2 =

[
 
 
 
 
 
 
 
121 −2 1 0 0 … … 0 
28 65 26 1 0 … … 0
1 26 66 26 1 0 … 0
0 1 26 66 26 1 ⋮ 0
0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0
0 … 0 1 26 66 26 1
0 … … 0 1 26 65 28
0 … … … 0 1 −2 121]

 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

 

 

𝜗1 =
1

ℎ𝑦
4

[
 
 
 
 
 
 
 
120 −240 120 0 0 … … 0 
−240 600 −480 120 0 … … 0
120 −480 720 −480 120 0 … 0
0 120 −480 720 −480 120 ⋮ 0
0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0
0 … 0 0 −480 720 −480 120
0 … … 0 120 −480 600 −240
0 … … … 0 120 −240 120 ]

 
 
 
 
 
 
 

 (𝑀+1)×(𝑀+1)

 

 

𝜗2 =

[
 
 
 
 
 
 
 
121 −2 1 0 0 … … 0 
28 65 26 1 0 … … 0
1 26 66 26 1 0 … 0
0 1 26 66 26 1 ⋮ 0
0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0
0 … 0 1 26 66 26 1
0 … … 0 1 26 65 28
0 … … … 0 1 −2 121]

 
 
 
 
 
 
 

(𝑁+1)×(𝑁+1)

 

 

𝜅1 =
1

ℎ𝑥
2

[
 
 
 
 
 
 
 
20 −40 20 0 0 … … 0 
80 −140 40 20 0 … … 0
20 40 −120 40 20 0 … 0
0 20 40 −120 40 20 ⋮ 0
0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0
0 … 0 20 40 −120 40 20
0 … … 0 20 40 −140 80
0 … … … 0 20 −40 20]

 
 
 
 
 
 
 

(𝑁+1)×(𝑁+1)

 

 

 and 
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𝜅2 =
1

ℎ𝑦
2

[
 
 
 
 
 
 
 
20 −40 20 0 0 … … 0 
80 −140 40 20 0 … … 0
20 40 −120 40 20 0 … 0
0 20 40 −120 40 20 ⋮ 0
0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0
0 … 0 20 40 −120 40 20
0 … … 0 20 40 −140 80
0 … … … 0 20 −40 20]

 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

 

𝛿 = [𝛿00, 𝛿01, … , 𝛿0𝑀, 𝛿10, … , 𝛿1𝑀, … , 𝛿𝑁𝑀]
𝑻  

𝜇 = [𝜂𝑥0,𝑦0 , 𝜂𝑥0,𝑦1 , … , 𝜂𝑥0,𝑦𝑀 , 𝜂𝑥1,𝑦0 , 𝜂𝑥1,𝑦𝑀 , … , 𝜂𝑥𝑁,𝑦𝑀]
𝑇
   

 

Where the dimension of above vectors 𝛿 and µ   is (N +
 1)(M +  1) × 1. The boundary conditions are written in the 

form 

∑∑𝛿𝒾𝑗 �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑎)�̃�𝑗
′(𝑦𝑘) = 𝑓1(𝑦𝑘),        𝑘 = 0,1, … ,𝑀, 

∑∑𝛿𝒾𝑗 �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑏)�̃�𝑗
′(𝑦𝑘) = 𝑓2(𝑦𝑘),        𝑘 = 0,1, … ,𝑀, 

∑∑𝛿𝒾𝑗 �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑎)�̃�𝑗
′(𝑦𝑘) = 𝑔1(𝑦𝑘),        𝑘 = 0,1, … ,𝑀, 

∑∑𝛿𝒾𝑗  �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑏)�̃�𝑗
′(𝑦𝑘) = 𝑔2(𝑦𝑘),        𝑘 = 0,1, … ,𝑀, 

∑∑𝛿𝒾𝑗 �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥𝑘)�̃�𝑗
′(𝑐) = 𝑓3(𝑥𝑘),        𝑘 = 0,1,… , 𝑁, 

∑∑𝛿𝒾𝑗 �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥𝑘)�̃�𝑗
′(𝑑) = 𝑓4(𝑥𝑘),        𝑘 = 0,1, … , 𝑁, 

∑∑𝛿𝒾𝑗 �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥𝑘)�̃�𝑗
′(𝑐) = 𝑔3(𝑥𝑘),        𝑘 = 0,1, … , 𝑁, 

