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REVIEW

Smart Agriculture Based on Internet of Things Using
Drones: A Survey

Shymaa G. Eladl a,*, Hanaa Y. ZainEldin b, Amira Y. Haikal b, Mahmoud M. Saafan b

a Department of Information Systems, Nile Higher Institute for Sciences and Computer Technology, Egypt
b Department of Computer Engineering and Control Systems, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Abstract

Researchers have studied the potential of unmanned aerial vehicles (UAVs) for real-time visual data acquisition and
processing using potent deep learning (DL) algorithms over the past few decades. In this regard, drone use in smart cities
has become one of the most common uses in recent years. UAVs and the Internet of Things (IoTs) are two popular
technologies being used in smart agriculture that are ushering in a new era of agriculture by replacing traditional
farming methods. The combination of drones and IoT has the potential to drastically change our lives through real-time
data collection and analysis that will enhance life quality and provide a high quality of service (QoS). UAVs can provide
farmers with up-to-date information on their fields, enabling them to make informed decisions about the use of farm
inputs. In this paper, this review focuses on the use of UAVs in smart agriculture for pest and crop disease management,
plant growth monitoring, yield estimation, weed control, fertilization, phenotypic measurement, soil moisture assess-
ment, pesticide use, and nutritional status evaluation to improve productivity and environmental sustainability. In
addition, we outline how UAV technology fits into smart agriculture. The goals of this review were to: (1) assemble
information on the application of UAVs in smart agriculture in general in various scenarios; (2) discuss their benefits and
limitations in a variety of applications in UAV-based agriculture; (3) cover the key ideas of drone architecture, drone
sensors in smart agriculture, drone applications in smart agriculture using remote sensing, and IoT architectures and
challenges for smart cities; and (4) offer a survey of all the most recent prior studies on IoT, besides the UAV strategy
used in smart agriculture. Therefore, a literature review was conducted using 135 research articles that are relevant to
UAV applications in smart agriculture and other general information about how well UAVs can be used in smart
agriculture, collected from the research articles mentioned earlier. The study concluded that UAV-based crops can be an
effective method for monitoring and management to improve yield and quality and significantly benefit social, eco-
nomic, and environmental aspects. We conclude that two of the most significant technologies that change conventional
farming methods into a new understanding of intelligence are IoT and UAV. However, UAVs should also take into
account some of the difficulties in smart agriculture, including high initial costs, regulations, inclement weather, policy,
and communication failures.

Keywords: Drone, Internet of things, Smart agriculture, Precision agriculture, Smart city, Unmanned aerial vehicles

1. Introduction

A n agricultural nation's overall development is
greatly influenced by its agricultural sector. It

is among the most important elements in any
economy's ability to survive. Historically, the pro-
duction of food and crops was the only activity
associated with agriculture (El Hoummaidi et al.,
2021). Today, more than 7 billion people are fed by

agriculture worldwide, and the United Nations (UN)
projects that by 2050, there will be about 10 billion
people on the planet (World Population Clock: 8.1
Billion People (LIVE, 2023) - Worldometer). More-
over, unexpected pandemics have triggered a severe
risk to food security and economic growth (J�a et al.,
2020). Better information on seasonal agricultural
production that is made available as soon as possible
is crucial to enhancing food security and updating as
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conditions change (P�e and rez-Escamilla, 2017). Is-
sues related to agricultural products and food safety
are currently garnering international attention and
receiving support from governments across
numerous nations and regions (Gupta et al., 2021).
The traceability of the agri-food supply chain food
safety and quality can be guaranteed by internet of
thing (IoT)-based systems, which may encourage
consumers to have faith in food safety as shown in
Fig. 1 (Costa et al., 2012). Researchers have long
offered a variety of creative ways to increase agri-
cultural productivity, including using greenhouses
(van et al., 2019), vertical farming (Gray and Nuri,
2020), and even emerging technologies such as sat-
ellites and aircraft (Mazzia et al., 2020) to develop
more reliable solutions. Nowadays, farmers are
using different modern technologies to ensure pro-
ductivity increases (Bouguettaya et al., 2022).
Governments and the private sector use remote

sensing through unmanned aerial systems (UAS)
extensively for mapping soil properties, types of
crop classification, water stress detection of crops,
crop disease monitoring, and crop yield mapping
(Kwan et al., 2020; Tan et al., 2019; Istiak et al., 2023).
There is a necessity to divert toward the IoTs which

aid administrators in more effectively overseeing,
managing, organizing, and optimizing food supply
chain procedures (Verdouw et al., 2016). Images of
plants that are used to detect diseases can be
captured by IoT-enabled systems, preprocessed,
and sent to distant labs. Utilizing remote sensing for
land use (Yang et al., 2004; Lin et al., 2011) and
agricultural monitoring (Xiao et al., 2006; Ozdogan
et al., 2010) since the space era has been widely
adopted by satellites. Massive crop yield estimation
now heavily relies on machine learning (ML) algo-
rithms as a decision-support tool (Chlingaryan et al.,
2018; van Klompenburg et al., 2020). One of the
main tenets of contemporary agriculture is crop
classification, which attempts to classify plant and
crop varieties into distinct categories while identi-
fying their geographic distribution. Having effective
information about the crops can benefit farmers and
government authorities, as it can enhance their de-
cision-making skills (Kwak and Park, 2019; Yang
et al., 2020a).
Deep learning and UAV-based remote sensing

have surfaced as novel technologies that could be
vital to the productivity of agriculture and the
world's food supply in the future by automating

Fig. 1. Agri-food supply chain (Costa et al., 2012).
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various tasks, such as plant and crop identification.
UAVs offer the best tradeoff between spatial, tem-
poral, and spectral resolution in addition to their
high flexibility, low cost, small size, and real-time
data acquisition capabilities (Bouguettaya et al.,
2022). The three primary concepts that UAVs
execute are perception, decision-making, and action
execution. When dealing with complex data, the
conventional machine learning methods for classi-
fying various crop and plant types from aerial im-
agery can be inefficient and time-consuming. DL
algorithms, however, have shown promise as a po-
tential remedy for these problems (Bouguettaya
et al., 2022) and have been reinvigorated, producing
numerous outcomes in agricultural applications
(Yang et al., 2021). Thanks to technological ad-
vancements, UAVs can now gather detailed crop
information in the field. They can also see the
outside world using various sensors (Bouguettaya
et al., 2022), which are necessary in agricultural
contexts (Comba et al., 2020). In addition, UAVs can
support the computation of crop status indexes,
including the plant scale (Primicerio et al., 2017) and
the Normalized Difference Vegetation Index (NDVI)
(Primicerio et al., 2015).
There are many restrictions that might be liable for

the low output of crops, which can be overwhelmed
by the use of drones in the agriculture field. These
capabilities rework simple objects into intelligent
devices that can run in real time, adjust to the con-
ditions, and operate without human supervision or
intervention. UAVs and IoTs are two of the most
important and vital techniques that have evolved
old-style farming practices into a novel viewpoint of
intelligence in agriculture (Maia et al., 2017).
This survey differs from prior ones, where we are

especially focusing on the new idea of drones and
IoTs for ameliorative and increasing smart-city ap-
plications in agriculture. Therefore, the main con-
tributions of this work are as follows:

(1) Assemble information on the application of
UAVs in smart agriculture in general in
various scenarios.

(2) Discuss their benefits and limitations in a
variety of applications in UAV-based
agriculture.

(3) Moreover, it also offers a survey of all the
most recent prior studies on IoT, besides the
UAV strategy used in smart agriculture,
through a review and comparison of the most
important applications and practices.

The paper is organized in the following way: in
Section 2, the related work about the efforts to make

use of unmanned aerial vehicles in agriculture is
presented. Section 3 consists of the principal goals
and the concept of smart cities. A general overview
of the drone is summarized in Section 4, while
Section 5 concludes the paper.

2. Related work

Recently, a number of studies have been conducted
to monitor the health of various crops using various
image processing techniques, as well as to identify
particular crops using UAV RGB images. Istiak et al.‘s
study (Istiak et al., 2023) examined the viability of
using UAVs for precision farming, decision-making,
and action performance. Weicai Qin et al. (2023) pro-
vide a basis for scientific and reasonable spraying and
control by agricultural drones, as well as for more in-
depth research on the dissemination of powdery
mildew spores and enhanced pest management. To
identify vegetation in a particular area, Torres-
Sanchez et al. (Torres-S�a et al., 2015) used an object-
based image analysis on UAV images to calculate two
vegetation indices: Excess Green (ExG) and NDVI.
To increase grain yield, Wan et al. (Wang et al., 2020)
extracted structural andspectral features from the red,
green, and blue (RGB) images of rice fields during the
growth period. Li et al. (2018) estimated the coverage
of maize crops in farmland from its UAV image using
the half-Gaussian fitting method. Three different
types of tomato plants were evaluated for height,
NDVI, and area covered using UAV RGB images by
Enciso et al. (2019). Stroppiana et al. (2018) performed
weed mapping by using an unsupervised clustering
algorithm to identify weed and non-weed areas from
UAV RGB photos of farmland.
A paradigm shift from traditional image process-

ing methods to supervised learning techniques is
occurring in crop classification methods from RGB
images due to the development of various machine
and deep learning topologies in the last few years.
Using its UAV RGB images, Yang et al. (2017)
assessed farmland for rice lodging. To assess how
much spectral and spatial information contributes to
overall accuracy, the authors calculated the single
feature probability. An automatic algorithm for
detecting palm trees was presented by Malek et al.
(2014) to recognize randomly planted palm oil trees
from UAV RGB images of the surrounding area.
Scale-invariant feature transformation (SIFT) was
used for feature extraction in the suggested identi-
fication process, and an extreme learning machine
classifier was used for classification. Chew et al.
(2020) used a transfer learning method from the pre-
trained Visual Geometry Group (VGG-16) and
ImageNet Convolutional Neural Networks (CNNs)

