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ORIGINAL STUDY

A Decision-making Approach to Reduce the Risk of
Measurement Uncertainty for Product Size

Mostafa A. Sedeek a, Fatma A. Elerian a,b, Ossama B. Abouelatta a,*, Mona A. AbouEleaz a

a Department of Production and Mechanical Design Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt
b Department of Mechanical Engineering, College of Engineering, University of Bisha, Bisha, Saudi Arabia

Abstract

The measurement uncertainty has a significant impact on quality control processes. This is particularly true of stan-
dards that are assessed to determine if a product is compliant. This ambiguity introduces two potential risks of decision-
making: accepting a nonconventional product (the consumer's risk) or rejecting a conventional product (the producer's
risk). This investigation explores the potential for false decisions caused by measurement errors in product assessments.
By studying data near the control limits, a greater understanding of the manufacturing process is intended to facilitate
informed decision-making and guide the implementation of effective quality control methods. The investigation
highlights the importance of selecting suitable measurement instruments to reduce false positive quality control de-
cisions, which resulted in 11.43% of initially accurate parts violating the 0.1 mm tool. The 0.001 mm tool has a higher
degree of precision than the 0.01 mm tool, but it may not always be practical financially.

Keywords: Decision-making, Risk, Size tolerance, Uncertainty

1. Introduction

M anufacturing thrives on quality control,
ensuring products meet specific re-

quirements. Achieving this objective depends on ac-
curate measurements, yet inherent uncertainties lurk
within the process. Gauge measurement errors
exemplify this risk, potentially misclassifying good
parts as defective and vice versa, leading to costly
consequences for producers and buyers (Vives et al.,
2023). This underscores the crucial role of under-
standing and managing uncertainty in decision-
making throughout the manufacturing lifecycle. Zero
defect manufacturing, is the epitome of research's
constant pursuit of perfection. However, even with
cutting-edge technologies for defect detection and
correction, uncertainty persists. This necessitates
innovative solutions like the data-driven and knowl-
edge-based decision support system presented
(Psarommatis and Kiritsis, 2022). Its effectiveness

in real-world scenarios like computer chip
manufacturing underscores the importance of tack-
ling uncertainty to enhance quality control and pro-
duction efficiency. Dimensional accuracy is very
critical in mechanical parts, demanding robust in-
spection methods. This study introduces a sensor-
based decision support system capable of real-time
detection and corrective action for dimensional de-
fects. By minimizing the impact of such flaws on
production timeand cost, this approachhighlights the
significance of managing uncertainty in dimensional
measurements. Radiography computed tomography
holds immense promise for complex part inspection,
but uncertainty in its measurements hinders wide-
spread adoption (Lifton, 2023). The study bridges this
gap by proposing a novel method for quantifying
uncertainty arising from voxel size, a key contributor.
This advancement empowers manufacturers with
confidence in product quality and reduces uncer-
tainty, demonstrating the value of addressing
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uncertainty in dimensional measurements using
radiography computed tomography.
Similar challenges face the three-probe method

for roundness measurement, particularly in its sus-
ceptibility to uncertainty (Shi et al., 2021). This
research combats this limitation by presenting a
novel method for uncertainty evaluation and
reduction, demonstrably improving accuracy and
reliability. Its contribution exemplifies the impor-
tance of managing uncertainty in mechanical part
inspection for enhanced quality control. Machine
tool stiffness directly impacts the accuracy and
quality of machined parts (Majda et al., 2021). This
study tackles this challenge by introducing a novel
method for measuring both translational and
torsional stiffness, crucial parameters for quality
assurance. By empowering manufacturers to iden-
tify and address potential stiffness-related issues,
this research underscores the critical role of man-
aging uncertainty in machine tool performance. The
subsequent literature delves deeper into various
aspects of uncertainty in decision-making, particu-
larly within the realm of conformity assessment
(Pendrill, 2006, 2014; Wu, 2013).
Accurate measurement plays a critical role in

various processes, particularly within quality con-
trol settings. Even minor uncertainties in mea-
surement data can lead to erroneous decisions,
impacting product quality, resource allocation, and
consumer trust. The interplay between measure-
ment uncertainty and decision-making through an
examination of relevant research across diverse
disciplines is explored. Studies focused on specific
manufacturing processes exemplify the critical role
of precise measurements. Research on in-situ
monitoring and control systems in metal-based
laser additive manufacturing (He et al., 2022),
demonstrates that integrating such systems reduces
manufacturing errors, ultimately leading to
improved product quality and informed decision-
making. Similarly, a study examining machining
processes highlights the importance of minimizing
measurement uncertainty through the use of so-
phisticated sensors to enhance decision-making
during process monitoring (Kandavalli et al., 2023).
In addition to specific processes, research in ma-
terial extrusion additive manufacturing shows how
important it is to reduce measurement uncertainty
to make sure high-quality products by showing
how measurement affects key control parameters
(Petousis et al., 2023). Furthermore, a comprehen-
sive review of machine learning techniques in ad-
ditive manufacturing emphasizes the importance of
understanding measurement uncertainty for effec-
tive quality control measures (Kumar et al., 2023).

While the studies mentioned above focus on
manufacturing processes, the concept of measure-
ment uncertainty extends to supply chain man-
agement. Research on blockchain technology in
remanufacturing supply chains reveals how mea-
surement uncertainty can impact consumer risk
and trust (Niu et al., 2022), highlighting the far-
reaching consequences beyond the immediate
production environment. The last study, which was
about multi-criteria decision-making methods, did
not directly talk about measurement uncertainty,
but it seems to understand its importance by sug-
gesting a method that might take uncertainty into
account (Bo�zani et al., 2022). These studies highlight
the need for quantitative or qualitative approaches,
encompassing impact measures for informed and
objective decision-making, further emphasizing the
critical role of addressing uncertainty in various
stages of the manufacturing process.
The following will explore the concept of ‘fitness

for purpose’ within general measurements, analyze
the costs associated with decision-making errors,
and propose methods for accurate process perfor-
mance measurement amidst uncertainty (Wu, 2013;
Pendrill, 2006). Additionally, the importance of
measurement uncertainty in conformity assessment
and impact evaluation was explained, underscoring
the need for well-defined specifications and clear
decision rules to manage uncertainty and ensure
reliable and accurate outcomes (Pendrill, 2014; 17000
II, 2004; Committee, 2013; ASMEa; Bell, 2001). This
exploration of uncertainty in decision-making, its
risks, and various approaches to mitigate it serves as
the foundation for the present study, which aims to
contribute to a deeper understanding of its impact
and develop effective strategies for managing it
within the complex world of manufacturing.