∑∑𝛿𝒾𝑗 �̃�𝒾
′

𝑀

𝑗=0

𝑁

𝒾=0

(𝑥𝑘)𝜙𝑗
˜′(𝑑) = 𝑔4(𝑥𝑘),        𝑘 = 0,1, … , 𝑁, 

(2.10) 

 

To enforce the approximate solution to achieve the 

boundary conditions, the 8 equations (2.3) are converted to 

matrix form, and they must be inserted into the main matrix of 

the system of linear equations (2.9) by replacing the rows 

corresponding to the boundary points 𝑥0, 𝑥1, 𝑦0, 𝑦1 by a specific 

order. The corresponding values in the RHS vector µ are 

replaced in the same way. For simplicity, consider 𝑀 =  𝑁 so 

that the resulting linear system of equation is square (𝑁 +
1)2 × (𝑁 + 1)2. The main matrix of such a system is 

nonsingular [38]. And the system is solved using the Gauss 

Jordan method. To obtain the approximate solution, the 

resulting coefficients were substituted in (2.4). 
 

2.4. Error Estimate of Quintic B-Spline Collocation. 

Theorem 2.2. Let 𝜁 ∈  Ω =  [0, 1], 𝜙(𝜁) ∈  𝐶  𝛾[0, 1], 𝛾 ≥
 10 ∈  ℕ.  Define ζ𝒾  = 𝒾ℎ, 𝑖 =  0, 1, . . . , 𝑁, 𝜁0  =  0, 𝜁N  =

 1, ℎ =
1

𝑁
.Assume 𝑆 (𝜁𝒾) =  𝜗(𝜁𝒾) and can be approximated by 

quartic B-spline as follows: 

𝒮(𝜁𝑖) = ∑ 𝛿𝑘 

𝑁+1

𝑘=−3

𝜙𝑘(𝜁𝒾), 𝒾 = 0,1, … , 𝑁. 

Then 

|𝒮′(𝜁𝒾) − 𝜗
′(𝜁𝒾)| ≈ 𝒪(ℎ6), 

|𝒮′
′(𝜁𝒾) − 𝜗′′(𝜁𝒾)| ≈ 𝒪(ℎ4), 

|𝒮′′
′(𝜁𝒾) − 𝜗′′′(𝜁𝒾)| ≈ 𝒪(ℎ4), 

|𝒮(4)(𝜁𝒾) − 𝜗
(4)(𝜁𝒾)| ≈ 𝒪(ℎ

2), 
 

Proof: As 𝒮 (𝜁𝒾 ) = ϑ (𝜁𝒾 ), 𝜁𝒾  ∈ Ω, then 𝒮 (𝜁𝒾 ) can be 

approximated by using the values in table (1) as follows:  
 

𝒮𝒾 = 𝛽𝒾−2 + 26𝛽𝒾−1 + 66𝛽𝒾 + 26𝛽𝒾+1 + 𝛽𝒾22, 
ℎ𝒮𝒾

′ = 5(𝛽𝒾−2 + 10𝛽𝒾−1 − 10𝛽𝒾+1 − 𝛽𝒾+2), 
ℎ2𝒮𝒾

′′ = 20(𝛽𝒾−2 + 2𝛽𝒾−1 − 6𝛽𝒾 + 2𝛽𝒾+1 + 𝛽𝒾+2), 
ℎ3𝒮𝒾

′′′ = 60(𝛽𝒾−2 − 2𝛽𝒾−1 + 2𝛽𝒾+1 − 𝛽𝒾+2), 

 ℎ4𝒮𝒾
(4) = 120(𝛽𝒾−2 − 4𝛽𝒾−1 + 6𝛽𝒾 − 4𝛽𝒾+1 + 𝛽𝒾+2). 

 

Define the invertible operator L with the notations: 

Λ(𝒮(𝜁𝒾)) = 𝒮(𝜁𝒾+1), 

Λ(𝒮′(𝜁𝒾)) = 𝒮
′(𝜁𝒾+1), 

Λ(𝒮′′(𝜁𝒾)) = 𝒮
′′(𝜁𝒾+1), 

Λ(𝒮′′′(𝜁𝒾)) = 𝒮
′′′(𝜁𝒾+1), 

Λ (𝒮(4)(𝜁𝒾)) = 𝒮(4)(𝜁𝒾+1), 

 

and the following relations can be hold for the first three 

derivatives 

[Λ−2 + 26Λ−1 + 66 + 26Λ + Λ2]𝒮′(𝜁𝒾)