S.G. Eladl et al. / Mansoura Engineering Journal 49 (2024) 1e28 3



modules to identify three distinct food crops (ba-
nana, maize, and legume).
To identify multiple crops from aerial images of

land taken by UAVs, authors of Ref (Rebetez et al.,
2016) proposed a hybrid classification module by
combining a neural network that accepts image his-
tograms as input and a CNNmodule that accepts raw
images as input.Nevertheless, the combination of two
neural networks lengthens the training period and
complicates the classification procedure. In (Yang
et al., 2020b), a multilayer CNN architecture is sug-
gested for using UAV photos to analyze the
phenology of rice crops. Using CNN, Bah et al. (2018)
proposed a fully automatic learning framework to
distinguish weeds from crops on agricultural land by
taking RGB pictures of the crops with a UAV.
Fan et al. (2018) used twomultilayer CNNs to identify
a tobacco plant that was on land in RGB photos taken
by the UAV system in the area in question.
Combining theHough transformwith classical CNN,
Bah et al. (2020) created a novel CNN architecture
called CRowNet to identify crop rows in cornfields
based on photos taken by unmanned aerial vehicles.
Using RGB photos taken by the UAV system, Kitano
et al. (2019) used the U-net CNN architecture for
maize plant identification and counting in farmland.
For weed mapping in rice fields, Huang et al. (2020)
used the CNN architectures AlexNet, VGGNet, Re-
sidual Network (ResNet), and GoogLeNet. There are
two classes that are classified (rice and weed).
To avoid including non-crop areas in the training

process that could lead to incorrect classification,
Pandey and Jain (2022) first gathered high-resolu-
tion UAV images for various croplands. From these
images, the candidate crop regions were extracted.
Subsequently, a new CNN architecture known as
the conjugated dense CNN (CD-CNN) is put forth,
featuring Softsign and the Rectified Linear Unit (SL-
ReLU) as the activation functions in convolutional
layers. To learn features from candidate crop re-
gions, the proposed CNN module does away with
the need for independent feature extraction tech-
niques. The suggested module achieves 96.2% ac-
curacy when the experiment is run on a dataset of
five distinct crops. The automated detection of
weeds is a promising research area in precision
agriculture. In the past, a number of motivated re-
searchers have created a method for separating
weeds from crops in digital photos. A support vector
machine (SVM) classifier was used in (Ahmed et al.,
2012) to discriminate between five different types of
weeds and chili crops based on color, size-depen-
dent, size-independent, and moment features. This
computer vision-based automated weed detection
system makes use of real field images.

Artificial neural networks (ANNs) and texture
features extracted using a Color Co-occurrence
Matrix (CCM) were used in (Li et al., 2009) to
distinguish between crops and weeds. Ref (Haug
et al., 2015) describes the process of separating a
carrot crop from weeds based on photos taken with a
BoniRob robot. Using Hu's invariant moments,
monocot and dicot weeds are distinguished in Ref
(Herrera et al., 2014). Using distinct shape features,
sugar beetroot crops and weeds are distinguished in
Ref (Bakhshipour and Jafari, 2018). SVM and ANN
classifiers were used for the classification. These two
classifiers' performances were assessed and exam-
ined. In (Lottes et al., 2020), plant stem position,
spatial coverage of crops and weeds, and a fully
convolutional network were used to discriminate
between crops and weeds. Vegetable crops and
weeds are classified in (Molina-Villa and Solaque,
2016) using color features and area thresholding. In
this work, images from the farm fields were taken in
natural lighting. Ref (Negrete, 2018) provides coun-
trywide information on research projects carried out
to identify pests, invasive plants (weeds), and crop
diseases using computer vision techniques. The au-
thors of Ref (Slaughter et al., 2008) examine the ad-
vancements made in autonomous weeding robot
technology. They claim that the absence of reliable
weed recognition methods is the primary obstacle to
the development of commercial weeding robots. A
brief discussion of the literature review is presented,
as shown in Table 1.
As evident from Table 1, although there are

already a lot of studies on different aspects of agri-
culture, there are still many restrictions that might
be liable for the low output of crops, which can be
overwhelmed by the use of drones in the smart
agriculture field.

3. Smart City

The idea of smart cities begins with the combi-
nation of technology that desires to offer offerings
more effectively and quickly to residents. Smart
cities are considered the most important and
essential IoT applications. A smart city is an urban
environment that mixes communication technology,
information, and advanced wireless sensors to assist
in efficaciously managing the city's assets to indorse
economic growth and enhance the existing standard
requirements using the most advanced technology.
An essential aspect of a smart city is the distribution
of effective infrastructure and the lowering of the
intake of resources and costs so as to enhance the
overall performance and quality of services,
spreading such services and conveniences

4 S.G. Eladl et al. / Mansoura Engineering Journal 49 (2024) 1e28



Table 1. Summary of the discussed related work.

Ref Methodology Pros Cons

M. Istiak et al. (Istiak et al.,
2023) (2023)

Determination of the impact of imaging
modalities and imagery datasets in
relation to agricultural applications,
categorical evaluation of UAV configu-
ration, and the feasibility assessment of
UAVs in precision agriculture. In addi-
tion, the worldwide taxonomy of crops
for which unmanned aerial vehicles are
used is documented.

Perform a meta-analysis of recent
studies on the use of UAVs for appli-
cations based on visual imagery in
agriculture.

NA

Qin et al. (Qin et al., 2023)
(2013)

They examine the impact of downwash
airflow produced by a plant protection
drone's flight altitude on the powdery
mildew spores' horizontal, vertical, and
ground distribution in wheat. Spore
traps are used to track the evolving
dynamics of airborne powdery mildew
conidia.

The study offers a basis for scientific
and reasonable spraying and control by
agricultural drones, as well as for more
in-depth research on the dissemination
of powdery mildew spores and
enhanced pest management.

The impact of airflow disturbance is
closely linked to the release of powdery
mildew pathogen spore numbers. The
drone's rotor airflow has less of an
impact on spore release in the early
stages, when spore release is minimal.

Torres-Sanchez et al. (Torres-
S�a et al., 2015) (2015)

An inventive Otsu-based thresholding
Object-based Image Analysis (OBIA)
algorithm was used to find vegetation in
remotely sensed photos that were
taken.

The classification error decreased as the
object size increased until an optimal
value was attained.

Once the ideal value was reached,
increasing the size of the object led to
larger errors, while the other parame-
ters, like shape and compactness had
little bearing on the classification
accuracy.

Wang et al. (Wang et al., 2020)
(2020)

To improve the prediction of grain
yield, structural and spectral data taken
from UAV-based images during the rice
growing season is used.

Improving the accuracy of grain yield
predictions and gaining effective crop
growth monitoring.

NA

L. Li et al. (Li et al., 2018)
(2018)

The half-Gaussian fitting method for
FVC estimation (HAGFVC) is a novel
approach for breaking down the
Gaussian mixture strategy and esti-
mating FVC.

The outcomes show that the HAGFVC
approach can be applied correctly and
effectively.

The prevalence of mixed pixels in LARS
images, particularly at high altitudes
above ground level or in the case of
moderate vegetation coverage, caused
other methods they tested to perform
poorly.

J. Enciso et al. (Enciso et al.,
2019) (2019)

A method for utilizing UAV data to
measure crop height, canopy cover, and
NDVI values in relation to time and
space for three different tomato vari-
eties during the growing season.

There was no discernible difference
between the estimated UAV and
manually measured crop heights, ac-
cording to the computed paired t-test
statistic.

Enhancements should be made to UAV
crop growth and NDVI monitoring.

D. Stroppiana et al. (Stroppi-
ana et al., 2018) (2018)

An unsupervised clustering algorithm
was used to classify a multispectral
orthomosaic that was created from
images.

The most appropriate inputs were
spectral indices, and SAVI and GSAVI
produced the best results, with OA
exceeding 94%.

NA

(continued on next page)
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Table 1. (continued )

Ref Methodology Pros Cons

M. Der Yang et al. (Yang et al.,
2017) (2017)

A thorough and effective UAV image
classification method for agricultural
areas. Image-based modeling and
texture analysis yielded the digital sur-
face model and texture information of
the images in addition to spectral
information.

A useful tool for evaluating rice lodging
is their suggested hybrid image classi-
fication strategy, which combines spec-
tral and spatial aspects.

NA

S. Malek et al. (Malek et al.,
2014) (2014)

One suggested approach is to combine
an active contour method based on
Level Sets (LSs) with the keypoints of
the ELM classifier to capture the shape
of each tree.

The promising capabilities of their
proposed framework were confirmed
by the results of the experiments.

NA

R. Chew et al. (Chew et al.,
2020) (2020)

A model pretrains using the publicly
available ImageNet dataset and the
VGG16 architecture, utilizing de-
velopments in deep convolutional neu-
ral networks and transfer learning.

At this scale, crops like maize and ba-
nanas can be categorized with great
accuracy.

Legume crops, which are used in
intercropping, can be challenging to
reliably identify.

J. Rebetez et al. (Rebetez et al.,
2016) (2016)

A hybrid CNN-HistNN deep neural
network that can effectively classify a
wide range of crops by utilizing both
color distribution and texture patterns.

An enhancement in the performance of
classification.

Many model parameters, like the
number of layers and filters in the
CNN, were absent from their analysis.

Q. Yang Rebetez et al. (Yang
et al., 2020b) (2020)

A novel approach that uses RGB images
to directly identify the main stages of
rice growth.

The outcomes demonstrated the rec-
ommended deep learning method's
outstanding performance in yield time
estimation and phenology discovery in
almost real time.

