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ORIGINAL STUDY 
 

ScaledDETR: An alight weight object detection model for 

autonomous driving 
 

Ali M. Elhenidy* , Labib M. Labib, Amira Y. Haikal, Mahmoud M. Saafan 

 

Computer Engineering And Control Systems, Faculty of Engineering, Mansoura University, Mansoura ,Egypt  

 

Abstract 

End-to-end detection is one of the newest trends in object detection, however it takes a lot of time and memory due to the Transformer 

encoder-decoder (TED) module.This study proposes ScaledDETR, which implements end-to-end detection based on the most recent 

efficient backbone with fewer parameters, to address the slow convergence problem in DETR and accelerate the training process. By 

substituting the effective CNN backbone EfficientNet for the ResNet backbone, ScaledDETR offers an efficient model with fewer 

parameters. Relative Position Encoding, which has gained 1.3% (AP) improvement, has replaced traditional Position Encoding (PE) in 

recent times. ScaledDETR employs a single GPU basic architecture that may be useful for applications involving autonomous driving. 

The suggested model outperforms cutting-edge object detection techniques after only 20 training epochs—a 25-fold reduction from the 

number of epochs in DETR. In comparison to Faster R-CNN, which achieved 40.2 Ap on the COCO dataset, the suggested technique 

achieved 41.7 Ap. Using the crowdhuman dataset, ScaledDETR is also assessed and receives 90.12 AP, outperforming PEDETR 89.54 

AP, Faster R-CNN 85.0 AP, and Deformable DETR 86.74 AP. When evaluated on the RTX2060 GPU, the model's inference speed is 49 

frames per second. 

 

Keywords: Object detection, Deep learning, DETR, Computer vision, CNN 

 

 

1. Introduction 

bject detection is one of the interesting topics in 

computer vision.  Remarkable updates and progress 

are continuously accomplished to outperform the 

existing state-of-the-art models.  Object detection is a vital 

task as it has been applied in a wide range of applications 

autonomous driving (Chen et al., 2020), pedestrian 

detection, face detection (Topal et al., 2022).  Modern 

object detectors in the deep learning era depend on the 

recent Convolutional Neural Networks (CNNs) rather than 

hand-crafted feature designs. Due to the availability of 

powerful computing devices, object detectors gain a great 

advance in terms of accuracy and speed. Detection is 

divided into two tasks; localization of the object and 

classify it to the corresponding category. Object detection 

is a challenging task rather than image classification that 

can’t simply use CNN followed by fully connected layers 

as the number of objects in each image is variant. A simple 

choice is to extract regions of interest that could contain 

objects and then feed it to a CNN to identify the object in 

that region. R-CNN (Girshick et al., 2014) is the first work 

to combine CNN with the handcrafted region proposal 

(Uijlings et al., 2013). Extending this work, (Girshick, 

2015, Ren et al., 2016) speeds up the detection pipeline by 

implementing a Region Proposal Network (RPN) that is a 

fully convolution module. Dealing with detection tasks in a 

two-stage manner slows down the pipeline as two branches 

need to be penalized and fine-tuned to get the final 

prediction. A series of one-stage with anchor works (Zhao 

et al., 2019, Bochkovskiy et al., 2020, Tan et al., 2020) 

propose a novel pipeline that deals with object detection 

pipelines as a single path.  

One of the newest trends in object detection is end-to-

end detection; however, because of the Transformer 

encoder-decoder (TED) module, it requires a lot of time and 

memory. The first end-to-end object detector with a TED 

architecture is called Detection Transformer (DETR). End-

to-end detectors (Carion et al., 2020, Zhu et al., 2020) 

remove the post-processing layers such as NMS, and 

represent objects as a set of sequences using the TED 

module to get the final prediction in a single path. DETR 

(Carion et al., 2020) adopts the transformer attention 

module represented in (Vaswani et al., 2017) used in 

O 
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Natural Language Processing (NLP) tasks to the detection 

pipeline and proves to be effective in computer vision tasks. 

DETR achieved comparable results with the state-of-the-art 

object detectors achieving 42.0 AP on COCO test-dev with 

41M parameters and 86 Floating Point Operations (FLOPs). 