2. Theoretical background

2.1. Geometric dimensioning and tolerancing (GD
and T)

GeometricDimensioning andTolerancing (GD and
T) plays a pivotal role in ensuring dimensional accu-
racy and reliability within manufacturing and quality
control processes. This standardized system, gov-
erned by International Organization for Standardi-
zation (ISO) and industry standards (Adams, 2008;
Meirbek et al., 2020; Jcgm, 2008), specifies dimensions
and tolerances on engineering drawings while
explicitly quantifying measurement uncertainty. This
quantification empowers informed and accurate de-
cision-making throughout the manufacturing life-
cycle. However, achieving perfect measurements
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remains elusive due to inherent uncertainties arising
from various factors. These include the measurement
process itself, device characteristics, setup repeat-
ability, and workpiece parameters such as form error,
surface roughness, and shape (Jalid et al., 2015). Ma-
chine repeatability can further contribute to uncer-
tainty, particularly when assessing positioning
accuracy. Recognizing and addressing this inherent
uncertainty is crucial in GD and T practices. Instru-
ment uncertainty stemming from themeasuring tool's
calibration accuracy and resolution demands
consideration. Operator skill and experience also play
a role, introducing operator uncertainty. Additionally,
environmental factors like temperature, humidity,
and vibration contribute to environmental uncer-
tainty. Understanding and managing the combined
effect of these individual uncertainties, known as total
uncertainty, becomes paramount for accurately
interpreting GD and T measurements and making
informed decisions about product conformance to
specified tolerances. Recent years have witnessed a
surge in efforts to minimize uncertainty in GD and T
measurements, driven by compelling advantages (Shi
et al., 2021; Rachakonda et al., 2019). Firstly, reduced
uncertainty translates to improved product quality as
manufacturers gain greater confidence in their
products meeting specified tolerances. Secondly, it
translates to cost savings by minimizing scrap parts
and rework, leading to resource optimization for
manufacturers. Ultimately,minimizing uncertainty in
GDandTmeasurements empowersmanufacturers to
deliver products that consistently meet or exceed
customer expectations, fostering stronger customer
relationships and a competitive edge.

2.2. Decision rules

Within the realm of product quality assessment,
decision rules serve as indispensable tools for
achieving compliant outcomes. These structured
frameworks enable informed decision-making and
mitigate the risk of errors (Ellison and Williams,
2007). Essentially, a decision rule establishes two
key regions: the acceptance zone and the rejection
zone. Products demonstrating compliant character-
istics reside within the former, while noncompliant
products occupy the latter, also known as accep-
tance limits. The specified decision rule, often
referred to as ‘simple acceptance’ or ‘shared risk,’
establishes the specification limit as the acceptance
limit (ILAC-G8:09/2019, 2019). This approach sim-
plifies compliance assessment by generating a
straightforward ‘pass’ or ‘fail’ judgment for various
scenarios. While the simple acceptance decision
rule offers convenience with its ‘pass/fail’ judgment,

its limitations become evident when considering
measurement uncertainty. Ignoring uncertainty,
treating both producer and consumer risks equally,
and lacking nuanced outcomes compromise its ac-
curacy and applicability, particularly in critical ap-
plications. International Laboratory Accreditation
Cooperation Guidelines (guidelines on decision
rules and statements of conformity, ILAC-G8:09/
2019) provide essential guidance for managing both
producer and consumer risk within the
manufacturing context. Producer risk denotes the
potential for rejecting acceptable products, incur-
ring unnecessary costs. Conversely, consumer risk
involves the unintentional acceptance of non-
compliant products, posing potential safety and
quality concerns (Ellison and Williams, 2007; ILAC-
G8:09/2019, 2019). In manufacturing quality control,
various decision rules are employed, each with
distinct advantages and limitations when dealing
with measurement uncertainty. The most basic rule,
the Go/No-Go Rule (Simple Acceptance Rule), of-
fers a straightforward ‘pass’ or ‘fail’ classification
based on a single tolerance limit. While easy to
implement, it does not account for measurement
uncertainty, potentially leading to high risks of er-
rors. Tolerance intervals address this issue to a
limited extent by statistically defining a range within
the tolerance limits where conforming parts are
expected to fall. However, this approach requires
knowledge of the measurement process and statis-
tical analysis. Confidence Intervals share similarities
with tolerance intervals but focus on the range
where a single conforming part's measurement is
likely to fall with a specific level of confidence.
While acknowledging uncertainty, confidence in-
tervals might not directly translate into clear ‘pass/
fail’ decisions, requiring additional interpretation.

2.3. Role of uncertainty in decision-making

Critically impacting decision-making in various
fields, current approaches to incorporating mea-
surement uncertainty often lack a unified and
standardized framework for evaluation and risk
management. This absence of harmonization across
disciplines generates challenges in achieving con-
sistency and accuracy when quantifying uncer-
tainty, ultimately hindering informed decision-
making. While a ‘one-size-fits-all’ approach to
integrating uncertainty remains unreachable, the
adoption of clear and standardized methods is
fundamental to enhancing reliability and precision
in decision-making across various domains. Mea-
surement uncertainty introduces many complica-
tions, including inaccurate error estimations and
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difficulties in interpreting discrepancies between
test results. This inherent variability escalates the
risk of erroneous decisions, potentially leading to
the rejection of compliant entities or the acceptance
of noncompliant ones, especially when these entities
reside near tolerance limits. Recognizing and effec-
tively managing measurement uncertainty is there-
fore crucial for ensuring the reliability and accuracy
of decision-making processes.

3. Quantifying uncertainty: a review of
existing methods

Previous research has extensively explored the
challenges and nuances associated with measure-
ment uncertainty and its impact on decision-mak-
ing. Notably, a method to diminish producer risk
through conducting ‘n‘ additional measurements of
a regulated quantity within a designated guard
band is proposed (Volodarsky et al., 2020). This
approach acknowledges the inherent variability in
measurements and seeks to mitigate its influence
on producer risk. In addition (Alkhatib et al., 2009),
shows a complete model that uses both Monte
Carlo and fuzzy logic to figure out how much un-
certainty there is caused by random and intentional
mistakes in a multidimensional measurement
equation. This model helps tell the difference be-
tween random and systematic error parts by using
probabilistic and fuzzy-random methods. This
gives us a more complete picture of where uncer-
tainty comes from. Additionally, the crucial role of
incorporating uncertainty when evaluating samples
against legal or compositional limitations is
emphasized in (Desimoni and Brunetti, 2011). This
work underlines the significance of adhering to
established guidelines set forth by organizations
like the American Society of Mechanical Engineers
(ASME) and the International Organization for
Standardization, which aim to ensure the accuracy
and reliability of measurements within testing and
calibration laboratories.

4. Research gap

Current limitations in decision-making based on
size measurements necessitate further investigation.
While research acknowledges the impact of mea-
surement uncertainty, established procedures for
determining the probability of erroneous decisions
related to size remain elusive. Bridging this knowl-
edge gap requires a deeper understanding of un-
certainty and the development of robust approaches
to enhance the reliability and accuracy of size-based
decisions within manufacturing and design.

This research aims to optimize size measurement
uncertainty, ultimately reducing decision-making
risk in these critical domains. By developing a
comprehensive framework for managing and mini-
mizing uncertainty, the project seeks to achieve the
following objectives.

(a) Identify and characterize the factors contributing
to size measurement uncertainty, along with
their influence on decision-making within
manufacturing and design processes.

(b) Evaluate and compare existing methods for
managing and reducing size measurement un-
certainty, assessing their effectiveness across
diverse scenarios.

(c) Develop and validate novel approaches for
optimizing size measurement uncertainty,
prioritizing practicality, efficiency, and cost-
effectiveness in implementation.

(d) Quantify the impact of optimized measurement
uncertainty on decision-making, encompassing
product quality, waste reduction, cost savings,
and overall operational efficiency within
manufacturing and design contexts.