Early phenology is particularly difficult
to distinguish because available data
only spans a small portion of the
growing season.

Bah et al. (Bah et al., 2018)
(2018)

A novel fully automatic learning
method for finding weed from UAV
images that combines convolutional
neural networks with an unsupervised
training dataset.

The outcomes show performance that is
comparable to supervised data
classification.

NA

Fan et al. (Fan et al., 2018)
(2018)

A novel deep neural network-based
method is presented for identifying to-
bacco plants in UAV-captured images.

It performs well in accurately identi-
fying and estimating the quantity of
tobacco plants in UAV photos.

NA

Bah et al. (Bah et al., 2020)
(2020)

A new method called CRowNet recog-
nizes crops in UAV-captured images by
using a convolutional neural network,
the Hough transform, and a model
created with S-SegNet.

The performance showed the best and
most robust result when compared
quantitatively with traditional
approaches.

Field data and superpixel
standardization are not
required for CRowNet.

NA
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Kitano et al. (Kitano et al.,
2019) (2019)

Utilizing images of various maize crops
taken with a UAV to improve tech-
niques that allow for the counting of
maize plants and the computerization
of this process through computational
vision and deep learning.

It is presented as a workable substitute
for counting maize plants.

Experiments should be conducted to
categorize other objects, like weeds and
straws, that are present in the photos
and may have an impact on the auto-
mated counting.

Huang et al. (Huang et al.,
2020) (2020)

Using a partially Connected Condi-
tional Random Field (CRF) for post-
processing could greatly accelerate a
fully connected CRF's inference speed.

Partially connected CRFs are more
useful for developing accuracy, and
combining partially connected CRFs
with skip architectures can improve
performance even more.

NA

Pandey and Jain (Pandey and
Jain, 2022) (2022)

A unique CD-CNN architecture for the
intelligent classification of multiple
crops from RGB photos captured by
UAVs, featuring a unique activation
function called SL-ReLU.

It attains a strong differentiation capa-
bility across multiple crop classes with a
96.2% accuracy rate for the relevant
data.

NA

F. Ahmed et al. (Ahmed et al.,
2012) (2012)

Using a support vector machine to
accurately distinguish between crops
and weeds in digital photos.

The findings show that over a set of 224
images, SVM achieves accuracy levels
above 97%. Notably, crops are not
mistakenly labeled as weeds, and vice
versa.

NA

Z. Li, Q. An (Li et al., 2009)
(2009)

Four texture parameters were extracted
using the HIS Color Co-occurrence
technique (CCM): Angular Second
Moment (ASM), Entropy (E), Inertia
Quadrature (IQ), and Inverse Differ-
ence Moment or local homogeneity
(IDM).

With a 78% classification accuracy, it
offered the best classification
performance.

NA

S. Haug and J. Ostermann
(Haug et al., 2015) (2015)

A benchmark dataset for open com-
puter vision tasks in precision agricul-
ture, such as single plant phenotyping
and crop/weed identification.

Providing a proposed evaluation
method to allow comparison of
different approaches.

One of the obstacles to advancement is
the current dearth of publicly available
datasets.

P. J. Herrera et al. (Herrera
et al., 2014) (2014)

Proposed a method in which a collec-
tion of shape descriptors is used to
identify weeds.

A high success rate for weed species
identification.

NA

A. Bakhshipour and A. Jafari
(Bakhshipour and Jafari,
2018) (2017)

A support vector machine and artificial
neural networks were used to facilitate
the vision system and the identification
of the weeds through their patterns.

By using ANN and SVM, respectively,
93.33% and 96.67% of sugar beet plants
were correctly classified.

NA

P. Lottes et al. (Lottes et al.,
2020) (2020)

The technique makes use of an end-to-
end, trainable, fully convolutional
network that estimates the spatial
extent of weeds and crop plants while
also estimating the positions of plant
stems.

The system's ability to adapt well to
diverse environmental conditions and
previously unexplored fields is essential
for the practical application of such
systems.

NA

(continued on next page)
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ubiquitously (Khan et al., 2018). Smart City has
become an umbrella acronym for several strategies
with the aim of enhancing and improving the effi-
ciency of upcoming cities and the satisfaction of
lifestyles for their populations (Eckhoff and Wagner,
2018). Fig. 2 illustrates some smart city applications.
Effectively and successfully implementing smart

city initiatives will lead to decreasing charges,
further engaging more efficiently and actively with
the populations. One of those strategies is the UAV,
which can offer numerous applications for smart
cities and generate a fantastic effect on civilization
(Mohamed et al., 2020; Al-Turjman et al., 2020a).
Drones may be spread flexibly and rapidly in lots of
fields in smart cities, as they are more cost-effective
than manned planes. In addition, they may be extra
elastic in various situations and locations, in addi-
tion to chance hazard cases for people. Therefore,
those drones’ capabilities provide advantages for
smart city applications (Nguyen et al., 2021). A
conventional smart city architecture includes five
important layers of progressive work on the data
from the past layer, as demonstrated in Fig. 3: the
business layer, application layer, middleware layer,
network layer, and sensing layer. The sensing layer,
additionally named the perception layer, comprises
sensors that can obtain data. The information read
by the sensing layer is passed ahead using the
networking layer to the middleware layer through
wireless network strategies. The middleware layer
provides a generic interface that used information
via database management services and different
Application Programming Interfaces (APIs) to pro-
vide clients with services. The business layer is
connected with the application layer and is used to
foster and improve approaches and formulate pro-
cedures that assist in accomplishing the scheme
totally (Syed et al., 2021; Serey et al., 2020).

3.1. IoT architectures for smart cities

The mixture of IoT and Artificial Intelligence (AI)
is giving rise to a rising trend known as IoT that is
opening up new routes to get digitization into the
modern. IoT is a scheme that mixes numerous
technologies and devices, eliminating the demand
for human interference. This allows for the capa-
bility of having smarter cities across the world.
Within the context of smart cities, IoT permits sen-
sors to accumulate and drive data about the city's
status to a central cloud, which is then treated and
makes decisions. There are three structures where
the handling of data can be implemented: fog,
cloud, and edge models. Table 2 lists the personal-
ities of every one of the three layers of the IoTTa
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framework (Eckhoff and Wagner, 2018; Syed et al.,
2021), and (Zhao et al., 2019). Interest in the direction
of performance, productivity, and efficiency en-
hancements is coveted additionally across the agri-
cultural sector (Balducci et al., 2018). Smart

agriculture is becoming the best standard thanks to
agricultural sensors and is becoming more common
among farmers. IoT transmits the picked-up data
from the surrounding environment to the Internet
via service providers. This extra facilitates

Fig. 3. Smart city architecture (Syed et al., 2021).

Fig. 2. Smart city (Syed et al., 2021).
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customers to examine the plotted or numerical data
(Aliev et al., 2018). IoT has played a massively
important role in the agricultural industry recently
with a view to offering aid to farmers along with an
increased observing system of water supply, hu-
midity, and temperature, as well as an early detec-
tion system and disease observing (Kitpo et al.,
2019). IoT is likewise used to accumulate sensor data
from the field in order that data and recommenda-
tions from the machine learning algorithm may be
accessible on a graphical user interface (GUI) plat-
form, which makes it simpler to have nonstop
monitoring of the farm (Araby et al., 2019).
A profitable and sustainable agricultural output is

possible with smart agriculture, which will be based
on a combination of creative uses of cutting-edge
ICTs like the IoTs. The intricacy of the tasks carried
out by farmers leads to the complexity of all the
technologies used in smart agriculture. For farmers,
sensor-based irrigation systems offer a promising
solution. By gathering data from sensor networks,
IoT technologies can lower the cost and expand the
scope of sensor-based irrigation systems. The IoTs is
a global network built on accepted communication
protocols. It collects data using a variety of tech-
nologies, ranging from physically measured quan-
tities to IoTs applications (Boursianis et al., 2022).
As evident from Table 2, while there are certain

restrictions when using cloud computing for IoT
data analytics, Fog is primarily intended for inter-
active IoT applications that require real-time re-
sponses. However, edge computing offers a great
platform for the development of smart cities.

3.2. IoT challenges for smart cities

The technical difficulties related to using IoT in
smart cities that have been the focal point for aca-
demics are presented in Table 3 (Syed et al., 2021).
As evident from Table 3, there is a brief debate on

the difficulties that IoT scheme designers encounter
while deploying innovative smart city applications.
The technical difficulties related to using IoT in
smart cities have been the focal point for academics.
Therefore, there are still many restrictions that
hinder the advancement of smart cities using IoT.

3.3. Applications of UAV in smart cities

These applications offer useful benefits for smart
cities to enhance services's overall performance and

Table 2. Comparing fog, edge, and cloud computing models.

Fog Computing Model Edge Computing Model Cloud Computing Model

It has contextual consciousness of the
local sensing state.

Edge devices usually have information
only about their private cases. Inter-
change technique is probable but
restricted to the local neighborhood.

Contextual consciousness is a universal
standard that includes all phases of its
application.

Being nearby Fog, Edge can respond
greatly rapidly to the data being
transmitted from sensors and other
devices, and by doing so, it can
collectively transmit the information
transmitted.

Rapidest decision creation is probable,
but decisions will be founded on local
situations.

Latency is rising, and decision-making
can be delayed.

Uses heterogeneous information, how-
ever, within a minor area.

Commonly do not have access to
diverse kinds of data.

Uses heterogeneous information from a
diversity of sensing devices.

Medium network charge as data
movement is decreased.

Minimum network charge. High network charge.

Compared with cloud computing, it can
increase and enhance privacy.

Greater privacy enforcement is possible
than the Fog model.

Potential privacy hazard, as raw infor-
mation might be transmitted to the
cloud.

Extra powerful than the cloud model. Maximum robustness as distributed
decision creation happens.