Suffering from slow conversion, Deformable DETR (Zhu 

et al., 2020) adopts a deformable convolution technique to 

attend to sparse spatial locations by combining the best of 

the sparse spatial sampling of deformable convolution, and 

the relation modeling capability of transformers to handle 

this issue. 

 Recently, there has been a trade-off between achieving 

higher accuracy at the expense of time and computation 

overhead. EfficienDet (Tan et al., 2020) adopts a new 

family of object detection based on their efficient 

backbones (Tan and Le, 2019) that achieve comparable 

results with the state-of-the-art CNN (He et al., 2016, Xie 

et al., 2017) that adopts a larger scaling architecture with 

many parameters. Based on one stage detector, EfficienDet 

(Tan et al., 2020) creates a balanced trade-off between 

accuracy and efficiency achieving 55.1 AP on the COCO 

dataset (Lin et al., 2014) with 52M parameters and 226B 

FLOPs. Efficient models (Howard et al., 2017, Sandler et 

al., 2018) with a fewer number of parameters and few 

FLOPs make them good choices for limited resources 

systems such as mobile and embedded systems 

applications.  

 

The main contribution of this paper is: 

 Propose a novel general object detection model called 

scaledDETR that uses an efficient and lightweight 

backbone suitable for autonomous driving 

applications. 

 Relative Position Encoding (Sidonie Carpenter) is 

adopted rather than standard Position Encoding (PE) to 

enhance the model performance. 

 The number of parameters has been optimized through 

a parametric study regarding backbone scaling and the 

number of encoder layers.  

 The proposed model achieves 41.7 AP compared with 

40.2 AP for the Faster R-CNN baseline and 34.6 AP for 

the EfficientDet baseline on the COCO dataset.  

 ScaledDETR is also assessed and receives 90.12 AP, 

outperforming PEDETR 89.54 AP, Faster R-CNN 85.0 

AP, and Deformable DETR 86.74 AP on the 

crowdhuman dataset. 
 

The remainder of the paper is arranged as follows; 

section 2 discusses relevant work. The key components and 

the suggested architecture are explained in Section 3. The 

various assessment metrics that are used to assess 

performance are covered in Section 4. The previous 

methods and tests will be reviewed in Section 5, along with 

a comparison of the obtained outcomes with the most 

advanced object detectors. Lastly, section 6 introduces the 

conclusion.  

 

2. Related Work 

2.1. End-to-end object detection 

Illuminating the hand-designed components is the major 

objective of modern object detectors. DETR (Carion et al., 

2020) was the first work to adopt a transformer that was 

widely used in machine translation and speech recognition 

tasks to object detection. A decoder-encoder layer is 

inserted upon the ResNet backbone to generate a set of 

predictions that are forced to get a unique map between the 

predicted bounding boxes and the ground truth via the 

bipartite matching scheme. Adopting this methodology, the 

Non-Maximum Suppression (NMS) post-processing is no 

longer needed and the detection is performed in an end-to-

end manner. Figure 1 shows the difference between one-

stage models and end-to-end models. Due to the limitation 

of the transformer attention, DETR requires many training 

epochs to converge (e.g., 500 epochs). Deformable DETR 

(Zhu et al., 2020) leverages this drawback by adopting a 

deformable attention mechanism that attends only to a small 

set of sampling points. Deformable DETR (Zhu et al., 2020) 

achieved 43.8AP on the COCO Dataset with only 50 epochs 

(10X fewer than DETR). 