To achieve these goals, the research will embark
on a comprehensive exploration of the current state
of size measurement uncertainty within the
manufacturing industry. This investigation will
encompass the identification of uncertainty sources,
their impact on decision-making, and the existing
challenges associated with managing them. Existing
management and reduction techniques will be
rigorously evaluated, paving the way for the devel-
opment of improved solutions. Ultimately, the
research seeks to deliver practical solutions and
recommendations for optimizing size measurement
uncertainty, empowering manufacturers and de-
signers with the knowledge and tools necessary to
make informed decisions that optimize product
quality, minimize waste and rework, enhance effi-
ciency, and ensure regulatory compliance. The
study will explore size measurement uncertainty in
the manufacturing sector, identify sources, evaluate
their impact on decision-making, and identify
challenges. It aims to improve existing strategies
and provide practical solutions for refining uncer-
tainty and enhancing product quality, efficiency,
and regulatory compliance.

5. Motivation and contribution

The criticality of size measurement uncertainty in
manufacturing cannot be overstated, as it pro-
foundly impacts product quality, functionality, and
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cost-effectiveness. Inaccuracies in size measure-
ments can cascade into a multitude of downstream
consequences, jeopardizing assembly processes,
diminishing product performance, and inflating
manufacturing costs due to rework and scrapped
materials. Consider, for instance, the production of
precision components like gears or bearings, where
minute deviations in size significantly affect their
functionality. Measurements marred by uncertainty
can lead to improper component fitment or perfor-
mance failures, triggering a domino effect of
increased rework, scrap, and production downtime.
This translates to higher manufacturing costs and
eroded profitability. Furthermore, inaccurate size
measurements raise the specter of non-compliance
with stringent quality standards and regulations,
potentially incurring hefty fines and legal re-
percussions. Industries like aerospace and medical
devices operate under rigorous regulatory frame-
works, where non-compliance can trigger product
recalls and reputational damage, resulting in severe
financial losses. Therefore, the optimization of size
measurement uncertainty assumes paramount
importance in manufacturing, ensuring products
meet specified requirements, minimizing error risk,
and curtailing production costs. By effectively
managing and reducing measurement uncertainty,
manufacturers can achieve enhanced product ac-
curacy and consistency, minimize waste, and bolster
operational efficiency. These improvements ulti-
mately lead to increased customer satisfaction,
improved profitability, and a distinct competitive
edge within the marketplace. Overall, the paper's
contribution lies in reinforcing the importance of
existing knowledge on measurement uncertainty
and demonstrating its practical application through
real-world examples. It also bridges the gap be-
tween uncertainty and decision-making, encour-
aging a more comprehensive approach to managing
this critical aspect of manufacturing quality control.

6. Framework

Fig. 1 presents a comprehensive flowchart
depicting the essential steps involved in the size
inspection of a mechanical part. This visual repre-
sentation outlines the process for quantifying mea-
surement uncertainty, establishing a decision rule,
and subsequently evaluating the potential for erro-
neous decisions (risk analysis). The inspection of
mechanical parts for quality control follows a
structured approach. After selecting suitable
equipment and part preparation, measurements are
taken while acknowledging potential uncertainties.

Recorded results are then compared with estab-
lished decision criteria, based on part specifications,
tolerances, and calculated uncertainty. Confor-
mance is determined by these limits, with non-
conforming parts undergoing further evaluation.
The process recognizes the risk of errors, consid-
ering both accepting a bad part and rejecting a good
one. If the error risk is unacceptable, adjustments to
the decision criteria or additional measures may be
implemented to minimize uncertainty and ensure
reliable quality control.
The probability of wrong decisions in the context

of measurement uncertainty refers to two main
types of errors. Consumer Risk: this is the proba-
bility of accepting a nonconforming part. In other
words, the measurement indicates the part is within
tolerance limits, but it falls outside the acceptable
range. Producer Risk: this is the probability of
rejecting a conforming part. The measurement
suggests the part is outside the tolerance limits, but
it's actually within the acceptable range.
Establishing an acceptable level of risk in quality

control lacks a one-size-fits-all solution. Factors like
the error costs (e.g., a critical system failure), in-
dustry standards, and the manufacturer's risk
tolerance all play a role. Calculated risks are then
weighed against these factors. If the risks are
deemed too high, manufacturers may choose to
employ a more precise measuring tool, adjust
tolerance limits, or implement a more complex de-
cision-making process to ensure reliable part qual-
ity control.

7. Experimental work

Adherence to the procedures outlined in Fig. 1
necessitates the availability of essential tools and
resources. This includes ensuring calibrated, func-
tional measuring devices and appropriate fixtures
that facilitate adherence to established protocols.
The illustrated flowchart details a meticulous and
systematic methodology for inspecting mechanical
parts. This method encompasses critical steps such
as part cleaning, precise positioning, calibration of
measuring equipment (e.g., micrometers or cali-
pers), and verification of instrument functionality.
Following the flowchart's guidance, the measure-
ment equipment is prepared, measurements are
meticulously taken and recorded, and necessary
environmental adjustments are incorporated. Sub-
sequent analysis involves quantifying measure-
ment uncertainty and utilizing statistical or
mathematical techniques to estimate potential
error margins. These calculations inform decision-
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making processes and highlight potential risks or
concerns, ultimately ensuring the inspected part
adheres to prescribed requirements. Notably, the
entire inspection process, including measurement
results, uncertainty calculations, the applied deci-
sion rule, and estimated error probability, is
meticulously documented for future reference and
potential review.

7.1. Sample preparation

The specimens employed in this research consist
of seven cylindrical samples made from ST-37 steel.
Each sample is 80 mm long, with the initial 20 mm
segment having a diameter of 22 mm and the sub-
sequent 60 mm section having a diameter of
18.5 mm. The specimens were machined to have a

Fig. 1. Mechanical part inspection process.
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lower section with a diameter of 18.50 mm. There-
fore, 18.50 mm was adopted as the nominal value
from the designer's perspective. This aligns with the
concept of the nominal value representing the
designed or targeted dimension. These samples are
derived from the machining process of a steel cyl-
inder originally measuring 700 mm in length and
having a 25 mm diameter. The process involves
cutting a 700 mm long bar into 80 mm sections,
turning each section to achieve a diameter of 22 mm
for the first 20 mm and 19 mm for the remaining
60 mm. The samples are machined using a Victor
Vturn Plus 20e2011 CNC turning machine equip-
ped with FANUC's control model (0i-TD), as shown
in Fig. 2, reducing the diameter from 19 mm to
18.5 mm for the 60 mm, ensuring high accuracy and
consistency in achieving the required specifications.
The samples will be prepared in a controlled and
systematic manner, ensuring their dimensional ac-
curacy and suitability for the subsequent measure-
ment and analysis in this study.

7.2. Calibration of the measuring tool (micrometer
0.001)

The calibration of a micrometer is crucial for its
accuracy and reliability in measuring samples. It
follows the established procedures and standards,
considering the manufacturer's guidelines and in-
dustry standards (Japanese Industrial Standard, and
ASME B89.1.13e2013 (JIS; ASMEb)). Here's a step-
by-step guide on how to calibrate a micrometer
using a reference standard.

(a) Preparation: gather necessary calibration stan-
dards and accessories, such as a gauge block set,

thermo-hygrometer, micrometer holder,
ethanol, lint-free gloves, or paper. Wear gloves
to prevent contamination.

(b) Pre-calibration checking: inspect the micrometer
for missing or defective parts, check the display
for clarity and readability, and ensure smooth
movement throughout its range.

(c) Cleaning the micrometer and gauge block: clean
the micrometer and gauge block using ethanol
and a lint-free cloth or paper. Separate clean
gauge blocks from the set to avoid mixing them
with unclean blocks.

(d) Stabilization: stabilize the micrometer and gauge
block in a laboratory environment for specific
temperatures and relative humidity to minimize
thermal expansion effects.