It is less powerful as decision-making is
centralized.

Less capable than other cloud devices. Least capable. Superior abilities in terms of sources.
Scalability is greater than the cloud. Scalability is at its maximum. Scalability is weak.

Table 3. Internet of things Challenges for Innovative Smart City.

Challenge Meaning

Security and
Privacy

They need to accept the truth, confi-
dence, and sharing of clients. Propaga-
tion of sensors in smart cities may
disclose the daily doings of clients as
undesirable.

Smart Sensors Smart city expansion would want all the
devices to carry out tasks among
themselves and exchange data to be
reliable and robust.

Networking Supplying networking with devices to
stay linked is a huge mission.

Big Data analytics Modern data analytics algorithms
needed to be evolved, and those algo-
rithms wanted to be appropriate to
various data and changing natures.
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citizens' quality of life (Mohamed et al., 2020).
Table 4 Illustrates a summary of the challenging
issues of UAV applications in smart cities.

3.3.1. Traffic monitoring and management
Traffic tracking and observation can enhance

traffic systems in preference to conventional strate-
gies. Several massive cities need smart traffic
monitoring systems as a pressing requirement
because of the improvement in traffic. UAVs may be
used to gather and deliver a whole set of actual-time
approximate data related to traffic overcrowding.
UAVs can offer live feeds overlaying the congestion
region and all neighboring regions. For example, in
2017, the Authority of Transport and Roads in Dubai
observed their traffic and controlled vehicle acci-
dents using drones (Syed et al., 2021; Mohamed
et al., 2020; Nguyen et al., 2021).

3.3.2. Health emergency services
UAVs can also provide similar emergency offer-

ings to citizens in public facilities when accidents
and injuries happen within the city that restrict or
cutoff transportation. In this regard, smart health
pursuits make sure that healthcare is accessible to as
many citizens as feasible through telemedicine of-
ferings and get better diagnosis assistance from
doctors utilizing AI. The widespread use of cellular
telephones and health trackers may pick up real-
time data related to people's health (Syed et al.,
2021; Mohamed et al., 2020).

3.3.3. Agriculture management and environmental
monitoring
Smart agriculture is the use of sensors embedded

in crops and plants to measure diverse parameters
to assist in decision-making and protection from
pests, diseases, and so on. UAVs may be applied to
assist agricultural approaches such as pesticides,
seeds, water, and distributing fertilizers. They can
also offer periodic rummaging of fields and their
conditions. A part of the smart agriculture paradigm
is precision agriculture, which entails sensors being
located in fields to offer measurements and conse-
quently permit targeted interest mechanisms to be
deployed (Syed et al., 2021; Mohamed et al., 2020).

3.3.4. UAV-based surveying
Surveying has many implementations in civil en-

gineering and in city control. However, most con-
ventional surveying techniques consume massive
time and effort. UAVs may be used effectively in
surveying and geospatial activities in smart cities.
UAVs can be characterized as accurate, rapid, safe,
flexible, and inexpensive tools to execute various
surveying activities needed for building projects or
city administration systems. A UAV may be used to
obtain three-dimensional (3D) mapping information
for huge infrastructure projects (Mohamed et al.,
2020).

3.3.5. Large-scale disaster management
Response and situation administration in huge-

scale catastrophes, including volcanoes, terrorist

Table 4. A summary challenging issues of UAV applications.

UAV Application Challenging Issues

Traffic monitoring and management It needs low-latency communication and high-bandwidth necessities to transmit video
streams to the control center. If protection isn't always robust and sufficient, we will be
facing possible major sabotage incidents and hacking.

Health emergency services It needs high security, reliability, safety necessities, and high development, production,
and servicing costs. The possibility of incorrect use of the introduced medical elements.
There is likewise a threat to humans in the event of crashes or malfunctions.

Agriculture management and
monitoring

It does not have the ability to deal with various agricultural situations. Generally of low
risk, however, a few mistakes may also cause damage to fields or crops.

UAV-based surveying It does not have accurate measurement capabilities.
Large-scale disaster management It needs trusted communication with the control centers. It does not have sufficient

capability to cope with various catastrophic situations. Advanced coordination if more
than one UAV is used. The deployed UAVs might not be capable of addressing all
conditions if they are not designed to address them.

Merchandise delivery It requires highly effective operations. It wishes integration with other different lo-
gistics systems. It does not have the capability to deal with the excessive weight and
large payloads. Possibility of accidents that could result in property or product dam-
ages or injuries.

UAV taxi It does not have the capability to hold excessive weight. It must have extraordinarily
high reliability, high levels of self-independence, security, and safety requirements. It
needs high improvement and preservation costs. Legal aspects associated with any
accidents. Any accident might also increase the risk of accidents or death. Troubles and
criminal outcomes might also arise. A growing quantity of UAV taxis in the air will lead
to air congestion.
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attacks, earthquakes, fires in forests or large in-
frastructures, and floods, are very challenging;
however, in most of these situations, people and
emergency groups cannot effortlessly and speedily
attain the catastrophe regions or every other. At the
same time, most of the infrastructure, including
telecommunications structures and roads, may be
destroyed. UAVs may be applied efficaciously in
such situations. They may be used as reliable, safe,
and flexible tools to screen, monitor, and offer real-
time data about the recent situation (Mohamed
et al., 2020; Nguyen et al., 2021).

3.3.6. Merchandise order delivery
UAVs may be used to deliver client orders in less

time. Because a client gives an order online, she or
he can take the order quickly through a delivery
UAV specially designed for this application. UAVs
are elastic enough to wag fast to various regions in
cities for speedy delivery even in overcrowded areas
(Mohamed et al., 2020).

3.3.7. UAV taxi
One of the basic objectives is to offer an autono-

mous, safe, and unmanned UAV taxi available on
request. Another purpose is to, with the aid of
greater direct routes, keep off the traffic congestion
in massive cities. Dubai most recently executed its
first test of a UAV taxi service as part of its smart city
visibility. Although there are perfect benefits for this
application, there are particular obstacles that need
to be resolved (Mohamed et al., 2020; Dubai tests
drone taxi service - BBC News).
Although there are numerous opportunities for

UAV use to support a smart city, as Table 4 makes
clear, any smart city that uses UAVs to further its
economic development will greatly benefit from
these opportunities. However, there are many UAV
application issues.

4. Drone overview

4.1. Drone background

There are various terms used for a drone,
including remotely piloted aircraft (RPA) and a UAV.
It is an aircraft deprived of a pilot on board as shown
in Fig. 4. UAVs are planes that work by remote
control using onboard computers. Nowadays, UAVs
are one of the most essential areas of technology
because of their speedy improvement and applica-
tions in any aspect of the actual world (Khan et al.,
2018; Nguyen et al., 2021; Altawy and Youssef, 2016;
Vattapparamban et al., 2016; De Rango et al., 2017;
Chung et al., 2020; van der Merwe et al., 2020;

Ayamga et al., 2021) Satellites lack flexibility for the
reason that they cannot be mobilized quickly and are
difficult to use when needed. A UAV, considered a
current innovation in far-flung sensing, could ride to
triumph over those disadvantages. It permits spec-
tral resolution and a higher spatial resolution
(Nguyen et al., 2021; Michels et al., 2020). The drone
approach can result in significant secondary benefits
and advantages, including decreasing pollution,
preserving resources, decreasing power consump-
tion, growing preparedness for emergencies, and
having access to dangerous and disaster areas
(Alsamhi et al., 2019a). The four principal sorts of
drones are illustrated in Table 5 (van der Merwe
et al., 2020; Michels et al., 2020; Macrina et al., 2020;
Hafeez et al., 2023).
Table 5 clearly illustrates the four primary drone

types: fixed-wing, single-rotor, multi-rotor, and
hybrid, their applications, and their strengths and
weaknesses. The design and technology of flapping
wings are more complex compared with those of
fixed and rotary wings, due to their complex aero-
dynamics. Hybrid systems use either a single-rotor,
multi-rotor, or ducted fan configuration to allow a
VTOL capability and then transition to fixed-wing
flight to enable greater endurance.

4.2. Drone architecture

Usually, any UAV structure includes three prin-
cipal elements: Unmanned Aircraft (UmA), Ground
Control Station (GCS), and Communication Data-
Link (CDL) as shown in Fig. 5 (Al-Turjman et al.,
2020b; Yaacoub et al., 2020).

4.2.1. Flight controller
It is considered the drone's central primary pro-

cessing unit. Apart from maintaining drone stability
while in flight, it also receives and interprets sensor

Fig. 4. A typical commercial drone (Qin et al., 2023).
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Table 5. A summary of the Four Principal Sorts of Drones.

Type Vertical Takeoff and Landing Flight Time Payload Capacity Cons and Pros

Fixed-wing No It needs a minor opera-
tional footprint. Numerous of
them want a flat and long
arrival area that is free of
hurdles inside the landing
region and in the processes of
takeoff and landing. Based on
the location, those area ne-
cessities may be essential to
fixed-wing drone processes.

High: It is the most effective
because the lift produced by
the wings decreases the
quantity of energy required to
maintain the drone airborne.

Medium-high Their easier structure calls for
much less complex repairs
and maintenance. It is
capable of conveying more
payloads over extended
distances using much less
power. But it wants a steady
air motion throughout the
flight.

Single-rotor Yes Medium-high energy is
constantly wanted to push the
propellers and motors to keep
the drone airborne and
controlled. Single-rotor
structures are normally more
effective than multi-rotors.

Medium-high They can fly and land
vertically in a minor area, and
as a consequence, they're
extra agile in terms of
maneuvering. But they have a
higher servicing charge.

Multi-rotor Yes Low energy is constantly
requested to push the
propellers and motors to keep
the drone airborne and
controlled.