=
5

ℎ
[Λ−2 + 10Λ−1 − 10Λ − Λ2]𝜙(𝜁𝒾), 

[Λ−2 + 26Λ−1 + 66 + 26Λ + Λ2]𝒮′′(𝜁𝒾) =
20

ℎ2
[Λ−2 + 2Λ−1 −

6 + 2Λ + Λ2]𝜙(𝜁𝒾),  

[Λ−2 + 26Λ−1 + 66 + 26Λ + Λ2]𝒮′′′(𝜁𝒾) =
60

ℎ3
[Λ−2 − 2Λ−1 +

2Λ − Λ2]𝜙(𝜁𝒾),  

[Λ−2 + 26Λ−1 + 66 + 26Λ + Λ2]𝒮(4)(𝜁𝒾) =
120

ℎ4
[Λ−2 −

4Λ−1 + 6 − 4Λ + Λ2]𝜙(𝜁𝒾).  
 

Where Λ = 𝑒ℎ𝜆 with 𝜆 =
𝑑

𝑑𝜁
 then [38]: 
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𝒮′(𝜁𝒾) =
5

ℎ
[𝑒−2ℎ𝜆 + 10𝑒−ℎ𝜆 − 10𝑒ℎ𝜆 − 𝑒2ℎ𝜆][𝑒−2ℎ𝜆 +

26𝑒−ℎ𝜆 + 66 + 26𝑒ℎ𝜆 + 𝑒2ℎ𝜆]−1𝜙(𝜁𝒾), 

𝒮′′(𝜁𝒾) =
20

ℎ2
[𝑒−2ℎ𝜆 + 2𝑒−ℎ𝜆 − 6 + 2𝑒ℎ𝜆 + 𝑒2ℎ𝜆][𝑒−2ℎ𝜆 +

26𝑒−ℎ𝜆 + 66 + 26𝑒ℎ𝜆 + 𝑒2ℎ𝜆]−1𝜙(𝜁𝒾), 

𝒮′′′(𝜁𝒾) =
60

ℎ3
[𝑒−2ℎ𝜆 − 2𝑒−ℎ𝜆 + 2𝑒ℎ𝜆 − 𝑒2ℎ𝜆][𝑒−2ℎ𝜆 +

26𝑒−ℎ𝜆 + 66 + 26𝑒ℎ𝜆 + 𝑒2ℎ𝜆]−1𝜙(𝜁𝒾), 

𝒮(4)(𝜁𝒾) =
120

ℎ4
[𝑒−2ℎ𝜆 − 4𝑒−ℎ𝜆 + 6 − 4𝑒ℎ𝜆 + 𝑒2ℎ𝜆][𝑒−2ℎ𝜆 +

26𝑒−ℎ𝜆 + 66 + 26𝑒ℎ𝜆 + 𝑒2ℎ𝜆]−1𝜙(𝜁𝒾). 

 
After expansion of the operator notation by means of power 

series, we can easily obtain the following 

𝒮′(𝜁𝒾) = (𝜆 +
ℎ6𝜆7

5040
−

ℎ8𝜆9

21600
+⋯)𝜙(𝜁𝒾) , 

𝒮′′(𝜁𝒾) = (𝜆2 +
ℎ4𝜆6

720
−

ℎ6𝜆8

3360
+⋯)𝜙(𝜁𝒾) , 

𝒮′′′(𝜁𝒾) = (𝜆
3 −

ℎ4𝜆7

240
+

11ℎ6𝜆9

30240
+⋯)𝜙(𝜁𝒾) , 

𝒮(4)(𝜁𝒾) = (𝜆
4 −

ℎ2𝜆6

12
+

ℎ4𝜆8

240
+⋯)𝜙(𝜁𝒾) , 

 

By applying the successive terms of differential operators λ 

and simplifying this yields the results and completes the proof. 

 

III.NUMERICAL EXPERIMENTS 

To test the efficiency of the proposed numerical scheme, 

several examples were proposed. The error is measured by 

using two different norms 𝐿∞ − norm , 𝐿2 − norm of error and 

relative 𝐿2 −norm of error which are defined as follows. 