(e) Calibration procedure: Use a reference standard,
such as JIS B-7502, or ASME B89.1.13e2013
(R2022), to calibrate the micrometer.

(f) Instrumental error: record the initial environ-
mental conditions, zero the micrometer, mea-
sure the first calibration point five times,
calculate the average, and repeat for the
remaining calibration points.

(g) Parallelism of the measuring face: place a 1 mm
gauge block in different locations across the
measuring face, record the readings, and calcu-
late the parallelism error.

Fig. 3 displays a graphical representation of the
calibration outcomes, providing a visual depiction
of the gathered data. The chart exhibits essential
parameters and measurements acquired during
calibration, offering valuable insights into the cali-
brated equipment's performance and accuracy.
Presented as a line graph, the chart illustrates the
deviations in measurements at specific points. As
anticipated, deviations increase as measurements
move away from the central range (around
12.5 mm) towards the lower and upper boundaries.
Consequently, the observed error consistently
maintains an impressively narrow margin,
remaining within a mere±0.002 mm across the
entire measurement range. This exceptionally low
margin of error strongly supports the micrometer's
high quality and reliability in measurements,
affirming its status as a precision instrument with
commendable accuracy.
A detailed analysis of a digital micrometer model

was conducted to evaluate its performance and
measurement error, Table 1. The calibration was
conducted in a controlled environment, maintaining
a stable temperature of 20 ± 2 �C. Temperature
considerations were made, and any variations were
assumed to follow a normal distribution pattern. ItFig. 2. CNC lathe machine (Victor Vturn Plus 20e2011 model).
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was determined that the expected temperature dif-
ference between the gauge and micrometer blocks
was under 0.5 �C.
An uncertainty budget is crucial for precise mea-

surement and quality control, highlighting sources
of uncertainty impacting the process. The estimated
limit, units of measurement, evaluation method,
probability distribution, divisor, and standard un-
certainty are some of the things that are shown in
this table that affect measurement uncertainty. The
methodology to calculate each component of the
uncertainty is as follows.

7.2.1. Gauge block tolerance
The blocks utilized in our study were confirmed to

fall within the tolerance limits specified for a grade
0 set. Within this grade 0 set, the blocks had the
potential to deviate within a range of �0.14 mm to
þ0.14 mm from their nominal values. To account for

this uncertainty, a rectangular distribution was
assumed.

7.2.2. Calibration uncertainty for gauge block
This value for calibration uncertainty is obtained

directly from the calibration certificate of the gauge
block set that was used in the study. It represents a
critical piece of information in assessing the overall
uncertainty of the micrometer calibration process.

7.2.3. Uncertainty in coefficient of thermal expansion
(CTE)
The standard reference temperature for the length

of a gauge block is typically set at 20 �C. Yet,
achieving precise calibration of a micrometer at
exactly 20 �C is frequently unfeasible, leading to
potential uncertainties in the measurement pro-
cedure. If temperature correction is not applied, the
resulting uncertainty arising from the micrometer

Fig. 3. Maximum permissible error.

Table 1. Uncertainty budget calculation.

Uncertainty Source Estimated
Limit

Units Evaluation
Method

Probability
Distribution

Divisor Standard
Uncertainty

Gauge block tolerance 0.1400 mm B Rectangular 1.732 0.081
Calibration uncertainty for gauge block 0.0650 mm B Normal 2 0.033
Uncertainty in coefficient of thermal expansion 0.0560 mm B Normal 2 0.028
Nominal coefficient of thermal expansion difference 0.1100 mm B Normal 2 0.055
Temperature difference 0.1300 mm B Normal 2 0.065
Repeatability 0.0005 mm A Normal 2.236068 0.000
Combined uncertainty, u 0.124994573
Expanded uncertainty (K ¼ 2, 95% confidence), U 0.250
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and gauge blocks not being at 20 �C can be esti-
mated using the following equation:

DL¼LDað20� TÞ

where,
L ¼ the nominal length
T ¼ the temperature
Da ¼ the difference in the coefficient of thermal

expansion between the gage blocks and the
micrometer
The variation in the coefficient of thermal expan-

sion between the gauge blocks and the micrometer
is the result of a combination of the nominal dif-
ference and the associated uncertainties.

7.2.4. Uncertainty of coefficient of thermal expansion
Uncertainty in the coefficient of thermal expan-

sion is a common characteristic of any material. In
our study, the values mentioned earlier follow a
normal distribution is assumed, which is a common
approach for modeling such uncertainties, so

Da¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðaMÞ2 þUðaGBÞ2

q

where,
UðaMÞ2 ¼ the expanded uncertainty (k ¼ 2) in the

gage block CTE
UðaGBÞ2 ¼ the expanded uncertainty (k ¼ 2) in the

micrometer CTE
Based on the values above,

Da¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Þ2 þ ð0:5Þ2

q
¼ 1:12� 10�6

�C

and,

DL¼ð0:025mÞ
�
1:12�10�6

�C

�
ð2�CÞ¼0:056 mm

7.2.5. Nominal coefficient of thermal expansion
difference
In cases where the nominal coefficient of thermal

expansion of the gauge blocks and the micrometer
differs, as observed in this study, the following
equation is applicable:

Da¼jaM � aGBj

Where,
aGB ¼ the nominal coefficient of thermal expan-

sion of the gage block.
aM ¼ the nominal coefficient of thermal expansion

of the micrometer.
Based on the values above,

Da¼j11:5� 9:3j ¼ 2:2� 10�6

�C

and,

DL¼ð0:025mÞ
�
2:2�10�6

�C

�
ð2�CÞ¼0:11 mm

7.2.6. Temperature difference
Considering the influence of handling, it was

established that the temperatures of both the
micrometer and the gauge blocks could diverge by
up to 0.5 �C. In this specific scenario, it is also pre-
sumed that available data substantiates the utiliza-
tion of a normal distribution. The uncertainty
arising from this temperature difference can be
represented as follows.

DL¼LaDt

where,
L ¼ the nominal length
a ¼ the average coefficient of thermal expansion

of the gage blocks and the micrometer
Dt ¼ the difference in temperature between the

gage blocks and the micrometer
Based on the values above,

DL¼ð 0:025mÞ
�
10:4�10�6

�C

�
ð0:5�CÞ¼0:13 mm

7.2.7. Repeatability
Uncertainty is a crucial aspect of measurement

processes, particularly in precision instruments like
micrometers. It pertains to the fluctuation in mea-
surements obtained by measuring the same quan-
tity repeatedly under identical conditions.
Quantifying and understanding repeatability un-
certainty is essential for assessing measurement
reliability and precision, and making critical de-
cisions. The uncertainty due to repeatability, in this
case, can be quantified as follows:
Initially, a set of five readings is obtained for a

20.2 mm gauge block. Subsequently, the standard
deviation is computed from these readings.

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðXi � �XÞ2

N� 1

s

where,
Xi ¼ an individual data point
�X ¼ the mean (average) of the sample.
N ¼ the total number of data points in the sample.
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Finally, the standard uncertainty is derived from.