 

2.2. lightweight object detection models 

For various reasons, detecting pedestrians is a difficult 

problem for original object detectors. Due to overlapping 

items, most object detectors create duplicate detections for 

the same object, as the pedestrian frequently demonstrates 

in crowd scenes. Al lightweight object detection model 

called IterDet  (Rukhovich et al., 2021) proposes an 

iterative approach to detect a fresh subset of objects at each 

iteration. In order to prevent duplicate detection of the same 

object, bounding boxes from every iteration are taken into 

account. Using the NMS to score and eliminate duplicate 

detections, this method is used with both one- and two-stage 

detectors. End-to-end detectors (Carion et al., 2020) and 

(Zhu et al., 2020)  have abandoned the manual NMS in 

favor of treating item detection as a straight-forward set 

prediction problem. These end-to-end techniques, however, 

do much worse than traditional two-stage algorithms when 

it comes to pedestrian identification and crowd scenarios 

(Lin et al., 2020). In order to make the DETR base 

architecture acceptable for pedestrian identification, 

PEDETR (Lin et al., 2020) addresses these shortcomings. 

In order to precisely control the attention positions, 

PEDETR suggests a new decoder module called decoder 

with dense queries and rectified attention field (DQRF), 

which alters the cross-attention layer. This problem is 

addressed in another recent work (Zheng et al., 2022), 
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which suggests a progressive approach to choose queries 

with high confidence ratings as acceptable queries and then 

prime them to produce true positive predictions.  

 

2.3. Transformers  

Transformers were first adopted in Natural Language 

Processing (NLP) tasks that deal with sequences efficiently 

and rely on self-attention.  Attention mechanisms mean to 

give attention to the most important parts of an image and 

disregard irrelevant parts. (Dosovitskiy et al., 2020)was the 

first work to replace CNN with a transformer in the scale of 

pixels and achieve comparable results on image 

classification tasks.  According to (Guo et al., 2022) 

Attention mechanisms are categorized according to six 

categories (e.g.,  channel attention, spatial attention, 

temporal attention and branch attention, spatial and 

temporal attention , and channel and spatial attention). The 

Transformer (Vaswani et al., 2017) proved to achieve good 

results by applying attention techniques in machine 

translation tasks. However, the transformer is a time and 

memory-consuming technique, many works try to address 

these limitations. 

 

 

Figure 1. Comparison between one-stage and end-to-end models.  
 

 (a) describe the one-stage models that require Non-Maximum Suppression (NMS) to get the final detected bounding box with the highest intersection 

Over Union (IOU) with the ground truth.  

 (b) shows the end-to-end pipeline which eliminates the post-processing layer and performs the detection end-to-end across the transformer Encoder-

Decoder module that applies bipartite matching between the prediction and the ground truth. 
 

 
The Vision Transformer (Dosovitskiy et al.) was the first 

work to apply a pure transformer directly to sequences of 

image patches images showing that there is no need for 

CNN anymore. Recent object detector (Touvron et al., 

2021) is the first work to insert an attention module in the 

detection pipeline to perform end-to-end object detection 

achieving competitive results on the COCO dataset 

compared with the state-of-the-art baselines, but suffer from 

low convergence. 
 

2.4. Backbone Scaling  

Scaling up the detector baseline is a common technique 

to obtain better accuracy using bigger backbone models 

(e.g., ResNet (He et al., 2016), and ResNeXt (Xie et al., 

2017). There are many recent works to scale up their model 

whether by increasing the channel size and input image size 

to 1536x1536 or increasing network width, depth, and 

resolution (Tan and Le, 2019). A recent work (Touvron et 

al., 2021), applies attention mechanisms and proposes a 

simple and more efficient backbone by introducing a split 

attention module and stacking it with a ResNet block to 

obtain a new variant. However, ResNeSt-269 (Touvron et 

al., 2021) has achieved better accuracy than EfficientNet-

B7, it drops with 32% less latency.  



 

 

2.5. Multi-scale Feature Representation 
 

 
Figure 2.  Different feature scaling architectures (a) FPN, (b) PaNet , and (c) BiFPN 

 

 

One of the challenging tasks in object detection is the 

scale-invariant problem. Feature Pyramid Network 

(FPN)(Lin et al., 2017)  is one of the works to address this 

issue by proposing a top-down pathway to combine features 

from different levels as shown in Figure 2 (a). PANet (Liu 

et al., 2018) added an extra bottom-up path on top of FPN 

as shown in Figure 2 (b). EfficientDet (Tan et al., 2020) 

tried to optimize multi-scale feature fusion by proposing a 

BiFPN block as shown in Figure 2 (c). 