Low The layout and model of
flapping wings are more
complicated than those of
rotary and fixed wings. Their
operational charges are
normally excessive, and their
flight period subsistence is
decreased due to the intense
power wanted for the
flapping model.

Hybrid Yes Medium-high: The hybrid
model uses a multi-rotor,
single-rotor, or ducted fan
arrangement to permit a
VTOL ability, after which it
moves to a fixed-wing to
allow a better stay.

Medium Combine fixed-, rotary-, and
flapping-wing systems.

Fig. 5. Components of a drone (Al-Turjman et al., 2020b).
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data, converts it into actionable information, and,
depending on the kind of control, sends the updated
state either directly to the actuator control units or to
the Ground Control Station (GCS). The GCS
communication interface is implemented by the
flight controller. More specifically, the flight
controller processes commands from the GCS and
then modifies the deployed actuators. In addition,
the flight controller can send telemetric signals to the
GCS through a variety of transmitter channels. The
flight controller can communicate with an external
sensor unit or have several sensors integrated into it.
The GPS module, accelerometer, gyroscope, mag-
netic orientation sensor, and electro-optical or
infrared camera are among the sensors of the UAV
system.

4.2.2. Ground control station
It is primarily dependent on an On-Land Facility

(OLF), which offers people operators the essential
competencies to govern and/or monitor UAVs at
some stage in their operations from a distance. GCSs
differ depending on their size, type, and drone tasks.
Put differently, hobbyists use GCSs, which are small
handheld transmitters, for their recreational mini
and micro drones. The GCS is a sizable, self-con-
tained building with numerous workstations used
for tactical and strategic drones. Through a wireless
link, a GCS and the drone exchange commands real-
time data to create a virtual cockpit.

4.2.3. Data links
These are wi-fi links used to govern the data flow

between the drone and the GCS. This relies on the
operational range of UAVs. The UAV operating
range determines the chosen communication link.
Line-of-sight (LOS) missions, where control signals
can be sent and received through direct radio
waves, and beyond line-of-sight (BLOS) missions,
where the drone is controlled through satellite
communications or a relaying aircraft that can be a
drone itself, are the two categories of drone missions
based on their distance from the general control
system (GCS).

4.3. Drone sensors in agriculture

UAVs contain various types of precisely smart
devices, including time-of-flight (ToF) sensors. It
may be managed remotely and flow independently
without human intrusion (Trasvi~n et al., 2017). The
sensor network community is the connecting reality
of our online world, which is the prime idea of IoT.
Sensors may be categorized into two categories:

active and passive. Active sensors expel energy and
expose the reflection of that released energy. Passive
sensors are the most popular kind used in agricul-
ture and are used to measure the released or re-
flected energy from a scene. Active sensors are
commonly heavier and far more expensive than
passive sensors; however, they can produce repeat-
able data despite the changing circumstances sur-
rounding them. Passive sensors are normally
lightweight and have a minimum cost; however,
they may be enormously influenced by the circum-
stances surrounding them (van der Merwe et al.,
2020). Sensors are used in precision agriculture to
measure the various environmental qualities wanted
for the targeted application (Araby et al., 2019; Pawar
and Chillarge, 2018).

4.3.1. Visible light
RGB sensors are the least costly and most popular

passive sensor types used on drones (Amarasingam
et al., 2022).

4.3.2. Broad band color infrared
These sensors are replacements for RGB sensors.

This technique leverages the comparatively high
degree of advancement connected to client camera
evolution, leading to high-quality sensors with
perfect directional resolution at a comparatively
minimum cost, and it has been greatly used in
agriculture.

4.3.3. Multispectral and hyperspectral
There is not any explicit definition of differentia-

tion among hyperspectral and multispectral sen-
sors. Data goodness is enhanced, mixed with
lowering the fee and operational complexity,
resulting from their unanticipated increasing use in
agriculture (Amarasingam et al., 2022).

4.3.4. Thermal
Thermal cameras used in agriculture are passive

sensors. The resulting thermal precision is suitable
for most agricultural applications in which temper-
atures are analyzed relatively closely (Amarasingam
et al., 2022).

4.3.5. Light detection and ranging (LiDAR)
LiDAR is a kind of active sensor that may be

described as a holder of light and radar. The data in
LiDAR excels at presenting topography data
without the photo overlap requirement related to
normal aerial imagery, thereby increasing topo-
graphical mapping efficiency (Amarasingam et al.,
2022; Su et al., 2023).
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4.4. Advantages of drones

Drones offer aerial photography at a significantly
lower fee than using a small plane or helicopter.
They may be bought for a portion of the price, and
the electricity required to recharge them is tiny
compared with the price of gasoline. Due to their
small size, drones are an awful lot more maneu-
verable than planes or helicopters, making images
smoother and faster. The reasons why drones are
used may be almost divided into three classes
(Chung et al., 2020; Macrina et al., 2020; Reinecke
and Prinsloo, 2017).

4.4.1. Minimization of tour completion time or
makespan
Completion time is the time needed to service all

clients and go back to both vehicles to the depot.
Makespan ¼ latest goes back time at the depot.

4.4.2. Minimization of the total cost
Include battery price, maintenance cost, and

labor.
Total cost ¼ cost of the tour.

4.4.3. Other objectives
Include minimizing the latency and maximizing

the predicted range of clients served on the same
day and clients within time windows.

4.5. Disadvantages of drones

Despite the many advantages of drones
mentioned above, the efficient use of UAVs presents
numerous problems that need to be addressed.
Briefly, there are a few critical challenges that want
to be highlighted. The unwelcome issues of drones
are mentioned in Refs (Khan et al., 2018; Mohamed
et al., 2020; Nguyen et al., 2021; Chung et al., 2020;
Reinecke and Prinsloo, 2017). There is a limit to the
batteries' capacity. Larger batteries can be used to
make up for this, but doing so increases weight and
the amount of power required to maintain the alti-
tude. Batteries can only be recharged a certain
number of times before they lose their usability and
must be replaced, which is frequently an expensive
process. The majority of nonmilitary drones have
extremely short flight ranges in terms of both bat-
tery life and remote control signal. Since they are
not waterproof, all but the most specialized drones
can only be used in dry weather. Drones used for
various civilian purposes in extremely crowded cit-
ies present significant safety concerns because they
have the potential to crash and cause enormous
damage. This could be the consequence of an

operator error, a technical issue, poor equipment
maintenance, or collisions in midair. Concerns
regarding drones falling on public property have
also been raised by severe weather conditions,
including turbulence, lightning, and battery life lift
capacity. Furthermore, there is a significant chance
that airborne collisions resulting in extensive dam-
age could occur because larger cities share their
airspace with other commercial aircraft. The tech-
nology within commercial or recreational drones
poses a greater security risk than the drones them-
selves. The services that the drones provide could
be disrupted if attackers manage to take control of
or destroy the technologies that equip the drones.
Modules used for drone communication and navi-
gation are susceptible to various security breaches.
A drone's navigation system is made possible by
GPS, which is readily spoofable due to its open
nature and lack of authentication. Another potential
attack that might result in the drone's communica-
tion system being taken over, with potentially dire
repercussions for anyone in the vicinity, is Wi-Fi
jamming.

4.6. Drone used in agriculture

Recently, drones in the agriculture field have
carried out many activities that assist in tracking
crop health, taking corrective actions, and, as a
result, preventing damage to crops. Smart farming
allows human beings who have even had little
practice in farming to increase (Syed et al., 2021;
Balducci et al., 2018; Hafeez et al., 2023; Guill�en
et al., 2021; Reshma et al., 2020; Jin et al., 2020a).
Precision agriculture (PA) is a new idea in agricul-
ture; it is described as a farm management strategy
using information technology to manage, identify,
and analyze the diversity of fields to ensure certain
sustainability, protection, and profitability of the
environment. PA is used to offer agriculture solu-
tions through the use of an AI machine learning
algorithm that is used for executing data prediction
on data gathered by sensors (El Hoummaidi et al.,
2021; Araby et al., 2019; Michels et al., 2020; Pawar
and Chillarge, 2018). Most people agree that one of
the best ways to improve plantation management
techniques and get precise data for decision-making
is through PA. The purpose of PA, a farm manage-
ment technique, is to maximize crop productivity by
applying inputs like water, fertilizer, and pesticides
in the most efficient way possible using information
and communication technology. Applying the right
amount of agricultural input at the right time and
place to increase yield quantity and quality is the
primary goal of PA. It is a farming strategy that
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Table 6. A Summary of using internet of things-based totally artificial intelligence in smart Agriculture-Related Works.

Ref Idea and Objectives Method Results Limitations Dataset

Guill�en et al.,
2021

Evaluation of edge
computing in crops for
frost prediction by
appreciating depressed
temperatures out of long
short-term memory
(LSTM) models.

There are three IoT nodes. Sen-
sors provide information every
10 min

Offering an excellent framework
for driving edge computing as an
actual opportunity for smart ap-
plications. Permit farmers to ac-
quire a temperature prediction in
actual time at their plots.

New variables need to be in-
tegrated into the LSTM to
create a multivariate LSTM.
Edge computing architectures
are not capable of taking care
of heavy workloads.

Two various crops in Murcia
(southeast Spain).

Pratyush Reddy
et al., 2020

A smart irrigation system
predicts the water
necessities for a crop.

A moisture, humidity, and tem-
perature sensor forward data
through a microprocessor. The
consequences received through
the decision algorithm are dis-
patched through a mail alert to
the farmers.

The larger the data, the more
correct the results will be.

NA Datasets include the values of
various scenarios in the farms
to train the model exactly.

Jin et al., 2020a The prediction of weather
data, along with wind
speed, humidity, and
temperature, to enhance
the yield and quality of
crops.