Standard uncertainty¼ sffiffiffiffi
N

p ¼ 0:00055ffiffiffi
5

p ¼ 0:00025 mm

7.2.8. Combined and expanded uncertainty
After establishing the values mentioned earlier,

the corresponding standard uncertainties is esti-
mated and proceeded as presented in the provided
Table 1. Subsequently, the combined uncertainty,
represented as uc, is computed as follows:

uc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

2 þ u2
2 þ…þ un

2
p
Based on the values above,

uc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0812þ0:0332þ0:0282þ0:0552þ0:0652þ0:000252

p

¼0:1252mm

Expanded uncertainty (U ) considers combined
uncertainty (uc) and a coverage factor (k), widening
the uncertainty interval to account for unknown
factors or measurement variability. The formula for
expanded uncertainty (U ) is:

U¼k� uc

U¼2� 0:1252¼ 0:25 mm

Building upon the cornerstone of the
0.001 mm mm's meticulously quantified uncertainty
(0.25 mm), this study ventures further into the realm
of measurement precision. Our objective is to illu-
minate the uncertainty profiles of two additional
tools: simulated tools representing 0.01 and 0.1 mm
resolution. It's important to note that the gathered
measurements have been rounded successively to
accuracies of 0.01 mm and then to 0.1 mm. This
approach maintains consistency in measurements
even with varying levels of precision and provides
insights into how the accuracy of measuring tools
impacts the measurement of diameters. To achieve
this multi-level analysis, the valuable data obtained
from the reference standard measurement will be
exploited with the caliper. This empirical uncer-
tainty value, obtained through standard from the

ASME B89.1.14e2018 Caliper (ASMEc), serves as a
crucial anchor point for our subsequent estimations.
A linear regression analysis was employed to esti-
mate the measurement uncertainty associated with
simulated resolution tools (0.01 mm and 0.1 mm).
This approach utilizes two data sets: high-precision
reference measurements obtained using a
0.001 mm mm for various standard gauge block
sizes, and the empirical uncertainty value obtained
from the ASME B89.1.14e2018 Caliper standard.
The regression analysis establishes a linear rela-
tionship between these reference values and a
crucial second data point. By analyzing this rela-
tionship, the model can estimate the expected un-
certainty for measurements obtained using the
simulated resolution tools. This incorporation of a
standardized uncertainty value enhances the reli-
ability of the estimated uncertainties for the simu-
lated tools. This established statistical approach
allows us to infer the relationship between known
reference values and corresponding measurements
obtained with a higher-accuracy instrument
(0.001 mm mm). Table 2 comprehensively presents
the uncertainty values ascertained for each of the
investigated measurement tools, categorized by
their stated accuracy level. Additionally, it illumi-
nates the specific method employed to derive each
uncertainty value, providing invaluable context for
interpreting the data.

8. Case study

Next, a case study explores the practical applica-
tion of measurement uncertainty in engineering and
manufacturing. It focuses on precise measurements
of cylindrical components, highlighting the com-
plexities of accuracy and its impact on decision-
making processes through advanced techniques
and rigorous statistical analysis.

8.1. Data review

Data from 70 measurements has been gathered,
utilizing a micrometer with an accuracy of

Table 2. Unveiling uncertainty profiles: across-methodological exploration.

Accuracy
level (mm)

Uncertainty
(mm)

Method Note

0.001 0.25 Calculated Precise measurement with a reference standard
0.02 1.2 Standard Manufacturer specification or standard measurement
0.01 0.7 Regression Estimated using regression analysis.
0.10 5.2 Regression Estimated using regression analysis.
Equation U ¼ 50 � Accuracy

Level þ0.2
Regression model Relates uncertainty to accuracy level (for simulated tools)
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0.001 mm. These measurements correspond to the
cylinder's diameter.

8.2. Utilized decision rule for quality assessment

The decision rule is a systematic method for
allocating measurement uncertainty in determining
product acceptance or rejection, considering prod-
uct specifications and measurement results
(ASMEa). This study will use the simple acceptance
decision rule for data analysis, followed by an
alternative rule to increase product acceptance
confidence. The conventional method of simple
acceptance and rejection for quality assessment
faces challenges when measuring results near
specification limits as mentioned in section II.B.
Guard banding is an alternative decision rule that is
used to deal with this problem and make quality
assessment decisions more reliable, especially when
measurements are close to the limits of the
specification.

8.3. Confirmation to specifications

A control chart was created to visually represent
the impact of different accuracy levels on the
confirmation process. It calculates the percentage of
samples confirmed to specifications for each accu-
racy level (with accuracies of 0.001, 0.01, and
0.1 mm), providing insights into the confirmation
process outcomes, Fig. 4.
The chart shows that some samples initially met

specifications with a 0.1 mm accuracy tool but did
not align with specifications with a 0.001 mm tool,

highlighting the importance of selecting a mea-
surement tool with appropriate accuracies. The data
illustrates a close similarity between the results
obtained from a tool with a precision of 0.001 and
one with 0.01 accuracy for the part under inspection.
Therefore, there is no need to use a high-level ac-
curacy tool of 0.001 for this part accuracy. A tool
with the lowest accuracy of 0.01 is sufficient.
Recognizing the cost-effectiveness, accessibility, and
operational ease of 0.01 accuracy tools compared
with their 0.001 counterparts merits their consider-
ation. While sacrificing some precision, the eco-
nomic advantages, wider availability, and user-
friendliness of 0.01 tools present a compelling
alternative, particularly when the application's
sensitivity to minor discrepancies is outweighed by
these practical benefits.
Fig. 5 unveils a crucial association between mea-

surement accuracy and quality control confirmation
rates. This relationship, where diminishing accuracy
coincides with higher confirmation rates, poses po-
tential risks in manufacturing environments.
Essentially, less precise tools elevate the odds of
classifying products as compliant, fostering the un-
detected passage of substandard items.
This phenomenon can be attributed to the

inherent limitations of lower-accuracy tools. Their
inability to discern subtle deviations from specifi-
cations allows potentially defective products to slip
through the cracks, compromising the final product
quality. This presents a dual threat.

(a) Consumer risk: defective products reaching
consumers can erode trust and brand

Fig. 4. Control chart for all accuracy levels.
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reputation, impacting customer satisfaction and
potentially leading to legal repercussions.

(b) Manufacturer risk: undetected issues can mani-
fest later in the production chain, incurring
substantial costs associated with recalls, rework,
and reputational damage.

Fig. 5 delves into the nuanced interplay between
measurement accuracy, product confirmation rates,
consumer risk, and manufacturer reputation. It
emphasizes the critical role of precise instruments
in quality control, ensuring customer satisfaction
and safeguarding the integrity of manufacturing
processes, while acknowledging the potential con-
sequences of substandard product delivery. The
figure reveals a stark discrepancy: while a less ac-
curate tool confirms 11.41% of products as
compliant, these might not truly adhere to specifi-
cations. This underscores the crucial need to
consider both measurement accuracy and inherent
uncertainty when evaluating the quality of seem-
ingly compliant products. The analysis exposes in-
stances where items categorized as conforming with
a 0.1 accuracy tool are deemed non-compliant using
a 0.001 tool. By presenting two measuring readings
for the same product, the chart effectively illustrates
how measuring instrument accuracy directly im-
pacts compliance decisions. This reinforces the
notion that investing in higher-precision tools can

minimize consumer risk, protect brand reputation,
and ultimately contribute to a more robust and
reliable manufacturing process.
Fig. 6 visually depicts the importance of selecting

appropriate measurement tools for quality control,
particularly when dealing with diameter measure-
ments. The graph illustrates a data point that
initially falls within the ‘confirmation area’ when
assessed with a 0.1 mm accuracy tool. However,
when evaluated with a more precise 0.001 mm tool,
the same data point shifts to the ‘non-confirmation
region.‘ This stark contrast emphasizes the potential
for inaccurate assessments with less precise in-
struments, potentially leading to.