 

𝐿∞ ‒  𝑒𝑟𝑟𝑜𝑟 = max
0≤𝑖≤𝑁
0≤𝑗≤𝑀

|𝜓exact(𝑥𝒾 , 𝑦𝑗) − 𝜓approx(𝑥𝒾 , 𝑦𝑗)| 

𝐿2 − 𝑒𝑟𝑟𝑜𝑟

= √
1

𝑁𝑀
∑∑[𝜓exact(𝑥𝒾 , 𝑦𝑗) − 𝜓approx(𝑥𝒾 , 𝑦𝑗)]

2

𝑀

𝑗=0

𝑁

𝒾=0

 

Relative 𝐿2 − error

= √
∑ ∑ [𝜓𝑒xact(𝑥𝒾 , 𝑦𝑗) − 𝜓approx(𝑥𝒾 , 𝑦𝑗)]

2𝑀
𝑗=0

𝑁
𝒾=0

∑ [𝜓exact(𝑥𝒾 , 𝑦𝑗)]
2
 𝑀

𝑗=0

 

 

Problem 1: Consider the biharmonic equation 

∇4𝜓 = 𝑓(𝑥, 𝑦), 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1, 

where the solution for this problem is given in the exact form in 

[15] 𝜓(𝑥, 𝑦) =
1

64𝜋4
sin(2𝜋𝑥) sin(2𝜋𝑦). The RHS function 

𝑓(𝑥, 𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦) and the values of boundary 

conditions can be easily calculated. Applying the proposed 

numerical scheme and the approximate solution is obtained. 

The comparison between our method and the Haar-wavelet 

method in [15] is summarized in table (2). The comparison 

shows the efficiency of our method for solving the biharmonic 

equations. Figure (1) shows the exact, approximate solution 

obtained by applying the MQBS method and 𝐿∞ − norm of 

error for the problem (1). For 
 

TABLE 2.  

THE COMPARISON OF L∞– NORM OF ERROR BETWEEN THE MQBS 
AND HAAR WAVELET METHOD FOR PROBLEM (1). 

 

Method  𝐋∞‒ norm of 

error 

MQBS 

N=11, M=11 2.1672𝐸(–06) 

N=31, M=31 2.6563𝐸(–07) 

N=51, M=51 9.9503𝐸(–08) 
  

Haar wavelet method 

[15] 

J=3 1.7833E(–04) 

J=4 1.6766E(–04) 

J=5 1.6649E(–04) 

J=6 1.6590E(–04) 

 
TABLE 3. 

COMPARISON BETWEEN THE RELATIVE L2 – ERROR FOR MQBS 

AND 1-D RBF COLLOCATION METHOD [40] FOR PROBLEM 1-A. 
 

No. of points NSCM1 [40] MQBS 

N = 11, M = 11 4.5E(– 01) 1.19 E(–02) 

N = 21; M = 21 2.8E(– 01) 3.5 E(–03) 

N = 51; M = 51 2.5E(– 01) 6.16 E(–04) 

 
TABLE 4. 

THE RESULTS OF 𝐿∞  −  ERROR AND L2 −  ERROR FOR MQBS 

COLLOCATION METHOD FOR PROBLEM 2. 
 

No. of points 𝐋∞  −  𝐞𝐫𝐫𝐨𝐫 𝐋𝟐 −  𝐞𝐫𝐫𝐨𝐫 

N = 10, M = 10 1.647 E(– 02) 5.53 E(–03) 
N = 40, M = 40 4.4033 E(–03) 1.558 E(–03) 
N = 100, M = 100 1.7720 E(–03) 6.3704 E(– 04) 
N = 120, M = 120 1.4776 E(–03) 5.3212 E(– 04) 

 
For the sake of comparison, a similar problem (problem 1-

a) is presented which is founded in [40] with the exact solution 

𝜓(𝑥, 𝑦) = sin(2𝜋𝑥) sin 2πy. The RHS function, 

 𝑓(𝑥, 𝑦) = 64𝜋4 sin(2𝜋𝑥) sin(2𝜋𝑦) and the boundary values 

𝜓 =  0 along the boundaries, 𝜓𝑥(0, 𝑦) =  𝜓𝑥(1, 𝑦) =

 2𝜋 sin(2𝜋𝑦) , 𝜓(𝑥, 0) =  𝜓𝑦(𝑥, 1) =  2𝜋 sin(2𝜋𝑥). The 

relative L2 –  error for both MQBS and NSCM1 [40] are 

summarized in the table (3). 
 

Problem 2: Let the biharmonic equation proposed by Bloor et 

al. [41]. The boundary values can be derived from the closed 

form solution. 

𝜓(𝑥, 𝑦) =  𝑥 cos(𝑥) 𝑒𝑦 , (𝑥, 𝑦) ∈   [0, 1] ×  [0, 1].  
 

which is derived directly by applying the separation of 

variables on the homogeneous biharmonic equation. The 

method of MQBS was applied to such a problem and gave a 

good approximation of the approximate solution for different 

numbers of grid points. The results for L∞ − error and L2− 

error are in table (4). 