An Empirical Mode Decomposi-
tion (EMD) technique is used to
decompose the weather infor-
mation, then a Gated Recurrent
Uunit (GRU) network is trained,
and lastly, the consequences
from the GRU are delivered to
gain the prediction result.

The proposed predictor can ac-
quire correct predictions for the
subsequent 24 h. Experiments
primarily based on weather data
affirm the improvement of the
proposed strategy.

It is not always smooth to
appropriately expect weather
trends.

The accumulated hourly
weather data, which includes
humidity, temperature, and
wind speed, in Beijing.

Reshma et al.,
2020

The research goal is to
determine the class of soil
and the appropriate crop
for the soil using category
strategies.

An appropriate category method
is selected based totally on the
accuracy value.

The decision tree presents higher
predictions than SVM in all
overall performance metrics. An
evaluation can be made to
determine the perfect plants that
may be cultivated within the
offered soil type.

NA Inside the college campus,
which is sectioned into four
various regions.

Jin et al., 2020b Using a deep learning
algorithm with a
sequential two-level
decomposition structure.

The two-level sequential decom-
position structure was used to
decompose the climate data.
Then the GRU networks were
trained as the sub-predictors for
every component.

It can acquire the correct pre-
diction of humidity and temper-
ature and meet the wishes of
precision agricultural
production.

It is not facile to correctly
expect the future trend.

In Ningxia, China, for
wolfberry agriculture.

AlZu’ et al., 2019 Yellowing leaves and
sprinkles inside the soil
have been spotted using
multimedia sensors to
discover the extent of
plant thirstiness in smart
farming.

Sensor reading has been used as
a traineeship dataset pointing to
the thirstiness of the plants, and
deep learning was applied in the
following phase to detect the
optimal decision.

The tests performed in this study
are promising.

NA 100 training records have
been created, each of which
contains 8 columns and a
label.
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Ale et al., 2019 Presenting a Densely
Connected Convolutional
Networks (DenseNet)
based transfer learning
strategy to discover plant
diseases.

The performance has been
compared with various photo
entry sizes so as to locate the
stability of the complexity raised
through photo accuracy and
performance.

The presented strategies can
accurately find out plant diseases
using the fewest computational
resources.

NA Actual-world dataset.

Araby et al.,
2019

Precision agriculture is
used to offer agriculture
solutions using an
artificial neural network
algorithm.

A sensing network was deployed
to collect data on some crops
(tomatoes, potatoes, etc.), then
gave this data to a machine-
learning algorithm to obtain a
warning message.

The system will supply all pre-
vious knowledge to the farmer in
advance of making the right
decision.

The gateway must transmit
actions by itself and splash
the field as wished.

Actual data, collected from
CLAC is known as
day-degree data.

Kitpo et al., 2019 Suggest an IoT system
with a bot notice on
tomato evolution stages.

The photo analysis was made by
collecting deep learning for
tomato detection, image pro-
cessing for color characteristic
extraction, and machine learning
for six development stages of
classification.

They can successfully classify the
six stages of tomato increase
using SVM classification with a
weight accuracy of 91.5%.

We need to train with a larger
dataset to enhance and ach-
ieve better accuracy.

The tomato dataset was
gathered from Shinchi Agri-
Green, the tomato
greenhouse in Fukushima,
Japan.

Web Enabled
Plant Disease
Detection
System for
Agricultural
Applications
using WMSN
- Amrita
Vishwa
Vidyapee-
tham 2018

A Novel Web-Enabled
Disease Detection System
(WEDDS) primarily based
totally on Compressed
Sensing (CS) is proposed
to stumble and classify the
illnesses in leaves.

The suggested IOT-based total
system includes six phases:
image preprocessing,
classification, image
segmentation, image acquisition,
compressed sensing, analysis,
and feature extraction, in which
the first four phases are executed
at the sensor end, and the rest at
the tracking site.

The suggested technique affords
an overall detection precision of
98.5% and a classification preci-
sion of 98.4%.

NA Carried out using a support
vector machine classifier in
MATLAB. The algorithm is
carried out on the RPi board
using the python language.

Aliev et al., 2018 The WSN strategy has
been suggested to be
beneficial for smart agri
culture applications.

They developed a prototype de-
vice and an Android application
that gets physical data and
retransmits it to the cloud.

The suggested prototype device
receives information from crops
and makes it obtainable to the
user.

NA Istat statistical dataset, the
industrial IoT sensors dataset,
and the National Research
Council (CNR) scientific
dataset.

Balducci et al.,
2018

Reveal how to control
heterogeneous data
coming from actual
datasets that acquire
biological, physical, and
sensory values.

Focusing on the IoT sensor
dataset, we utilized machine
learning strategies and extra-
standard statistical ones.

The forecast of pear and apple
total crops could be generated
with a neural network strategy
with gain rates close to 90%.
Regression and polynomial pre-
dictive strategies are extra desir-
able considering the kind of
dataset.

Needing the design of
completed tools, user in-
terfaces, and machines that
facilely adjust to a context
subjected to normal news is
not as facilely expected.

NA

(continued on next page)
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Table 6. (continued )

Ref Idea and Objectives Method Results Limitations Dataset

Goap and
Sharma, 2018

Proposing an IoT-primar-
ily based totally smart
irrigation structure in
conjunction with a hybrid
machine learning-based
totally method to expect
moisture in the soil.

The suggested algorithm makes
use of sensors' information of the
latest beyond the climate fore-
casted data for the next few days.

The system is completely pur-
poseful, and the expected out-
comes are very encouraging.

NA The sensor node data is
wirelessly amassed over the
cloud using web services.

Pawar and
Chillarge,
2018

The suggested system ad-
vises the farmer about the
level of toxicity, the crop,
water supply, and fertility
of the soil.

For classification, the decision
tree J48 algorithm is used, which
is easy to execute and has greater
accuracy compared with
different category algorithms.

The precision of the J48 decision
tree algorithm is better in com-
parison to different category
algorithms.

NA 1. Crop Data Set: includes
crop name, humidity, pH,
temperature, and nutrients
(Na, Mg, N, P, Cl, and Ca). 2.
Fertilizer Data Set: includes
fertilizer dates, crop name,
and name.

Aruul et al., 2017 The main goal of the smart
agricultural system is to
develop the crop in the
field.

The tracking technique entails
accumulating information about
the soil factors of the field. A Wi-
Fi Sensor Network (WSN) is
mounted to acquire that infor-
mation and feature with the aid
of sporadically importing it to the
cloud.

LSTM networks have been
discovered to be the right algo-
rithm. The inferred conse-
quences are compared with the
optimal crop, and the best proper
crop is intimated to the con-
sumer through SMS service.

To enhance the reaction time,
a distributed framework pri-
marily based on fog struc-
tures might be constructed.

Agricultural University

Rodrí et al., 2017 With a view to offering the
best-developing
conditions for roses in a
greenhouse, a wireless
sensor has been designed
and applied that supports
data extracted from the
agricultural surroundings,
which includes light,
temperature, and
humidity.

The sensor network permits
surrounding situations data
collection and visualization in a
mobile or web application, and
after that, using data mining
strategies, acquiring a prediction
model with proper accuracy.

The SVMs appear to offer a great
prediction model.

The need to set diverse algo-
rithm configurations is being
placed forth to discover
higher outcomes.

Available at the Universidad
de las Fuerzas Armadas
(ESPE), Ecuador.

Maia et al., 2017 Determining an actual-
time, in-situ agricultural
IoT device planned to
screen the soil and the
surroundings.

The tracking nodes are estab-
lished among the numerous lo-
cations in the field, with sensors
to screen each environment and
the soil.

Data were acquired via the IoT
device in comparison with
available data from two sources:
(i) The CPTEC/INPE Center for
Weather Forecasting and
Climate Studies; (ii) Weather
Underground.

NA The Mirante de Santana
station (in S~ao Paulo citydthe
closest station from S~ao Ber-
nardo do Campo).

Kussul et al.,
2017

A multiple-level DL tech-
nique for land cover and
crop kind's category has
been suggested using sat-
ellite imagery.

A conventional, completely
linked multilayer perceptron
(MLP) and the most commonly
used strategy in RS society,
random forest, are then
examined with CNNs.

The structure with a group of
CNNs outguesses the one with
MLPs, permitting us to more
accurately discriminate positive
summertime crop types.

NA They used Sentinel-1A
images and Landsat-8 in
Ukraine over the test site,
JECAM.
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Table 7. A synopsis of Drone in Agriculture-Related Works.

Ref Idea and Objectives Results Limitations Dataset

Wu et al., 2024 Eliminating the noise pixels from
soil, shadows, and the Thermally
Affected Zone (TAZ) from UAV im-
ages using an automatic image seg-
mentation-based noise removal
technique.

Automatic noise reduction and
multi-criteria comprehensive evalu-
ation have a lot of potential for
quickly assessing winter wheat cul-
tivars' resistance to drought in large-
scale breeding trials.

NA Dryland Farming Institute, Hebei
Academy of Agricultural and
Forestry Sciences, Hengshui, China.
The station is located in the winter
wheat-producing area of the North
China Plain.

Tunca et al.,
2024

By analyzing UAV data and ML
models, this study attempted to
address the need for quick, nonde-
structive Leaf Area Index (LAI)
monitoring over wide areas.

The K-NN model and Extra Trees
Regressor (ETR) had the highest
accuracy. UAV data and ML tech-
niques can estimate sorghum LAI
precisely to support precision agri-
culture applications.

NA At the Black Sea Agricultural
Research Institute located in Sam-
sun, Turkey's Bafra Plains.

Alzhanov and
Nugumanova,
2024

ascertain the relative effectiveness of
crop classification models that were
either trained directly from the UAV
multispectral images or using fea-
tures from the Gray Level Co-
occurrence Matrix (GLCM).