(1) Misleading Confirmation: As the graph in-
dicates, using a 0.1 mm tool might lead to mis-
classifying non-compliant parts as compliant,
necessitating Scraping and incurring additional
expenses. This is visually represented by the
measurement reading initially falling within the
‘confirmation area’ for the 0.1 mm tool but
exceeding the lower tolerance limit when
measured with the 0.001 mm tool.

(2) Financial Losses: Conversely, deviations below
specified thresholds, often only identifiable with
higher-accuracy tools, can result in scrapped
products and significant financial losses. This is
evident in the graph by the measurement reading

Fig. 5. Trend of confirmation rates as accuracy decreases.
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falling below the lower tolerance limit when
measured with the 0.001 mm tool, even though it
appeared compliant with the 0.1 mm tool.

Therefore, robust quality assurance measures that
incorporate cost-benefit analysis are essential. This
analysis involves balancing the initial investment in
higher accuracy tools against the long-term benefits
they offer, such as.

(1) Reduced Risk: More precise measurements
minimize the likelihood of undetected non-
compliance, lowering the risk of recalls, rework,
and reputational damage.

(2) Improved Product Quality: Enhanced accuracy
ensures stricter adherence to specifications,
leading to higher-quality products and increased
customer satisfaction.

By carefully considering these factors and the
potential impact on costs, manufacturers can select

the most cost-effective approach to quality control,
optimizing their production processes while safe-
guarding their financial well-being and brand
reputation.
Now, let's delve deeper into the data and visually

explore the impact of measurement accuracy on
real-world scenarios. A closer look at the specific
measurement readings used in the table will be
taken to examine how they translate to different
outcomes depending on the chosen measurement
tool's accuracy (0.001 vs. 0.01 vs. 0.1). By illustrating
these contrasting results, a concrete understanding
of how inaccurate measurements is provided to
manifest tangible costs in various forms, such as
rework, scrap, and potential recalls. This visualiza-
tion will further solidify the economic benefits of
prioritizing high-accuracy tools in quality control
processes.
Table 3 presents a compelling illustration of the

significant impact that measurement accuracy can

Fig. 6. Effect of accuracy level on part confirmation status.

M.A. Sedeek et al. / Mansoura Engineering Journal 49 (2024) 1e21 13



have on production costs across three key areas:
rework, scrap, and recall. By comparing the cost
implications of using three different measurement
accuracies (0.001, 0.01, and 0.1), the table reveals
stark differences in cost efficiency. The analysis
sheds light on the potential cost savings achievable
through implementing higher-accuracy measure-
ment tools, highlighting their economic benefits
beyond ensuring product quality and regulatory
compliance.
This table comprehensively portrays the signifi-

cant impact varying measurement accuracy levels
(0.001, 0.01, and 0.1) can have on production costs
across three categories: rework, scrap, and recall.
Each category details the number of defective parts
identified, the associated per-unit cost, and the total
cost incurred for the production volume. Valuable
insights into the economic advantages of prioritizing
high-accuracy measurements can be gleaned by
meticulously dissecting this data. While the differ-
ence between 0.001 and 0.01 accuracy levels may
seem comparatively close, it is important to recog-
nize that even seemingly minor discrepancies in
measurement can have significant downstream ef-
fects. This analysis will primarily focus on
comparing the 0.001 and 0.1 accuracy levels due to
the potentially substantial cost and quality implica-
tions associated with the larger disparity. This
approach allows for a more targeted examination of
the impact of measurement accuracy on key areas
like production efficiency, product quality, and po-
tential financial losses. Valuable insights into opti-
mizing quality control processes and maximizing
returns can be gained by delving deeper into the
cost-benefit analysis of these accuracy levels.
The elevated costs associated with the 0.1 accuracy

tool can be attributed to its inherent limitations in
detecting subtle deviations from specified toler-
ances. These undetected issues can manifest in
several ways.

(a) Rework: noncompliant parts that do not meet
the specified tolerance limits during inspection
due to inaccurate measurements necessitate
rework later in the production process, incurring
additional labor and material costs. While the

initial detection of 10 defective parts across all
accuracy levels might suggest similar perfor-
mance, it is crucial to avoid the misinterpreta-
tion of this finding as evidence for the
‘perfection’ of all measurement tools. This
conclusion fails to consider the broader picture
of downstream costs associated with undetected
noncompliance. Analyzing scrap and recall costs
reveals a more nuanced story, highlighting the
significant economic advantages of employing
high-accuracy tools.

(b) Scrap: deviations exceeding specified tolerances,
missed by the less precise tool, lead to scrapped
parts, resulting in wasted materials and lost
production time. While analyzing the table data,
one might be tempted to conclude that the 0.1
accuracy tool offers an advantage in scrap cost
due to its higher number of ‘passed’ parts.
However, this seemingly positive outcome
masks a critical caveat: undetected deviations
from specifications. The seemingly lower scrap
cost associated with the 0.1 tool stems from its
inability to identify parts with minor deviations
that fall within its wider tolerance range. These
undetected non-compliant parts, while initially
escaping scrap, are more likely to surface later in
the production process or even reach con-
sumers, potentially triggering costly recalls. The
cost of downstream rework and potential recalls
significantly outweigh the immediate benefit of
lower scrap with the 0.1 tool.

(c) Recall: products reaching consumers with un-
detected non-compliance issues can trigger
costly recalls, damaging brand reputation and
potentially leading to legal repercussions. The
table reflects an identical per-unit cost for recalls
across all accuracy levels. However, the crucial
caveat lies in the number of defective parts
identified for recall. The 0.001 tool detects only
zero units, minimizing recall risk, while the 0.1
tool identifies 8 defective parts, exponentially
increasing the potential for costly recalls.

This comprehensive analysis underscores the
undeniable economic benefits associated with
employing high-accuracy measurement tools (0.001)

Table 3. Impact of measurement accuracy on production costs: rework, scrap, and recall.

Accuracy
level

Number of
defect parts
(rework)

Number of
defect parts
(scrap)

Number of
defect parts
(recall)

Cost for
rework per
1 product ($)

Cost for
scrap per
1 product ($)

Cost for
recall per
1 product ($)

Rework
cost ($)

Scrap
cost ($)

Recall
cost ($)

Total
cost ($)

0.001 10 18 0 4 10 25 40 180 0 220
0.01 10 17 1 4 10 25 40 170 25 235
0.1 10 10 8 4 10 25 40 100 200 340
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in quality control processes. By minimizing rework,
scrap, and potential recall costs, the 0.001 tool offers
not only significant cost savings but also enhances
product quality and safeguards brand reputation.
While the seemingly minor difference between
0.001 and 0.01 accuracy might appear negligible, the
data demonstrates that, in this context, even minute
discrepancies in measurement precision can trans-
late into substantial economic and qualitative ad-
vantages. Therefore, while the 0.1 tool might show
lower scrap costs initially, its limited detection
capability poses a higher risk of costly recalls and
reputational damage, ultimately negating any
perceived economic advantage. In contrast, high-
accuracy tools (0.001 and 0.01), despite generating
slightly higher scrap costs initially, offer a significant
net benefit by minimizing undetected deviations
and subsequent downstream costs, ensuring prod-
uct quality and compliance, safeguarding brand
reputation and reducing the risk of recalls and
associated legal/regulatory consequences. In
conclusion, prioritizing high-accuracy tools repre-
sents a strategically sound and cost-effective
approach, even if it appears to generate slightly
higher initial scrap costs. Their superior detection
capabilities minimize the risk of costly downstream
incidents and uphold product quality and brand
integrity, ultimately leading to greater economic
and reputational value in the long run.
While Figs. 7 and 8 present valuable insights into