Feature fusion has been popular and essential in many 

detectors and backbone architectures to obtain more 

representative information and gain performance 

enhancement. M2det (Zhao et al., 2019) proposes a U-shape 

module that fuses extracted features by the backbone from 

multi-levels. A feature pyramid is developed upon the 

decoder layers for detecting objects.  

 

3. ScaledDETR Model 

ScaledDETR is an end-to-end object detector that 

relies on a minimally parameterized, effective backbone. 

The various model components will be explained in this 

section. In order to extract a set of visual features, it 

begins with the first image, which is sent to CNN. The 

features appended to the spatial positional encodings are 

flattened by the model. After receiving the positional 

encodings as input, the encoder layer used global scene 

reasoning to separate objects. The transformer decoder 

receives the encoder layer's output and applies a fixed 

number of learnable object queries (N) (N = 100) to it. 

Three feed-forward networks (FFNs) compute the final 

forecast. Figure 3 shows the entire architecture. 
 

3.1. Backbone 

EfficientNet (Tan and Le, 2019) is used as a backbone 

which consists of 7 mobile inverted bottleneck 

(MBConv) blocks. The last fully connected layer is 

removed and flattened to construct positional encodings 

upon it. EfficientNet requires 7.8M parameters which is 

time and memory-efficient compared with ResNet-50 

used in DETR which requires 26M parameters. Backbone 

scaling has a major effect on the number of the model 

parameters the training and inference time and the 

number of the floating point operations consequently.  

 

 

 Figure 3. ScaledDETR architecture 
 



 

3.2. Transformer attention 

The same Transformer encoder-decoder (TED) module 

presented by (Carion et al., 2020) is used in the presented 

work. The main core of the TED module is the head self-

attention layer. The attention mechanism maps a query to a 

certain value using a set of key pairs as shown in Equation 

1. The head self-attention layer is repeated h times in a 

parallel manner and concatenated to output the final 

attention. In the proposed model, six encoder-decoder 

layers are built upon the image features to get the final class 

and bounding box prediction. The Transformer encoder-

decoder architecture is shown in Figure 4. 

Attention (Q, K, V) = softmax (
𝑄 𝐾𝑇

√𝑑𝑘
) 𝑉                  (1)   

Where Q is the query, K is the value, V is the value, and k 

is the dimension of the key. 

  

 

 
Figure 4: Transformer encoder-decoder (TED)  architecture 

 

 

3.3. Position Encoding 

Position Encoding is a learnable token that forces the 

model to consider the order of the input tokens. DETR 

adopts Absolute Position Encoding (APE) and simply 

adds the image features to the position encoding to make 

use of the order of the sequence. Image features are 

unrolled to three equal components; value, key, and 

query. Position Encoding is added to the key and the 

query at the encoder stage and added to the key in the 

decoder stage. The three components are packed into the 

1D vector to represent a sequence. A matrix 

multiplication between the key and the query is computed 

and scaled over the dimension of the key. In DETR APE 

is computed by fixed encodings using sine and cosine 

functions with different frequencies.  Relative position 

encoding (Wu et al., 2021) takes into account both the 

interactions between queries and relative position 

embeddings as well as directional relative distance 

modeling. The suggested RPE techniques are lightweight 

and easy to use. Plugging them into transformer blocks is 

a simple process. 

3.4. Loss function 

Since the end-to-end object detector infers predictions 

in a single pass, DETR first uses a bipartite matching 

between the prediction and the ground truth. The loss 

function is computed using the Hungarian loss (Kuhn, 

1955) for all pairs matched that gets the final detection of 

the class and the bounding box in a single assignment as 

shown in Eq (2) 

 