Table (4) shows the obtained approximate results by 

applying the MQBS method for problem 2. Both the L∞ − error 

and the L2− error appears in the tabulated results for different 

grid points. The exact and approximate solutions as well as the 

absolute error for collocation grid 50 ×  50 are shown in figure 

(2). And two. 
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Figure 1. The figures of exact, approximate solution and L∞− norm of error 

for problem (1). 

 

TABLE 5.  

THE RESULTS OF 𝐿∞  −  ERROR AND RELATIVE L2 −  ERROR 

FOR MQBS COLLOCATION METHOD FOR PROBLEM 3. 
 

No. of points 𝐋∞  −  𝐞𝐫𝐫𝐨𝐫 Relative𝐋𝟐 − 𝐞𝐫𝐫𝐨𝐫 

N = 21, M = 21 1.649𝐸 –  01 3.02𝐸 –  02  

N = 51, M = 51 7.02𝐸 –  02 1.35 𝐸 –  03 

N = 101, M = 101 3.58𝐸 –  02 7.1 𝐸 –  03 

 

Types of error 𝐿∞  −  error and 𝐿2 −  error are drawn at 

various N, M and results are represented in figure (3). 
 

Problem 3: Here we turned to another example for 

homogeneous biharmonic equation [42] is given by 

 

∆4𝜓 =  0, (𝑥, 𝑦) ∈  [0, 1] ×  [0, 1], 
Where exact solution is 

𝑒𝑥 cos 𝑦 + (𝑥2 + 𝑦2)𝑒𝑦 cos x.  
 

Boundary conditions are derived easily from the exact 

solution. The MQBS solution is calculated and results are 

tabulated in the table (5). Also, the exact and approximate 

solutions are shown in figure (4). 

 

 

Figure 2. The exact and MQBS approximate solution for problem 2 with 

grid collocation points 50 ×  50. 

 

 

Figure 3. 𝑙𝑜𝑔10of 𝐿∞ and 𝐿2 error formulas for problem 2 with 

various grid collocation points 𝑁 ×  𝑀. 

 

 

Figure 4. The exact and MQBS approximate solution for problem 3 

with 𝑁 =  100,𝑀 =  100. 

 

IV.CONCLUSION 

In the considered work, we introduce the modified bi-

quintic B-spline (MQBS) scheme to approximate the solution 

of the non-homogeneous biharmonic problem. By applying this 

method, an accurate approximate solution was obtained. The 

proposed technique is simple and easy to implement and gives 

fast and accurate results for approximating the solution of the 

biharmonic problem. Three test problems were examined and 

comparisons with other numerical methods such as Haar 

wavelet and 1D- RBFs were tabulated. The comparisons ensure 

clearly that the MQBS is an effective and accurate tool among 

other numerical methods. The unsteady biharmonic equation 

will be studied in the future work and the numerical solution of 

such generalized model will be considered. 
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Title Arabic: 

 لى باستخدام طريقة التجميع المعتمدة ع Biharmonicالحل العددي للمعادلة 

 .من الرتبة الخامسةمعدلة لاالثنائية  b-splineدوال 

Arabic Abstract: 

. تم ايجاد الحل التقريبي عند Biharmonicفي العمل التالي تم استكشاف المعادلة 

الثنائية  bsplineالنقط الواقعة في مجال الحل باستخدام طريقة التجميع على أساس دوال 

تختفي عند نقاط الحدود.  المعدلةالثنائية  bsplineمن الرتبة الخامسة.  دوال  المعدلة

بالتفصيل. تعتمد الطريقة تم مناقشتها  المعدلةالثنائية  bsplineالخصائص الرئيسية لدوال 

من المعادلات الخطية. يتم دمج الشروط الحديه  مجموعهإلى  على اختزال المسألة المقترحة

الحل التقريبي مع الحل التام  في نظام المعادلات الخطية الناتجة بترتيب محدد لضمان تطابق

قياس دقة  تمحل، على نقاط الحدود. تم اضافة ثلاثة أمثلة عددية لضمان فعالية طريقة ال

الحلول التقريبية والحلول  الحل التقريبي من خلال مقارنة ثلاثة أنواع مختلفة من الخطأ بين

التامة.  تم توصيف النتائج بيانيا لتقييم أداء الطريقة المعروضة. الطريقة المقترحة سهلة 

ل جيد بشك Biharmonicحل مسألة التنفيذ، والنتائج العددية تضمن أن الطريقة تقرب

 .للغاية
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