defect detection across different accuracy levels,
drawing conclusions solely based on individual fig-
ures can be misleading. To accurately assess the
‘perfection’ of the 0.001 accuracy tool, a

comprehensive examination considering both charts
is crucial. Fig. 10, displaying scrap and rework data,
might initially suggest the 0.1 accuracy tool as the
‘best’ due to its lower scrap values. However, this
apparent advantage masks a critical issue: unde-
tected deviations. The 0.1 tool'swider tolerance range
allows non-compliant parts to pass through, leading
to downstream costs in rework and potential recalls
(reflected in Fig. 8). These hidden costs ultimately
overshadow any initial benefit of lower scrap. Fig. 8
unveils the true impact of undetected deviations. The
significantly lower recall risk associated with the
0.001 tool translates to substantial cost savings,
negating the seemingly lower scrap cost of the 0.1
tool. This highlights the 0.001 tool's effectiveness in
preventing costly downstream issues and safe-
guarding product quality. Examining both figures in
tandempaints amore complete picture.While the 0.1
tool appears ‘perfect’ in Fig. 7, its inability to detect
minor deviations exposes its limitations. Conversely,
the 0.001 tool, despite potentially generating slightly
higher scrap initially, demonstrates its ‘perfection’
through preventative measures that minimize
downstream costs and ensure product quality, ulti-
mately leading to greater overall efficiency and eco-
nomic benefit.
Fig. 9 presents a compelling visual portrayal of the

total cost implications associated with different
measurement accuracy levels (0.001, 0.01, and 0.1)
across three categories: rework, scrap, and recall.
This combined representation effectively addresses
the potential misinterpretations arising from
analyzing individual figures and delivers a clear
message regarding the true ‘perfection’ of the 0.001
accuracy tool. The most striking feature is the
distinctly lower total cost associated with the 0.001
accuracy tool compared with both the 0.01 and 0.1Fig. 7. Scrap and rework counts at different accuracy levels.

Fig. 8. Recall risk across accuracy levels.
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tools. This visual representation solidifies the notion
that seemingly minor differences in accuracy can
translate into significant economic benefits. Unlike
Fig. 10, which might have suggested an advantage
for the 0.1 tool in scrap cost, Fig. 8 incorporates the
downstream impact of undetected deviations
through recall costs. This holistic view reveals the
hidden costs associated with the 0.1 tool, ultimately
negating any initial scrap cost advantage. The chart
visually emphasizes the preventative nature of the
0.001 tool's superior accuracy. By minimizing scrap
and recall risks, it avoids the need for costly rework
and corrective actions, leading to a more efficient
and cost-effective production process.

8.4. Risk analysis

It is crucial to delve deeper into how this uncer-
tainty translates into concrete risk assessment.
Therefore, the focus has now shifted to the rela-
tionship between measurement readings, uncer-
tainty, and specification limits. Assuming a normal
distribution for uncertainty, this statistical frame-
work can be leveraged to calculate the risk of two
critical scenarios: falsely accepting a defective part
and rejecting a good part.
Here's an explanation of how to calculate con-

sumer and producer risks using measured value,
uncertainty, and the specification limit near it in
Excel. Some assumptions are necessary for this

calculation. First having a measured value for a part
characteristic, the uncertainty associated with the
tool used for measurement, and having the relevant
specification limit (upper specification limit (USL) or
Lower Specification Limit (LSL)) for the part
characteristic.
Steps.

(i) Determine the relevant specification limit:
(a) If the measured value is closer to the USL,

use the USL in the calculation. This scenario
assesses the consumer risk, the risk of
accepting a non-conforming part that is
actually outside the tolerance limits.

(b) If the measured value is closer to the LSL, use
the LSL in the calculation. This scenario as-
sesses the producer risk, the risk of rejecting
a conforming part that is actually within the
tolerance limits.

(ii) Calculate the risk using the Normal Distribution
Function (NORM.DIST):
(a) Excel provides the NORMDIST function to

calculate the cumulative probability distri-
bution for the standard normal distribution.

(b) Depending on the type of risk calculated, use
the appropriate formula:

NORM.DIST(x (specification limit), mean (measured
value), standard_dev (uncertainty), cumulative).

Fig. 9. Total cost of different accuracy levels.
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8.4.1. False acceptance risk
Imagine a measured value near the USL. Here, a

high uncertainty could potentially obscure actual
deviations exceeding the limit, leading to falsely
accepting a defective part. To quantify this risk, the
cumulative distribution function (CDF) of the
normal distribution can be utilized. The CDF, with
the measured value, uncertainty and the USL as
parameters, represents the probability of obtaining
a value below that specification limit. This proba-
bility essentially translates to the risk of falsely
accepting a defective part.

8.4.2. False rejection risk
Similarly, consider a measured value near the

lower specification limit. High uncertainty might
lead to rejecting a good part that falls within the
acceptable range. The commentary CDF represent-
ing the probability of obtaining a value below the

lower specifications limit, quantifies the risk’ likely
refers to the consumer risk, not the sum of both
risks. The sum of false acceptance risk and false
rejection risk (producer risk þ consumer risk) does
not necessarily equal 1. If the measured value with
uncertainty falls entirely within or outside the
acceptance zone, both risks become zero because
there's no chance of an incorrect decision. While
achieving this error-free scenario is ideal, it is not
always feasible in practice due to inherent mea-
surement limitations. Measurement uncertainty
often creates a ‘gray area’ where the uncertainty
range overlaps the acceptance zone boundaries. By
calculating these probabilities for various scenarios
(different measured values, uncertainties, and
specification limits), a comprehensive risk map can
be constructed. This map visually depicts the impact
of uncertainty on risk, empowering informed deci-
sion-making in selecting appropriate tools and

Fig. 10. Consumer risk at measurement number three.
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tolerance levels. The CDF employed in this analysis
exhibits a context-dependent approach when
considering specification limits. The CDF focuses on
the USL if the measured value is closer to it. This
essentially assesses the risk of exceeding the
acceptable upper bound by calculating the proba-
bility of obtaining a value even higher than the
measured value (accounting for its inherent uncer-
tainty). However, there are scenarios where the
measured value is closer to the LSL, as exemplified
by measurement 3 in Fig. 10. In these cases, the CDF
calculation shifts its focus to the LSL. Here, the
objective is to evaluate the risk of falling below the
acceptable lower bound by determining the proba-
bility of obtaining a value lower than the measured
value (considering its uncertainty).
A meticulous analysis of the calculated risks

associated with different measurement tool accu-
racy levels reveals a compelling trend: investing in
tools with 0.001 mm accuracy significantly reduces
the risk for both producers and consumers. This
finding underscores the substantial benefits of
prioritizing higher accuracy in quality control de-
cisions. By minimizing both producer risk (accept-
ing defective parts) and consumer risk (receiving
subpar products), high-accuracy tools lead to more
accurate and reliable acceptance decisions. This
translates to enhanced product quality, increased
consumer trust, and reduced potential for costly
recalls or rework.
The significantly lower consumer risk associated

with the 0.001 mm tool compared with less precise
options speaks volumes about the impact of accu-
racy. This reinforces the notion that while the initial
investment in higher-accuracy tools might appear
higher, the downstream benefits in terms of risk
mitigation and overall production efficiency make it
a financially sound and value-driven choice. By
minimizing uncertainty and ensuring adherence to
tight tolerances, high-accuracy tools contribute to
robust production processes, ultimately leading to.