LHungarian(y, y^) =∑ [− log 𝑝^𝜎(𝑖)
^𝑁

𝑖=1 (𝐶𝑖) +  1{𝑐𝑖 ≠∅}𝐿𝑏𝑜𝑥(𝑏𝑖 , 

𝑏
𝜎^
^ (i))]                                                                     (2)    

where σ ^ is the optimal assignment of the detection 

compared with the ground truth, 𝑝^𝜎(𝑖)
^  (𝐶𝑖)  is the 

probability of class ci, 𝑏
𝜎^
^ (i) is the predicted box, and 

𝐿𝑏𝑜𝑥 is the bounding box loss which is computed using a 

linear combination of the L1 loss and the generalized IoU 

loss (Rezatofighi et al., 2019) which is computed 

according to Eq 3   
 

𝐿𝑏𝑜𝑥  = λiouLiou(bi, b^σ(i)) + λL1 ||bi - b^σ(i)||            (3)     

 Where λiou and λL1 are hyperparameters. 
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An auxiliary loss is proved effective in the decoder 

during training, especially to help the model output the 

correct number of objects of each class. 
 

4. Performance Metrics and dataset 

This section will cover the utilized performance 

metrics and the data benchmark. 
 

4.1. Metrics 

Object detection algorithms not only classify an 

object, but also, they localizing it. The output of the 

model is divided into two branches; the classification 

layer and the bounding box regressor to localize the 

corresponding object. The performance of the model is 

evaluated corresponding to how confident the model 

prediction is. The confidence score represents how the 

predicted box is overlapped with the ground truth. This is 

calculated by the Intersection Over Union (IOU) metric 

as the area of intersection divided by the area of their 

union as shown in Figure 5. Recall and precision are two 

significant variables that are evident, according to IOU. 

Recall is the proportion of true positive instances to all 

relevant cases (all ground-truth bounding boxes), whereas 

precision is the percentage of true positive examples to all 

positive predictions. 
 

 
Figure 5. Intersection Over Union (IOU) metric 

 

The COCO dataset includes metrics such as Average 

Precision (AP) and Average Recall (AR) that are pertinent 

to object detectors. Recall and precision are used to create 

the AP metric, which ranks retrieval results. The six values 

that constitute AP are AP@ [.5:.05:.95] together with APS, 

APM, and APL. The AP with ten distinct IOU thresholds (t 

= [0.5, 0.55,..., 0.95]) is calculated to obtain the AP@.5 and 

AP@.75 measures. The average of all computed values is 

then taken. Ground-truth objects are evaluated by APS, 

APM, and APL based on the area size (that is, area < 322 

pixels, area < 962 pixels, and area > 962), respectively. 

The average AP for every class is called Mean Average 

Precision. Finding the Average Precision (AP) for each 

class and averaging it over several classes yields the mAP 

as shown in Eq 4. The trade-off between recall and 

precision is taken into account by the mAP, which also 

takes false positives (FP) and false negatives (FN) into 

account. Because of this feature, mAP is a useful statistic 

for the majority of detection applications. 
 

mAP = 
1

𝑁
 ∑ 𝐴𝑃𝑖            𝑁

𝑖=1                                           (4) 

Log-average miss rate (MR−2) metric calculates the miss 

rate on false positives for each image on a log-scale, with a 

range of [10−2, 100]. This metric is used to evaluated the 

performance on the crowdhuman dataset (Shao et al., 2018), 

because it illustrates the number of pedestrians that are 

missed. 

 

4.2. Dataset 

The proposed method is trained and evaluated on the COCO 

(Lin et al., 2014) dataset stands for Common Objects in 

Context. The COCO dataset was published by Microsoft in 

2014 and is applied in many computer vision tasks such as 

object detection, captioning, and segmentation. There are 

two versions of the COCO dataset, the first released version 

in 2014 and the updated version in 2017. The labeled image 

classes in the two versions in the same which is 91 labeled 

classes, but the annotated classes for object detection are 80 

classes. The difference between the two versions is the 

amount of data for the train and the test. COCO 2014 

version contains 83k images for train and 41k for validation 

and test, whereas COCO 2017 contains 118k images for 

train,5k for validation, and 41k for test. ScaledDETR is 

trained and tested on the COCO 2017 version. 

The CrowdHuman dataset (Shao et al., 2018) is much more 

challenging as it contains more instances per images, and 

those instances are often highly overlapped. The dataset 

contains 470K human instances with various types of 

occlusions, with 22.6 people per image from the train and 

validation subsets. Human head bounding-box, human 

visible-region bounding-box, and human full-body 

bounding-box annotations are applied to each person 

instance. 