The fusion of GLCM features
derived from a time series of images
and the ExtraTreesClassifier
emerged as the standout per-
formers, achieving accuracy, preci-
sion, and recall of 0.87, 0.88, and
0.87, respectively.

Should increase the variety of crops
being compared as well as the
number of prototypes.

In the Eastern Kazakhstan region

Demir et al.,
2024

Empowering agricultural systems
that function in environments that
depend on nature, allowing them to
efficiently maximize the use of
limited resources.

The models can be used in
conjunction with soil data and UAVs
to predict Isparta oil rose yield early
on in organic farming systems.

It is advised that research be con-
ducted in locations with meteoro-
logical stations under various
ecological circumstances.

Isparta oil rose (Rosa Damascena
Mill.)

Ribeiro et al.,
2023

A two-step, automatic segmentation
approach is suggested. To begin,
divide the planted area into sections
with crop lines and areas with
unplanted soil using a convolutional
neural network. Next, employ a
refinement procedure designed to
restore and enhance the lines that
were previously identified.

The UNet performs best when it
comes to crop line segmentation,
achieving a higher Dice coefficient
for the datasets examined. More-
over, the network's ability to
segment images is enhanced when it
is trained using a dataset that in-
cludes a variety of crops from
different plantations.

The reconstruction produces a slight
decrease in the Dice coefficient.

Aerial images showing areas of
sugar cane cultivation and contain-
ing crop lines of varying widths and
ages.

Xiao et al., 2023 Utilizing deep learning technology,
Geographic Information Systems
(GIS), and UAVs to track corn
growth performance under various
management scenarios.

The methods used in this study
could be extrapolated to enhance
other crops' cultivation procedures.

Variations in management practices
caused differences in the emergence
rate, and extended germination pe-
riods have negatively affected seeds'
survival, resulting in a lower emer-
gence rate.

In Hokkaido, the northernmost
prefecture in Japan

(continued on next page)

S.G
.E

lad
l
et

al./
M
an

sou
ra

E
n
gin

eerin
g
Jou

rn
al

49
(2024)

1
e
28

19



Table 7. (continued )

Ref Idea and Objectives Results Limitations Dataset

Cheng et al.,
2023

Uses UAV-based multispectral and
thermal information and site-
observed air temperature to obtain
the three UAV-based drought
indices: the Three-Dimensional
Drought Index (TDDI), the Normal-
ized Relative Canopy Temperature
(NRCT), and the Temperature
Vegetation Drought Index (TVDI).

The comparison of consistency with
VMC revealed that TDDI out-
performed NRCT and TVDI. Addi-
tionally, compared to the other two,
TDDI displayed noticeably superior
temporal characteristics.

(1) Limitation on the acquisition
time of a remote sensing image. (2)
TDDI's scalability for increased use.
(3) The applicability of TDDI for
different vegetations.

Henan province, China

Gao et al., 2024 Provides a full pipeline for deep
convolutional neural networks-
based semantic weed and crop seg-
mentation. The networks were vali-
dated using remotely sensed images
from a UAV platform as well as field
test data, having only been trained
on field images.

Deep learning can be applied to
multiple tasks and can integrate
various sources of data. To guar-
antee that the suggested network is
superior, preprocessing methods
that minimize dataset disparities
between two different domains must
be used.

It is unknown how well the model
performs in radically different
growth stages.

East-Flanders Province, Belgium

Guo et al., 2023 To estimate maize LAI, hybrid
inversion models (HIMs) were built
using hyperspectral and multispec-
tral data from UAVs, respectively.

Incorporating Active Learning (AL)
into the HIMs can significantly in-
crease the model's accuracy.
Another independent dataset was
used to validate the model, and it
also produced results with high ac-
curacy. When using the GPR-AL-
HIM for LAI inversion, the hyper-
spectral data show an advantage
over the multispectral data.

NA In Tongzhou District, Beijing

Jin et al., 2024 Remote sensing images captured by
an UAV were used to extract rice
texture features for rice fertilizer
decision-making.

Providing an effective technical
method for predicting the amount of
fertilizer that should be applied to
rice with mechanization and
precision.

NA In northeast China

Samsuddin
et al., 2023

Examine how well UAVs fitted with
Vegetation Indices (VIs) can track
the health of paddy plants at
different phases of growth.

The NDRE index proves valuable for
evaluating dense crops, offering in-
sights for precision agriculture and
crop management in Malaysia.

NA In Malaysia

Bagheri and
Kafashan,
2023

Providing a comprehensive analysis
of UAV-based remote sensing, ap-
plications, and solutions to the is-
sues in both forests and orchards.

Rotary-wing UAVs were employed
more widely in orcha-forest research
than fixed-wing types. Utilizing the
Accumulative Research Index (ARI)
index curve reveals that the moni-
toring and management of orcha-
forest trees is a challenging and
fascinating field of study on a global
scale.

Advanced machine learning tech-
niques should also be used to
implement intelligent diagnostic
systems for the detection of diseases,
pests, and other deficiencies, as well
as the physical characteristics of
trees, biomass estimation, water and
nutrient prediction, damage assess-
ment, and other issues.

in orcha-forest environment
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V�e et al., 2023 Provides an extensive dataset of
LiDAR data that was gathered from
vineyards in northern Spain.

Providing insights into vineyard
morphology and development,
thereby helping to optimize vine-
yard management strategies.

NA Vineyards in northern Spain

Tunca et al.,
2023

Two commercially distinct types of
UAV thermal sensors have been
tested, and their performance was
assessed by comparing the cali-
brated ground thermal
measurements.

In terms of correlation coefficients,
both sensors have shown strong
performance. The potential of cali-
brated UAV thermal sensors for
precision agriculture tasks is
demonstrated by this study.

NA At the Black Sea Agricultural
Research Institute, Samsun, Turkey

Krestenitis et al.,
2022

Providing the exact boundaries of 3
types of common weeds in this type
of crop, namely (i) Johnson grass, (ii)
field bindweed, and (iii) purslane.

The dataset can be utilized both
separately and in conjunction with
additional datasets to create AI-
based techniques for the automatic
segmentation and classification of
weeds.

NA A cotton field in Larissa, Greece

Biglia et al., 2022 Concentrating on examining the ef-
fects on canopy spray deposition
and coverage due to various UAV-
spray system configurations.

The effectiveness of spray applica-
tion is greatly impacted by the flight
mode. When compared with the
optimal UAV spray system configu-
ration, the conventional airblast
sprayer demonstrated lower ground
losses and higher canopy coverage.

Field trials designed to assess the
biological efficacy of the spray ap-
plications when using a UAV spray
system are required to prove the
reliability of these kinds of spray
application techniques in trellised
vineyards.

In an experimental vineyard

Amarasingam
et al., 2022

Concentrating on the application of
UAVs in the sugarcane sector to
enhance productivity and environ-
mental sustainability through the
management of pests and diseases,
yield estimation, phenotypic mea-
surement, soil moisture assessment,
and nutritional status evaluation.

Crop Remote Sensing (RS) using
UAVs can be a useful technique for
managing and monitoring sugar-
cane to increase yield and quality
while also having a major positive
impact on the social, economic, and
environmental spheres.

Should also take into account a few
of the difficulties faced by the sugar
industry, such as the need to adapt
to new technology, high startup
costs, bad weather, poor communi-
cation, policy, and regulations.

Utilizing three bibliographic data-
bases, including Google Scholar,
Scopus, andWeb of Science, and 179
research articles.

Pandey and
Jain, 2022

CD-CNN achieves a strong dis-
tinguishing capability from several
classes of crops.

It achieves an accuracy of 96.2% for
the concerned data.

NA Carried out at different locations in
India. UAV images of five different
crops, viz.

Yang et al.,
2020b

The VPA approach was used to
determine a continuous relationship
between VI and PAI/biomass with
phenology.

It performed robustly throughout
the growing season.

It neglects the effectiveness of
phenology, and the stopping of the
piecewise technique can bring about
abrupt adjustments in appreciation
during the stage-transmission
period.

Guangxi Province, in southern
China, was selected as the experi-
mental site.

Bhatnagar et al.,
2021

Definition of an effective and robust
strategy for using drone imagery as
training to enrich satellite imagery
for wetland classification.

The strategy is a robust, quick, and
cost-effective method to map
wetland habitats and discover their
ecohydrological synergies.

The limited battery life of the drone.
The alteration in altitude and
coverage of the sun led to a modifi-
cation in the view of society taken by
the RGB sensor.

Clara Bog is situated in County
Offaly in the midlands of Ireland.

(continued on next page)
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Table 7. (continued )

Ref Idea and Objectives Results Limitations Dataset

Wan et al., 2020 Structural and spectral information
was taken from UAV-based RGB
and multispectral images to appre-
ciate grain harvests and observe
crop development status.

It can improve the output accuracy
of grain harvests and achieve effec-
tive observation of crop
development.

It should also be joined with crop
development techniques to further
clarify the relationship between crop
harvest and meteorological
parameters.

Grain-output Functional Area of
Anhua, Zhuji City, and Zhejiang
Province in China.

Alves de Oli-
veira et al.,
2020

The first widespread assessment of
the potential of drone-founded
spectral faraway sensing and
photogrammetry for guessing the
biomass and quality parameters of
grass swards for silage output.

Drone faraway sensing was an
outstanding instrument for the exact
and effective management of silage
output.

NA In the municipality of Jokioinen in
southwest Finland.

Syifa et al., 2020 A Land Cover (LC) map was created
from drone images taken by two
classifier approaches, i.e., ANN and
SVM.

Better consequences from the clas-
sifier SVM, which had a greater
overall accuracy than the ANN
classifier.

Continuation clarifications by
forestry experts or researchers are
necessary to check whether the
PWD-specified trees are indeed
diseased by PWD.