(a) Reduced rework and scrap costs: Fewer defec-
tive parts accepted and rejected parts that
adhere to specifications.

(b) Enhanced brand reputation: Consistent product
quality fosters consumer trust and loyalty.

(c) Lowered legal and regulatory risks: compliance
with safety and quality standards is ensured.

This study delves into the crucial relationship
between measurement uncertainty and risk anal-
ysis, specifically focusing on measurement number
3. The impact of reduced precision on the likelihood
of falsely accepting defective parts was meticulously

analyzed by employing tools with varying accuracy
levels (0.001, 0.01, and 0.1). This investigation uti-
lizes diverse analytical tools to comprehensively
present the risk landscape. Fig. 10 visually depicts
the calculated consumer risk percentages for each
accuracy level, effectively demonstrating the signif-
icant rise in risk with decreasing precision. The
figure also shows the impact of measurement un-
certainty on the risk of falsely accepting a defective
part (consumer risk) for measurement number
three.
Consumer risk increases significantly with

decreasing accuracy levels. At 0.001 accuracy, the
risk is only 28%, while at 0.1 accuracy, it jumps to
41%. The shaded areas within the normal distribu-
tions illustrate the probability of exceeding the
lower specification limit, confirming the increased
risk with lower accuracy. Fig. 11 showcases the
measured values at different accuracy levels along-
side their associated uncertainties represented by
error bars. This visualization directly demonstrates
the relationship between accuracy level and mea-
surement uncertainty. Error bars grow noticeably
larger with decreasing accuracy levels, signifying
the increasing spread of potential measurement
values. The 0.001 accuracy level stands out with the
smallest error bars, indicating its ability to deliver
highly precise measurements. This visual repre-
sentation reinforces the trade-off between accuracy
and uncertainty, highlighting the potential conse-
quences of using less precise tools.
The combined uncertainty values directly corre-

spond to the error bar sizes in Fig. 11, quantitatively
confirming the observed trend. The increasing
consumer risk percentages across accuracy levels
align with the visual representation in Fig. 10.
Notably, despite being marginally closer to the
lower specification limit, the 0.001 accuracy tool of-
fers a significant advantage over the 0.1 accuracy
tool in terms of risk mitigation. This critical advan-
tage is quantified by the consumer risk percentages
presented in this analysis. At 28%, the 0.001 accu-
racy tool boasts a remarkably lower risk compared
with the 41% risk associated with the 0.1 accuracy
tool. This 13% difference translates to a substantial
reduction in the probability of accepting non-
compliant products, safeguarding consumer safety
and product integrity. The underlying reason for
this disparity lies in the inherent trade-off between
accuracy and uncertainty. Lower accuracy levels,
like 0.1, lead to wider distributions of potential
measurement values, increasing the overlap with
the non-compliant region below the lower specifi-
cation limit. This overlap represents the shaded area
in Fig. 10, visually highlighting the elevated risk of

18 M.A. Sedeek et al. / Mansoura Engineering Journal 49 (2024) 1e21



wrongly accepting defective parts. Conversely, the
high precision achieved by the 0.001 tool minimizes
this overlap, shrinking the shaded area and
consequently reducing the consumer risk to a

considerably lower level. The combined analysis of
Figs. 10 and 11 underscores the crucial role of
measurement accuracy in mitigating consumer risk.
By employing tools with higher accuracy (e.g.,

Fig. 11. Measurement readings with uncertainty.
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0.001), the risk of accepting defective parts signifi-
cantly decreases, ensuring better product quality
and consumer safety. This finding underlines the
importance of carefully selecting appropriate mea-
surement tools based on specific risk tolerance and
quality requirements.
Therefore, while the 0.001 accuracy tool might

come at a higher initial cost, its substantial reduction
in consumer risk translates to tangible benefits in
several key areas.

(a) Enhanced product quality and safety: mini-
mizing the acceptance of defective parts leads to
better-performing and safer products, safe-
guarding consumer well-being.

(b) Reduced rework and production costs: detecting
noncompliant items early in the production
process minimizes costly rework and scrappage.

(c) Improved brand reputation: consistent adher-
ence to quality standards fosters consumer trust
and strengthens brand image.

This analysis underscores the importance of
moving beyond a mere focus on stated accuracy
levels and delving deeper to understand the impact
of uncertainty and associated risks. By considering
these factors, organizations can make informed de-
cisions regarding measurement tools, ensuring
optimal balance between cost, accuracy, and risk
mitigation in their quality control processes. In
conclusion, this investigation into risk analysis
within the specific measurement scenario un-
derscores the critical role of employing high-accu-
racy tools, particularly those with a 0.001 level. By
minimizing both producer and consumer risks, this
approach promotes efficient production, ensures
product safety, and enhances trust among pro-
ducers and customers.

9. Conclusion

The study explores the relationship between
quality control strategies, accuracy levels, tolerance
limits, and risks in manufacturing, emphasizing the
need for data-driven, product-specific approaches to
balance cost, quality, and risk. It highlights the
importance of critical data points near control limits
for process stability, reliability, and quality control,
emphasizing the significant impact of measurement
accuracy. The observed 11.43% discrepancy in part
acceptance between 0.001 mm and 0.1 mm accuracy
tools highlights the importance of precision in safe-
guarding product quality. It cautions against using
lower accuracy tools to reduce rejection rates, citing
increased consumer risk and reputational damage,

emphasizing the complex relationship between ac-
curacy and cost in quality control. The results
revealed that while precision is important, context
and cost-effectiveness should be considered. The
0.01 mm tool offers advantages over the 0.1 mm tool,
minimizing false positives and adapting to future
needs. Manufacturers should conduct a thorough
cost-benefit analysis and evaluate specific re-
quirements to optimize accuracy, ensuring product
quality and financial sustainability. Balancing accu-
racy, tolerance, risk assessment, and cost optimiza-
tion are crucial for long-term operational success.

(a) This study explores how quality control strategies,
measurement accuracy, tolerance limits, and risks
are all interconnected in manufacturing.

(b) It emphasizes the importance of using data
specific to each product to find the right balance
between cost, quality, and risk.

(c) Critical data points near control limits are
essential for maintaining process stability, reli-
ability, and good quality control. This highlights
how important measurement accuracy is.

(d) The study found a big difference (11.43%) in part
acceptance rates between using high-precision
(0.001 mm) and low-precision (0.1 mm) tools.
This shows how precision is crucial for safe-
guarding product quality.

(e) The study warns against using lower accuracy
tools just to reduce rejection rates. This can in-
crease the risk of accepting bad parts (consumer
risk) and damage the company's reputation. It
highlights the complex relationship between
accuracy and cost in quality control.

(f) While precision is important, the study found
that it’s also necessary to consider the specific
situation and cost-effectiveness. The 0.01 mm
tool was better than the 0.1 mm tool because it
reduced false positives and could be used for
future needs as well.

(g) Manufacturers should carefully analyze the
costs and benefits of different accuracy levels
and consider their specific needs. This will help
them find the optimal accuracy level to ensure
product quality and financial health.

(h) Overall, balancing accuracy, tolerance limits,
risk assessment, and cost optimization is essen-
tial for a manufacturing operation to be suc-
cessful in the long run.
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