 

5. Simulation analysis and results 

All experiments are trained and tested using a single 

RTX 2060 GPU with 6G NVRAM. The corresponding 

environment is Python 3 and pytorch 1.10.1 with Cuda 10.2 

version that contains the corresponding optimizer. To 

import the EfficientNet backbone, the Timm library is 

installed. EfficientDETR Follow the parameters setting for 

DETR (Carion et al., 2020) transformer’s learning rate is set 

to 10-4, weight decay to 10e-4, and the backbone’s learning 

rate to 10e-5. The 6 encoder-decoder layers are learned 

through 100 object queries (N=100), where N is larger than 

the number of objects.  

The ScaledDETR model is trained on the COCO 2017 

detection dataset for only 20 epochs.  

ScaledDETR is evaluated on the COCO dataset with 

118K images for training and 5K for testing. The proposed 

model achieves 40.4 AP -as shown in Table 1 – compared 

with 40.2 AP Faster R-CNN (Ren et al., 2016) baseline and 

42.0 AP for DETR (Carion et al., 2020). The proposed 

model achieves 41.7 Ap with (+6.5%) higher than the 

EfficientDet baseline with only 25.6M parameters.  
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Results show that ScaledDETR is (1.6%) behind the 

DTER model, but the proposed architecture is more 

efficient with 23.8M parameters compared with 41.3M to 

the latter. The model is trained using Stochastic Gradient 

Descent (SGD) rather than AdamW (Loshchilov and 

Hutter, 2017) used in DETR and the model for only 20 

epochs which are 25x fewer than the number of epochs in 

DETR and achieves competitive results with the state-of-

the-art object detection methods. The recent Relative 

Position Encoding is adopted rather than standard Position 

Encoding which proved to gain a 1.3% (AP) improvement.   

 

 

Table 1. Comparison with Faster R-CNN, EfficientDet, and DETR on COCO 2007 test-dev 

 

Method #Paramaters Backbone AP AP50 AP75 APS APM APL 

Faster R-CNN (Ren et al., 2016) 56M VGG-16 21.9 42.7 - - - - 

EfficientDet-D0 (512) (Tan et al., 2020) 32M EfficientNet 34.6 53.0 37.1 - - - 

EfficientDet-D1(640) (Tan et al., 2020) 32M EfficientNet 40.5 59.1 43.7 - - - 

DETR (Carion et al., 2020) 41.3M Residual-101 42.0 62.4 44.2 20.5 45.8 61.1 

DETR-DC5 (Carion et al., 2020) 41.3M Residual-101 43.3 63.1 45.9 22.5 47.3 61.1 

DETR-DC5-R101 (Carion et al., 2020) 41.3M Residual-101 44.9 64.7 47.7 23.7 49.5 62.3 

YOLOv4 (Bochkovskiy et al., 2020)  Darknet53 44.6 64.1 49.5 27 49 65.7 

The proposed ScaledDETR 23.8M EfficientNet 40.4 58.3 44.1 19.4 45.0 61.0 

The proposed ScaledDETR (with RPE) 25.6M EfficientNet 41.7 60.1 44.6 20.2 45.6 61.3 
 

 
Table 2. Comparison with Faster R-CNN, Deformable DETR, and 
PEDETR on the crowdhuman dataset 

 

Method AP MR-2 

Faster R-CNN (Ren et al., 2016) 85.0 50.4 

Deformable DETR (Zhu et al., 2020) 86.74 53.98 

PEDETR  (Lin et al., 2020) 89.54 45.57 

The proposed ScaledDETR 90.12 48.2 

 
Table 3. Comparison of inference speed with lightweight object detection 

models (YOLOv4 and YOLOv7) 
 

Method #Paramaters FPS 

YOLOv4 (Bochkovskiy et 

al., 2020) 
64.4M 41 

YOLOv7 (Wang et al., 2023) 36.9M 161 

The proposed ScaledDETR 25.6M 49 

 
Table 4. Comparison of inference speed on different architectures 
 

Architecture FPS 

RTX2060 GPU 49 

intel core i7 @2.6 GHZ 25 

Jetson nano GPU @ 128 cores 41 

 

ScaledDETR can generalize to different benchmarks 

and achieve competitive results. ScaledDETR is also 

evaluated on the crowdhuman dataset as listed in Table 2 

and achieves 90.12 AP compared with Faster R-CNN 85.0 

AP, Deformable DETR 86.74 AP, and PEDETR 89.54 AP. 