Anbi and Wonchang Villages, which
are positioned in Chuncheon City,
Gangwon Province, Republic of
Korea

Jia et al., 2021 An innovative methodology was
improved to guess soil. As levels
from HRAI images.

Enriched Random Forests (ERF) and
Random Forest (RF) algorithms
achieved fine overall performance
among the four machine learning
algorithms. HRAI mixed with ma-
chine learning has the highest ca-
pacity to predict soil danger levels.

More data, together with the loca-
tion and diverse basic data about the
pollution resources, is needed from
the local specialists in the suggested
methodology.

Zhongxiang, Hubei, in southern
China.

kavoosi et al.,
2020

They used Landsat 8 OLI data and
more images taken away by a drone
over the carefully chosen plots for
faraway sensing of CRC.

Landsat 8 OLI imagery has shown
its capability for CRC assessment.

Landsat 8 OLI imagery is somewhat
more precise than drone imagery for
approximating CRC.

Badjgah, Empirical Station, College
of Agriculture, Shiraz University,
Shiraz, Iran.

Wu et al., 2019 They set up a novel drone-borne
Ground-Penetrating Radar (GPR)
for soil moisture mapping.

Showing the potential of drone-GPR
for speedy, great-resolution map-
ping of soil moisture at the arena
scale.

They were not apprehensive about
some details, such as the standardi-
zation of the full-wave antenna
technique.

In the Loess Belt area of Belgium.

Saha et al., 2018 In the suggested schema, there is an
RGB-D camera for taking actual-
time images and handling the
images.

The SVM can act on a public dataset
of yields and plants and, further-
more, forecast its outcomes with
better accuracy.

NA NA

De Rango et al.,
2017

-The observation of the area for
discovering the parasites and the
assortment of drones to terminate
them cooperatively.

The link-state way of announcing
the help demand is commonly more
appropriate.

The coming work should contain
another parameter and the intro-
duction of other assortments and
observing approaches.

This map gathers data on already-
visited fields.

Yallappa et al.,
2017

A drone-mounted sprayer was
advanced for the application of
pesticide sprays onto yields.

It supports the development of
coverage, boosts chemical efficiency,
and turns out the spraying job faster
and more easily without human
interference.

The advanced drone-mounted
sprayer can only carry a maximum
of 5.5 l and a maximum of 16 min.

In the Research Farm of the Uni-
versity of Agricultural Sciences,
Raichur, and Karnataka, India.
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maximizes resource utilization with the goal of
improving agricultural production and profitability.
PA can help identify the ideal growing conditions
for crops while preserving resources such as fertil-
izer and water. The UAVs in PA consist of various
integrating sensors (hyperspectral, high-resolution
RGB, multispectral, thermal, and LiDAR), data
collection, image processing, internet connectivity,
flight missions, and AI (Amarasingam et al., 2022; Su
et al., 2023). An example of a drone that may be used

for precision agriculture and fulfills the mentioned
necessities is the Parrot Bluegrass (A review on the
use of drones for precision agriculture - IOPscience).

4.7. Drone applications in agriculture using remote
sensing

When comparing UAV sensing systems to
ground-, aircraft-, and satellite-based sensing sys-
tems, there are a number of special advantages. For

Table 8. A summary of a drone fortified with internet of things devices and features of drone-related works.

Performances Measure Ref Main Goal

Selecting the more accurate path-planning
with at least 95% accuracy for every case

Vannini et al., 2023 Harpia seeks to carry out agricultural application
tasks with the least amount of human
involvement

Drone energy consumption Zhang et al., 2021 It reviews, assesses, classifies, and facilitates un-
derstanding various drone energy intake models

An Energy-Aware Drone Trajectory Planning
Scheme

Kouroshnezhad et al., 2020 Instructs the drone effectively, decreases the
localization period, and keeps the drone energy

Raise the flight period of drones by giving
them obligatory charging in a cost-effective
way

Hassija et al., 2020 A peer-to-peer dispensed network of drones and
charging positions is a relatively talented selec-
tion to delegate drones to be used in numerous
applications by increasing their flight period

Observe a group of dynamic or static aims,
assuming a constant rate of battery capacity

Al-Turjman et al., 2020a It decreases the overall number of drones wanted
to control a surrounding setting while providing
the most coverage, which in turn results in an
extensive discount in cost

A drone-fortified IoT Alsamhi et al., 2019b Collecting data in real time and guiding SAR for
the rescue of human lives

A drone fortified with an IoT Lagkas et al., 2018 It can be prepared with sensors of the spectrum
for at the same time mapping and localization,
ultrasonic sensors for feel and hurdle-avoidance
methodologies, and thermal sensors to screen the
surroundings' ecological and climate
circumstances

Drone Navigation for Effective Battery
Charging in Drone Networks

Kim et al., 2019 The CBDN collects drone transit data and defines
effective drone paths that allow for a decrease in
the total QCM crowding stage using cloud-foun-
ded administration

Reducing energy ingestion, flying time, and
latency of data gathering

Cao et al., 2017 Drone based on WSN for collecting data

High-quality energy efficiency Motlagh et al., 2017 Results exhibit the adequacy of the suggested
connection guidance mechanism on the one hand
in terms of data packet dispatch rate and energy
intake savings

Decreasing the energy ingestion of WSN
during data gathering

Zhan et al., 2018 In WSNs, making use of a UAV as a mobile data
adder for sensor nodes (SNs) is an energy-ade-
quacy method to extend the network's existence

Enhance the lifetime of the drone battery kavoosi et al., 2020 The effective combination of UAV and RFID
strategies can offer extra data that can be used
side by side with other structural systems,
together with BIM techniques and project de-
livery chain administration software

Providing energy-effective relaying for a su-
perior lifetime

Sharma et al., 2016 A combination of WSNs and UAVs can offer a
solution to this immoderate use of energy
resources

Flight period and fly hazard level Yoo et al., 2016 Improvement of the flying course in UAV-aided
IoT sensor networks

Decreasing missed resources and energy and
guaranteeing security

Yu et al., 2016 It indicates that WDDS senses the sightless spots
of huge factories or warehouses and covers a low
drone flight time
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instance, although accurate, the ground-based
manual approach is expensive, labor- and time-
intensive, terrain-dependent, and only offers in-
sights into particular areas. In contrast, UAV sensing
can avoid these issues because of its denser and
wider coverage with less human intervention. When
it comes to cost-effectiveness and accuracy, flexi-
bility, and user-defined spectralespatialetemporal
image resolutions, UAV sensing outperforms man-
ned aircraft and satellite-based sensing systems. It
also has a flexible multiple-source data acquisition
capacity thanks to various add-on sensing units. It is
also mentioned that UAV sensing systems have the
ability to serve as a relay or bridge between satellite-
and ground-based sensing systems, greatly
increasing the efficiency of ground-truthing satellite
data for local agricultural applications (Su et al.,
2023).

4.7.1. Seedling emergence assessment
The farm can be mapped with very high accuracy

as a way to view the seedlings and identify regions
where germination is failing. The required accuracy
relies simply on the scale of the plant's leaves after
emergence. Some crops have thin, wispy leaves at
emergence, which can be harder to peer from above
(e.g., wheat) (van der Merwe et al., 2020).

4.7.2. Weed detection and mapping
Weed mapping is a commonly used application of

far-off sensing in agriculture, and drones provide
advantages in this application because of the
excessive degree of elasticity in locative accuracy.
Multispectral imagery is usually most suitable for
mapping weeds inside the crop field (van der
Merwe et al., 2020).

4.7.3. Crop damage assessment
Drone mapping can be beneficial for the location

and quantification of crop harm after climate events
and for a huge variety of reasons, including pests
and diseases (van der Merwe et al., 2020).

4.7.4. Water management
Restricted availability of water is one of the

most considerable obstacles facing agriculture
today, and pressures on water sources are antici-
pated to boom into the future. Protecting yields
from drought-associated losses needs water admi-
nistration systems that respond to converting water
desires in close to real time (van der Merwe et al.,
2020).
Tables 6 and 7 are a summary of the past efforts.

The purpose is to explore the efforts to make use of
UAVs in an agricultural setting, as they are able to

reveal numerous aspects of farming that people
cannot accomplish on their own.
As evident in Table 6 and in this survey paper, a

nonexhaustive analysis is performed on the recent
use of IOT and AI algorithms in smart agriculture
applications. Although there are already a lot of
studies on different aspects of agriculture, there are
still many restrictions that might be liable for the
low output of crops, which can be overwhelmed by
the use of drones in the smart agriculture field.
As evident from Table 7 and in this survey paper,

a nonexhaustive but systematic review is performed
on the recent use of UAVs, which can be over-
whelmed by the use of drones in the smart agri-
culture field using AI. Also, as illustrated in Table 8,
it explains the main goal executed in the related
works and their opportunity correlated to the per-
formances of UAVs and drones equipped with IoT
devices.
Also as evident from Table 8 and in this survey

paper, a non-exhaustive analysis is performed on
the recent use of a drone fortified with IoT devices
and features of drone-related works.

5. Conclusion

We can deduce that UAVs could be of colossal
assistance to the field of smart agriculture with the
growth in the populace by way of their importance.
It will not only lessen the period but additionally
harvest superior farming primarily founded on
examined data. As a result, this survey paper pro-
vides state-of-the-art improvement of the last
research on drone strategies applied to smart agri-
culture. It contains important arenas for drone ap-
plications within the location of agriculture. Yet,
there are numerous problems associated with the
utility of drone strategies for the smart agriculture
area that demand to be solved to raise the adoption
ratio of drones.
In the future, ongoing studies ought to encompass

extra experiments, strategies to lessen the intake of
energy, boom the digits of various sensors, and
authentication of the consequences by means of
different calibrated sensors. Also, all the suggested
structures ought to be executed and examined in the
actual field.
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