The miss rate  

MR-2 for the proposed model is less than Faster R-CNN 

and, Deformable DETR with a gain of 1.6 and 6.2 

respectively. ScaledDETR is tested against other 

lightweight object detection models to evaluate the 

inference speed for real time applications as listed in Table 

3. ScaledDETR achieves 49 frame per second (FPS) against 

41 FPS for YOLOv4 and 161 FPS for YOLOv7.(Wang et 

al., 2023) However, YOLOv7 has the heights number of 

parameters compared with YOLOv4 and ScaledDETR, it 

has the heights inference speed. 
 

Table 5. Comparison between Dter models based on EfficientNet and 
Resnet backbones variants from efficiency, accuracy, and Floating point 

computations points of view on the COCO dataset 
 

Model No. Parameters FLOPs mAP 

ResNet18 28.68M 43.7B 35.5 

ResNet34 38.71M 51.9B 37.1 

ResNet50 41.31M 64.1B 38.6 

ResNet101 60.24M 72.5B 38.9 

ResNet152 75.83M 140.2B 39.2 

efficientnet_b0 21.22M 8.3B 35.4 

efficientnet_b1 23.73M 9.1B 35.9 

efficientnet_b2 24.83M 10.5B 36.2 

efficientnet_b3 27.73M 12.6B 36.8 

efficientnet_b4 34.37M 16.8B 38.4 

efficientnet_b5 44.91M 17.6B 38.9 

efficientnet_b6 57.03M 19B 39.5 

efficientnet_b7 79.77M 23.9B 40.2 

  

The proposed model is tested on a wide range of 

hardware configurations. The model inference speed is 

tested on the RTX2060 GPU, the intel core i7 processor 

with 2.5 GHZ and the jeston nano kit with the NVIDIA 

Maxwell architecture 128 core. The model is tested on both 

static images and video streams. ScaledDETR has 49 frame 

per second (FPS) inference speed on the RTX 2060 GPU, 

25 FPS on intel core i7@ 2.6 GHZ processor, and 41 FPS 

on Jetson nano GPU @128 cores. The reported results are 

listed in Table 4.  

A further discussion on the effect of the efficient 

backbone is listed in Table 5. The efficient variants are 

compared with the ResNet variants from the efficiency, 

accuracy, and Floating point computations points of view. 

It is noticed that efficientnet backbone is more efficient in 

terms of number of parametrs on the floating point 

operations.   

 

 

 

https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
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6. Conclusions 

In this paper, ScaledDETR is presented as an end-to-end 

object detection method that makes use of the efficientNet 

CNN backbone with fewer parameters. ScaledDETR 

handles the problem of memory and time consumption of 

the end-to-end methods due to the encoder-decoder 

transformer module that has to keep attention to a long 

sequence with large numbers of parameters. With 

ScaledDETR architecture, the model is trained and tested 

on a single GPU with fewer numbers of epochs. The model 

is evaluated on the COCO dataset and achieve competitive 

results compared with Efficientdet and DETR baseline. The 

proposed model achieves 41.7 Ap with (+6.5%) higher than 

the EfficientDet baseline with only 25.6M parameters.  

ScaledDETR can generalize to different benchmarks 

and achieve competitive results. ScaledDETR achieves 

90.12 AP compared with Faster R-CNN 85.0 AP, 

Deformable DETR 86.74 AP, and PEDETR 89.54 AP on 

the crowdhuman dataset. The proposed methodology 

proves that an efficient backbone is an essential key in 

optimizing the detection algorithm in terms of the number 

of parameters and floating-point operations. 
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